Is it ok to create thread in thread? - c#

So i have 4 objects. Each one of them must execute up to 5 operations simultaneously and also all 4 object must be operated simultaneously. I created one thread for each object and inside 5 new threads ? I saw that after a period the threads are not executed anymore.
The question is : Is it ok to have thread in thread? or it's better to create a thread pool and run them in concurrency?

There is no such thing as "thread in a thread". Thread is entity that is global in whole process. It doesn't matter if it is created in one of other thread. The moment it is created, it becomes global and unrelated to thread it created it.
More about creating threads, you should be worried about access to shared resources and possible race conditions which might be much harder to track when threads are created in different places.
And from you description, I would recommend you to look at Task Parallel Library, which makes problems like this breeze.

It's ok. You actually need to do that sometimes, like when you're working with servers, you can create thread for each connected client from thread where you are listening for clients.

Related

Most efficient way to use and communicate with many threads

I am coding an application that runs many threads in the background which have to report back to the main thread so it can update a table in the interface. In the past, the worker threads were ordinary separate classes (named Citizen) which I have ran from the main thread using something like
new Thread(new ThreadStart(citizen.ProcessActions)).Start();
where ProcessActions function was the main function which did all the background work. Before actually starting the thread, I would register event handlers so the Citizen threads could log/report some stuff to the interface. Usually, there are tens of these Citizen threads (around 50) and they're pretty big classes - each has it's own HTTP client and it browses the web.
Is this a good way to do manage threads? Probably not, to be frank; I'm pretty sure the threads aren't gracefully exiting - once the ProcessActions function gets done, I remove the event handlers and that's it - the memory usage keeps rising with each new Citizen started.
What would be the best way to manage many (50+) threads, with which you have to communicate often? I believe I wouldn't have to worry much about thread safety for Citizen variables as I wouldn't be accessing them from other threads but it's own thread.
I think what you're looking for is a thread pool. Here's an MSDN article on them and that should be available in C# 4.0.
The idea would be to create a thread pool, set its count to some high number(say 50), and then start assigning threads to tasks. If the pool needs to expand, it can, but by declaring a high number up front, you get all the expensive creation of threads out of the way.
It might be beneficial to 'queue' tasks that you want to get done, and assign those tasks as threads become available.
Also, memory leaks can be hard to find, but I would start by testing the simple case: Take out all threads(just run one Citizen after another from the main thread) and let it run for a long time. If it's still leaking memory, your thread management isn't the issue.

Thread: How to re-start thread once completed?

I have a method void DoWork(object input) that takes roughly 5 seconds to complete. I have read that Thread is better suited than ThreadPool for these longer operations but I have encountered a problem.
I click a button which calls threadRun.Start(input) which runs and completes fine. I click the button again and receive the following exception:
Thread is running or terminated; it cannot restart.
Can you not "reuse" a Thread? Should I use ThreadPool? Why is Thread "better suited for longer operations" compared to ThreadPool? If you can't reuse a thread, why use it at all (i.e. what advantages does it offer)?
Can you not "reuse" a Thread?
You can. But you have to code the thread not to terminate but to instead wait for more work. That's what a thread pool does.
Should I use ThreadPool?
If you want to re-use a thread, yes.
Why is Thread "better suited for longer operations" compared to ThreadPool?
Imagine a thread pool that is serving a large number of quick operations. You don't want to have too many threads, because the computer can only do so many things at a time. Each long operation you make the thread pool do ties up a thread from the pool. So the pool either has to have lots of extra threads or may run short of threads. Neither leads to an efficient thread pool design.
For longer operations, the overhead of creating and destroying a thread is very small in comparison to the cost of the operation. So the normal downside of using a thread just for the operation doesn't apply.
If you can't reuse a thread, why use it at all (i.e. what advantages does it offer)?
I'm assuming you mean using a thread dedicated to a job that then terminates over using a thread pool. The advantage is that the number of threads will always equal the number of jobs this way. This means you have to create a thread every time you start a job and destroy a thread every time you finish one, but you never have extra threads nor do you ever run short on threads. (This can be a good thing with I/O bound threads but can be a bad thing if most threads are CPU bound most of the time.)
Thread.Start documentation says:
Once the thread terminates, it cannot be restarted with another call
to Start.
Threads are not reusable. I have already faced this problem a while ago, the solution was to create a new Thread instance whenever needed.
It looks like this by by design.
I encountered the same problem and the only solution I could find was to recreate the thread. In my case I wasn't restarting the thread very often so I didn't look any further.
A search now has turned up this thread on social.msdn where the accepted answer states:
a stopped or aborted thread cannot be stated again.
The MSDN repeat this as well:
trying to restart an aborted thread by calling Start on a thread that has terminated throws a ThreadStateException.
As the message states, you cannot restart the thread. You can simply create a new thread for your next operation. Or, you might consider a design where the background thread keeps working until it completes all of your tasks, rather than launch a new thread for each one.
for(;;){} or while(true){} are useful constructs to 'reuse' a thread. Typically, the thread waits on some synchronization object at the top of these loops. In your example, you could wait on an event or semaphore and signal it from your button OnClick() handler.
It's just in background mode. It sounds like you need to use the ThreadPool because re-starting and re-creating Thread objects are very expensive operations. If you have a long running job that may last longer than your main process, then consider the use of a Windows Service.

Thread.Start() versus ThreadPool.QueueUserWorkItem()

The Microsoft .NET Base Class Library provides several ways to create a thread and start it. Basically the invocation is very similar to every other one providing the same kind of service: create an object representing an execution flow (or more), assign it a delegate representing the execution flow to execute and, eventually, depending on delegate signature, an object as a parameter.
Well, there are two approaches (essentially):
1) Using the System.Threading.Thread class.
Thread curr = new Thread(myfunction); /* In a class, myfunction is a void taking an object */
curr.Start(new Object()); /* Or something else to be downcast */
2) Using the System.Threading.ThreadPool class.
ThreadPool.QueueUserWorkItem(myfunction, new Object()); /* Same philosophy here */
Are there any special reasons why I should use 1) or 2)?
Performance reasons?
Patterns?
What is the best approach?
I have a feeling that the answer is: "Depend by the situation". Could you please list some situations where one approach is better than another?
Starting a new thread can be a very expensive operation. The thread pool reuses threads and thus amortizes the cost. Unless you need a dedicated thread, the thread pool is the recommended way to go. By using a dedicated thread you have more control over thread specific attributes such as priority, culture and so forth. Also, you should not do long running tasks on the thread pool as it will force the pool to spawn additional threads.
In addition to the options you mention .NET 4 offers some great abstractions for concurrency. Check out the Task and Parallel classes as well as all the new PLINQ methods.
The Managed Thread Pool has some very good guidelines on when NOT to use the thread pool.
In my experience, you want to create your own thread when you need a persistent, dedicated, long-running thread. For everything else, use asynchronous delegates or something like QueueUserWorkItem, BackgroundWorker, or the Task-related features of .NET 4.0.
Threads in ThreadPool are background threads;
All threads created and started by a new Thread object are foreground threads.
A background thread does not keep the managed execution environment running.
refer to http://msdn.microsoft.com/en-us/library/h339syd0.aspx for more.
In .NET 4.5.2 they added a new method: HostingEnvironment.QueueBackgroundWorkItem.
This appears to be an alternative to ThreadPool.QueueUserWorkItem. Both behave similarly, but there are some nice benefits to using the new method when working in ASP.NET:
The HostingEnvironment.QueueBackgroundWorkItem method lets you
schedule small background work items. ASP.NET tracks these items and
prevents IIS from abruptly terminating the worker process until all
background work items have completed. This method can't be called
outside an ASP.NET managed app domain.
Using the ThreadPool, you have less control of the threading system. This is a trade off to simplify the process for you. If you have all that you need from the ThreadPool, you should feel free to utilize it. If you need more control of the threads, then you need to of course use the Thread classes.
ThreadPool.QueueUserWorkItem() is basically for fire-and-forget scenarios, when application doesn't depend on whether operations will finish or not.
Use classic threads for fine-grained control.
You should use ThreadPool.QueueUserWorkItem except in cases of:
You require a foreground thread.
You require a thread to have a particular priority.
You have tasks that cause the thread to block for long periods of
time. The thread pool has a maximum number of threads, so a large
number of blocked thread pool threads might prevent tasks from
starting.
You need to place threads into a single-threaded apartment. All
ThreadPool threads are in the multithreaded apartment.
You need to have a stable identity associated with the thread, or to
dedicate a thread to a task.
Reference link.

Thread.Sleep(Timeout.Infinite) performance issues

Main execution path (main thread) is going to be forked into two execution paths (two new threads on different jobs) but the main thread is no longer needed. I can assign one of the tasks to main thread and save one thread (one task by main thread and another by a new thread) but I was wondering putting main thread in an infinite sleep Thread.Sleep(Timeout.Infinite) is a good approach or not. My class is going to be instantiated many times and if a thread in infinite sleep takes resource from OS it's bad news for me.
Each thread you create takes up stack space. On Windows, that's 1MB by default. There are also other internal house-keeping data structures that the operating system uses to keep track of threads which will take up a bit of memory as well, but the 1MB stack is definitely going to be the biggest consumer of resources.
Having said that, if we're only talking about 2 vs. 3 threads, then the difference is quite small. If it was 200 vs. 300 then you might have something to worry about. But if you're spawning a lot of threads, you'd be better off using some kind of thread pool (like, say, the one built-in to the .NET framework) rather than spawning individual threads anyway.
All threads tie up resources, regardless of if they're sleeping or not.

What's the thread context for events in .Net using existing APIs?

When using APIs handling asynchronous events in .Net I find myself unable to predict how the library will scale for large numbers of objects.
For example, using the Microsoft.Office.Interop.UccApi library, when I create an endpoint it gets events when phone events happen. Now let's say I want to create 1000 endpoints. The number of events per endpoint is small, but is what's happening behind the scenes in the API able to keep up with the event flow? I don't know because it never says how it's architected.
Let's say I want to create all 1000 objects in the main thread. Then I want to put the Login method into a large thread pool so all objects login in parallel. Then once all the objects have logged in the next phase will begin.
Are the event callbacks the API raises happening in the original creating thread? A separate threadpool? Or the same threadpool I'm accessing with ThreadPool.QueueUserWorkItem?
Would I be better putting each object in it's own thread? Grouping a few objects in each thread? Or is it fine just creating all 1000 objects in the main thread and through .Net magic it will all be OK?
thanx
The events from interop assemblies are just wrappers around the COM connection points. The thread on which the call from the connection point arrive depends on the threading model of the object that advised on that connection point. COM will ensure the proper thread switching for this.
If your objects are implemented on the main thread, which in .Net is usually an STA, all events should arrive on that same thread. If you want your calls to arrive on a random thread from the COM thread pool (which I think is the same as the CLR thread pool), you need to create your objects on a thread that is configured as an MTA.
I would strongly advise against creating a thread for each object: 1) If you create these threads as STA, each of them will have a message queue, waisting system resource; 2) If you create them as MTA, nothing guarantees you the event call will arrive on your thread; 3) You'll have 1000 idle threads doing nothing and just waiting on an event to shutdown; and 4) Starting up and shutting down all these threads will have terrible perf cost on your application.
It really depends on a lot of things, primarily how powerful your hardware is. The threadpool does have a certain number of threads (which you can increase) that it will make available for your application. So if all of your events are firing at the same time some will most likely be waiting for a few moments while your threadpool waits for threads to become free again. The tradeoff is that you don't have the performance hit of creating new threads all the time either. Probably creating 1000 threads isn't the right answer either.
It may turn out that this is ideal, both because of the performance gains in reusing threads but also because having 1000 threads all running simultaneously might be more memory / CPU usage than it's worth.
I just wanted to note that in .NET 2.0 and greater it's possible to programmatically increase the maximum number of threads in the thread pool using ThreadPool.SetMaxThreads(). Given this you can put a hard cap on the number of threads and so ensure the scheduler won't be brought to it's knees by the overhead.
Even more useful in this sort of case, you can set the minimum number of threads with ThreadPool.SetMinThreads(). With this you can ensure that you only pay the "horrible performance price" Franci is talking about once, at application startup. You could balance this against the expected number peak of users and so ensure you won't be creating tons of new threads.
A single new thread creation won't destroy you. What I would be worried about is the case where a lot of threads need to be created at the same time. If you can say that this will only happen at startup you would be golden.

Categories