Get lower nibble of a byte and replace Hex value - c#

I need to replace the hex value 0xA with a 0 and get only the lower nibble of a hex value.
This is what I have at the moment:
private void ParseContactID(int ContactID_100, int ContactID_10, int ContactID_1)
{
// (A=0)
string Hunderds = ContactID_100.ToString("X").Replace((char)0xA, '0');
string Dozens = ContactID_10.ToString("X").Replace((char)0xA, '0');
string Singles = ContactID_1.ToString("X").Replace((char)0xA, '0');
int HunderdsLower = StringToHex(Hunderds) & 0x0F;
int DozensLower = StringToHex(Dozens) & 0x0F;
int SinglesLower = StringToHex(Singles) & 0x0F;
}
Should I & with 0x0F to get the lower nibble or 0xF0?
And is there a way to replace 0xA without converting it to a string first?

I don't think that the code you currently have does what you think it does - (char)0xA is a line feed, not the letter 'A', so it won't be replacing anything (since the ToString("X") won't produce a line feed. As you've suspect however the string conversion can be done away with completely.
To get the lower nibble, you need to AND with 0x0F. As far as the conversion of 0xA to 0, there are a couple of options, but if you can be sure that the lower nibble will only contain values 0x0 - 0xA (0 - 10), then you can use the modulo operator (%) which if we modulo 10, will convert 0xA to 0, whilst leaving values 0 - 9 unchanged:
var hundreds = (ContactID_100 & 0x0F) % 10;

I don't see any reason for you to use string conversion at all. This could simply be:
int hundreds = (ContactID_100 & 0x0F) % 10;
int dozens = (ContactID_10 & 0x0F) % 10; // I wonder why "dozens" instead of "tens"... ?
int singles = (ContactID_1 & 0x0F) % 10;
int contactId = hundreds * 100 + dozens * 10 + singles; // assuming "dozens" is "tens"...
To get the lower nibble, you just have to mask away the top nibble with & 0x0F.
To make A = 0, modular division can work. Make sure to put () around the & statement, since the % has higher precedence than the &.
If you prefer to not use the % operator, an if check may be faster:
int hundreds = ContactID_100 & 0x0F;
int dozens = ContactID_10 & 0x0F;
int singles = ContactID_1 & 0x0F;
if (hundreds == 10) { hundreds = 0; } // since 0xA is 10
if (dozens == 10) { dozens = 0; }
if (singles == 10) { singles = 0; }

Related

Convert floating point byte array to decimal

I receive a 4-byte long array over BLE and I am interested in converting the last two bytes to a floating point decimal representation(float, double, etc) in C#. The original value has the following format:
1 sign bit
4 integer bits
11 fractional bits
My first attempt was using BitConverter, but I am confused by the procedure.
Example: I receive a byte array values where values[2] = 143 and values[3] = 231. Those 2 bytes combined represent a value in the format specified above. I am not sure, but I think that it would be like this:
SIGN INT FRACTION
0 0000 00000000000
Furthermore, since the value comes in two bytes, I tried to use BitConverter.ToString to get the hex representation and then concatenate the bytes. It is at this point where I am not sure how to continue.
Thank you for your help!
Your question lacks information, however the format seems to be clear, e.g. for given two bytes as
byte[] arr = new byte[] { 123, 45 };
we have
01111011 00101101
^^ ^^ .. ^
|| || |
|| |11 fractional bits = 01100101101 (813)
||..|
|4 integer bits = 1111 (15)
|
1 sign bit = 0 (positive)
let's get all the parts:
bool isNegative = (arr[0] & 0b10000000) != 0;
int intPart = (arr[0] & 0b01111000) >> 3;
int fracPart = ((arr[0] & 0b00000111) << 8) | arr[1];
Now we should combine all these parts into a number; here is ambiguity: there are many possible different ways to compute fractional part. One of them is
result = [sign] * (intPart + fracPart / 2**Number_Of_Frac_Bits)
In our case { 123, 45 } we have
sign = 0 (positive)
intPart = 1111b = 15
fracPart = 01100101101b / (2**11) = 813 / 2048 = 0.39697265625
result = 15.39697265625
Implementation:
// double result = (isNegative ? -1 : 1) * (intPart + fracPart / 2048.0);
Single result = (isNegative ? -1 : 1) * (intPart + fracPart / 2048f);
Console.Write(result);
Outcome:
15.39697
Edit: In case you actually don't have sign bit, but use 2's complement for the integer part (which is unusual - double, float use sign bit; 2's complement is for integer types like Int32, Int16 etc.) I expect just an expectation, 2's complement is unusual in the context) something like
int intPart = (arr[0]) >> 3;
int fracPart = ((arr[0] & 0b00000111) << 8) | arr[1];
if (intPart >= 16)
intPart = -((intPart ^ 0b11111) + 1);
Single result = (intPart + fracPart / 2048f);
Another possibility that you in fact use integer value (Int16) with fixed floating point; in this case the conversion is easy:
We obtain Int16 as usual
Then put fixed floating point by dividing 2048.0:
Code:
// -14.01221 for { 143, 231 }
Single result = unchecked((Int16) ((arr[0] << 8) | arr[1])) / 2048f;
Or
Single result = BitConverter.ToInt16(BitConverter.IsLittleEndian
? arr.Reverse().ToArray()
: arr, 0) / 2048f;

fast way to convert integer array to byte array (11 bit)

I have integer array and I need to convert it to byte array
but I need to take (only and just only) first 11 bit of each element of the هinteger array
and then convert it to a byte array
I tried this code
// ***********convert integer values to byte values
//***********to avoid the left zero padding on the byte array
// *********** first step : convert to binary string
// ***********second step : convert binary string to byte array
// *********** first step
string ByteString = Convert.ToString(IntArray[0], 2).PadLeft(11,'0');
for (int i = 1; i < IntArray.Length; i++)
ByteString = ByteString + Convert.ToString(IntArray[i], 2).PadLeft(11, '0');
// ***********second step
int numOfBytes = ByteString.Length / 8;
byte[] bytes = new byte[numOfBytes];
for (int i = 0; i < numOfBytes; ++i)
{
bytes[i] = Convert.ToByte(ByteString.Substring(8 * i, 8), 2);
}
But it takes too long time (if the file size large , the code takes more than 1 minute)
I need a very very fast code (very few milliseconds only )
can any one help me ?
Basically, you're going to be doing a lot of shifting and masking. The exact nature of that depends on the layout you want. If we assume that we pack little-endian from each int, appending on the left, so two 11-bit integers with positions:
abcdefghijk lmnopqrstuv
become the 8-bit chunks:
defghijk rstuvabc 00lmnopq
(i.e. take the lowest 8 bits of the first integer, which leaves 3 left over, so pack those into the low 3 bits of the next byte, then take the lowest 5 bits of the second integer, then finally the remaining 6 bits, padding with zero), then something like this should work:
using System;
using System.Linq;
static class Program
{
static string AsBinary(int val) => Convert.ToString(val, 2).PadLeft(11, '0');
static string AsBinary(byte val) => Convert.ToString(val, 2).PadLeft(8, '0');
static void Main()
{
int[] source = new int[1432];
var rand = new Random(123456);
for (int i = 0; i < source.Length; i++)
source[i] = rand.Next(0, 2047); // 11 bits
// Console.WriteLine(string.Join(" ", source.Take(5).Select(AsBinary)));
var raw = Encode(source);
// Console.WriteLine(string.Join(" ", raw.Take(6).Select(AsBinary)));
var clone = Decode(raw);
// now prove that it worked OK
if (source.Length != clone.Length)
{
Console.WriteLine($"Length: {source.Length} vs {clone.Length}");
}
else
{
int failCount = 0;
for (int i = 0; i < source.Length; i++)
{
if (source[i] != clone[i] && failCount++ == 0)
{
Console.WriteLine($"{i}: {source[i]} vs {clone[i]}");
}
}
Console.WriteLine($"Errors: {failCount}");
}
}
static byte[] Encode(int[] source)
{
long bits = source.Length * 11;
int len = (int)(bits / 8);
if ((bits % 8) != 0) len++;
byte[] arr = new byte[len];
int bitOffset = 0, index = 0;
for (int i = 0; i < source.Length; i++)
{
// note: this encodes little-endian
int val = source[i] & 2047;
int bitsLeft = 11;
if(bitOffset != 0)
{
val = val << bitOffset;
arr[index++] |= (byte)val;
bitsLeft -= (8 - bitOffset);
val >>= 8;
}
if(bitsLeft >= 8)
{
arr[index++] = (byte)val;
bitsLeft -= 8;
val >>= 8;
}
if(bitsLeft != 0)
{
arr[index] = (byte)val;
}
bitOffset = bitsLeft;
}
return arr;
}
private static int[] Decode(byte[] source)
{
int bits = source.Length * 8;
int len = (int)(bits / 11);
// note no need to worry about remaining chunks - no ambiguity since 11 > 8
int[] arr = new int[len];
int bitOffset = 0, index = 0;
for(int i = 0; i < source.Length; i++)
{
int val = source[i] << bitOffset;
int bitsLeftInVal = 11 - bitOffset;
if(bitsLeftInVal > 8)
{
arr[index] |= val;
bitOffset += 8;
}
else if(bitsLeftInVal == 8)
{
arr[index++] |= val;
bitOffset = 0;
}
else
{
arr[index++] |= (val & 2047);
if(index != arr.Length) arr[index] = val >> 11;
bitOffset = 8 - bitsLeftInVal;
}
}
return arr;
}
}
If you need a different layout you'll need to tweak it.
This encodes 512 MiB in just over a second on my machine.
Overview to the Encode method:
The first thing is does is pre-calculate the amount of space that is going to be required, and allocate the output buffer; since each input contributes 11 bits to the output, this is just some modulo math:
long bits = source.Length * 11;
int len = (int)(bits / 8);
if ((bits % 8) != 0) len++;
byte[] arr = new byte[len];
We know the output position won't match the input, and we know we're going to be starting each 11-bit chunk at different positions in bytes each time, so allocate variables for those, and loop over the input:
int bitOffset = 0, index = 0;
for (int i = 0; i < source.Length; i++)
{
...
}
return arr;
So: taking each input in turn (where the input is the value at position i), take the low 11 bits of the value - and observe that we have 11 bits (of this value) still to write:
int val = source[i] & 2047;
int bitsLeft = 11;
Now, if the current output value is partially written (i.e. bitOffset != 0), we should deal with that first. The amount of space left in the current output is 8 - bitOffset. Since we always have 11 input bits we don't need to worry about having more space than values to fill, so: left-shift our value by bitOffset (pads on the right with bitOffset zeros, as a binary operation), and "or" the lowest 8 bits of this with the output byte. Essentially this says "if bitOffset is 3, write the 5 low bits of val into the 5 high bits of the output buffer"; finally, fixup the values: increment our write position, record that we have fewer bits of the current value still to write, and use right-shift to discard the 8 low bits of val (which is made of bitOffset zeros and 8 - bitOffset "real" bits):
if(bitOffset != 0)
{
val = val << bitOffset;
arr[index++] |= (byte)val;
bitsLeft -= (8 - bitOffset);
val >>= 8;
}
The next question is: do we have (at least) an entire byte of data left? We might not, if bitOffset was 1 for example (so we'll have written 7 bits already, leaving just 4). If we do, we can just stamp that down and increment the write position - then once again track how many are left and throw away the low 8 bits:
if(bitsLeft >= 8)
{
arr[index++] = (byte)val;
bitsLeft -= 8;
val >>= 8;
}
And it is possible that we've still got some left-over; for example, if bitOffset was 7 we'll have written 1 bit in the first chunk, 8 bits in the second, leaving 2 more to write - or if bitOffset was 0 we won't have written anything in the first chunk, 8 in the second, leaving 3 left to write. So, stamp down whatever is left, but do not increment the write position - we've written to the low bits, but the next value might need to write to the high bits. Finally, update bitOffset to be however many low bits we wrote in the last step (which could be zero):
if(bitsLeft != 0)
{
arr[index] = (byte)val;
}
bitOffset = bitsLeft;
The Decode operation is the reverse of this logic - again, calculate the sizes and prepare the state:
int bits = source.Length * 8;
int len = (int)(bits / 11);
int[] arr = new int[len];
int bitOffset = 0, index = 0;
Now loop over the input:
for(int i = 0; i < source.Length; i++)
{
...
}
return arr;
Now, bitOffset is the start position that we want to write to in the current 11-bit value, so if we start at the start, it will be 0 on the first byte, then 8; 3 bits of the second byte join with the first 11-bit integer, so the 5 bits become part of the second - so bitOffset is 5 on the 3rd byte, etc. We can calculate the number of bits left in the current integer by subtracting from 11:
int val = source[i] << bitOffset;
int bitsLeftInVal = 11 - bitOffset;
Now we have 3 possible scenarios:
1) if we have more than 8 bits left in the current value, we can stamp down our input (as a bitwise "or") but do not increment the write position (as we have more to write for this value), and note that we're 8-bits further along:
if(bitsLeftInVal > 8)
{
arr[index] |= val;
bitOffset += 8;
}
2) if we have exactly 8 bits left in the current value, we can stamp down our input (as a bitwise "or") and increment the write position; the next loop can start at zero:
else if(bitsLeftInVal == 8)
{
arr[index++] |= val;
bitOffset = 0;
}
3) otherwise, we have less than 8 bits left in the current value; so we need to write the first bitsLeftInVal bits to the current output position (incrementing the output position), and whatever is left to the next output position. Since we already left-shifted by bitOffset, what this really means is simply: stamp down (as a bitwise "or") the low 11 bits (val & 2047) to the current position, and whatever is left (val >> 11) to the next if that wouldn't exceed our output buffer (padding zeros). Then calculate our new bitOffset:
else
{
arr[index++] |= (val & 2047);
if(index != arr.Length) arr[index] = val >> 11;
bitOffset = 8 - bitsLeftInVal;
}
And that's basically it. Lots of bitwise operations - shifts (<< / >>), masks (&) and combinations (|).
If you wanted to store the least significant 11 bits of an int into two bytes such that the least significant byte has bits 1-8 inclusive and the most significant byte has 9-11:
int toStore = 123456789;
byte msb = (byte) ((toStore >> 8) & 7); //or 0b111
byte lsb = (byte) (toStore & 255); //or 0b11111111
To check this, 123456789 in binary is:
0b111010110111100110100010101
MMMLLLLLLLL
The bits above L are lsb, and have a value of 21, above M are msb and have a value of 5
Doing the work is the shift operator >> where all the binary digits are slid to the right 8 places (8 of them disappear from the right hand side - they're gone, into oblivion):
0b111010110111100110100010101 >> 8 =
0b1110101101111001101
And the mask operator & (the mask operator works by only keeping bits where, in each position, they're 1 in the value and also 1 in the mask) :
0b111010110111100110100010101 &
0b000000000000000000011111111 (255) =
0b000000000000000000000010101
If you're processing an int array, just do this in a loop:
byte[] bs = new byte[ intarray.Length*2 ];
for(int x = 0, b=0; x < intarray.Length; x++){
int toStore = intarray[x];
bs[b++] = (byte) ((toStore >> 8) & 7);
bs[b++] = (byte) (toStore & 255);
}

What is the right way to compare two strings and find the total qty of unequal chars?

I'm trying to compare two strings(Tx & Rx data) and find the quantity of unequal chars.
With the help of the following code, I managed to get the quantity,
string TxData = "00001111";
string RxData = "00000000";
int distorted = 0;
for (int i = 0; i < TxData.Length; i++)
{
if (TxData[i] != RxData[i])
distorted++;
}
Console.Write("Distorted Bits (qty) : {0}", distorted);
Result:
Distorted Bits (qty) : 4
But I'm very curious to know if there's any better way to do this task?
Thanks for your time...:)
If they're always the same length:
int distorted = TxData.Zip(RxData, (a,b) => a == b ? 0 : 1).Sum();
I like okrumnows answer by its simplisity, but assuming that you really already have bytes (or int) and don't need to convert them to string in the first place, you would probably be better of doing something like:
int myMethod(byte byte1, byte byte2)
{
//byte1 = Convert.ToByte("10010101",2);
//byte2 = Convert.ToByte("10011101",2);
byte xorvalue = (byte)( byte1 ^ byte2);
return NumberOfSetBits(xorvalue);
}
private static int NumberOfSetBits(uint i)
{
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
This will be much faster.

Concatenate three 4-bit values

I am trying to get the original 12-bit value from from a base15 (edit) string. I figured that I need a zerofill right shift operator like in Java to deal with the zero padding. How do I do this?
No luck so far with the following code:
static string chars = "0123456789ABCDEFGHIJKLMNOP";
static int FromStr(string s)
{
int n = (chars.IndexOf(s[0]) << 4) +
(chars.IndexOf(s[1]) << 4) +
(chars.IndexOf(s[2]));
return n;
}
Edit; I'll post the full code to complete the context
static string chars = "0123456789ABCDEFGHIJKLMNOP";
static void Main()
{
int n = FromStr(ToStr(182));
Console.WriteLine(n);
Console.ReadLine();
}
static string ToStr(int n)
{
if (n <= 4095)
{
char[] cx = new char[3];
cx[0] = chars[n >> 8];
cx[1] = chars[(n >> 4) & 25];
cx[2] = chars[n & 25];
return new string(cx);
}
return string.Empty;
}
static int FromStr(string s)
{
int n = (chars.IndexOf(s[0]) << 8) +
(chars.IndexOf(s[1]) << 4) +
(chars.IndexOf(s[2]));
return n;
}
Your representation is base26, so the answer that you are going to get from a three-character value is not going to be 12 bits: it's going to be in the range 0..17575, inclusive, which requires 15 bits.
Recall that shifting left by k bits is the same as multiplying by 2^k. Hence, your x << 4 operations are equivalent to multiplying by 16. Also recall that when you convert a base-X number, you need to multiply its digits by a power of X, so your code should be multiplying by 26, rather than shifting the number left, like this:
int n = (chars.IndexOf(s[0]) * 26*26) +
(chars.IndexOf(s[1]) * 26) +
(chars.IndexOf(s[2]));

Converting an Int to a BCD byte array [duplicate]

I want to convert an int to a byte[2] array using BCD.
The int in question will come from DateTime representing the Year and must be converted to two bytes.
Is there any pre-made function that does this or can you give me a simple way of doing this?
example:
int year = 2010
would output:
byte[2]{0x20, 0x10};
static byte[] Year2Bcd(int year) {
if (year < 0 || year > 9999) throw new ArgumentException();
int bcd = 0;
for (int digit = 0; digit < 4; ++digit) {
int nibble = year % 10;
bcd |= nibble << (digit * 4);
year /= 10;
}
return new byte[] { (byte)((bcd >> 8) & 0xff), (byte)(bcd & 0xff) };
}
Beware that you asked for a big-endian result, that's a bit unusual.
Use this method.
public static byte[] ToBcd(int value){
if(value<0 || value>99999999)
throw new ArgumentOutOfRangeException("value");
byte[] ret=new byte[4];
for(int i=0;i<4;i++){
ret[i]=(byte)(value%10);
value/=10;
ret[i]|=(byte)((value%10)<<4);
value/=10;
}
return ret;
}
This is essentially how it works.
If the value is less than 0 or greater than 99999999, the value won't fit in four bytes. More formally, if the value is less than 0 or is 10^(n*2) or greater, where n is the number of bytes, the value won't fit in n bytes.
For each byte:
Set that byte to the remainder of the value-divided-by-10 to the byte. (This will place the last digit in the low nibble [half-byte] of the current byte.)
Divide the value by 10.
Add 16 times the remainder of the value-divided-by-10 to the byte. (This will place the now-last digit in the high nibble of the current byte.)
Divide the value by 10.
(One optimization is to set every byte to 0 beforehand -- which is implicitly done by .NET when it allocates a new array -- and to stop iterating when the value reaches 0. This latter optimization is not done in the code above, for simplicity. Also, if available, some compilers or assemblers offer a divide/remainder routine that allows retrieving the quotient and remainder in one division step, an optimization which is not usually necessary though.)
Here's a terrible brute-force version. I'm sure there's a better way than this, but it ought to work anyway.
int digitOne = year / 1000;
int digitTwo = (year - digitOne * 1000) / 100;
int digitThree = (year - digitOne * 1000 - digitTwo * 100) / 10;
int digitFour = year - digitOne * 1000 - digitTwo * 100 - digitThree * 10;
byte[] bcdYear = new byte[] { digitOne << 4 | digitTwo, digitThree << 4 | digitFour };
The sad part about it is that fast binary to BCD conversions are built into the x86 microprocessor architecture, if you could get at them!
Here is a slightly cleaner version then Jeffrey's
static byte[] IntToBCD(int input)
{
if (input > 9999 || input < 0)
throw new ArgumentOutOfRangeException("input");
int thousands = input / 1000;
int hundreds = (input -= thousands * 1000) / 100;
int tens = (input -= hundreds * 100) / 10;
int ones = (input -= tens * 10);
byte[] bcd = new byte[] {
(byte)(thousands << 4 | hundreds),
(byte)(tens << 4 | ones)
};
return bcd;
}
maybe a simple parse function containing this loop
i=0;
while (id>0)
{
twodigits=id%100; //need 2 digits per byte
arr[i]=twodigits%10 + twodigits/10*16; //first digit on first 4 bits second digit shifted with 4 bits
id/=100;
i++;
}
More common solution
private IEnumerable<Byte> GetBytes(Decimal value)
{
Byte currentByte = 0;
Boolean odd = true;
while (value > 0)
{
if (odd)
currentByte = 0;
Decimal rest = value % 10;
value = (value-rest)/10;
currentByte |= (Byte)(odd ? (Byte)rest : (Byte)((Byte)rest << 4));
if(!odd)
yield return currentByte;
odd = !odd;
}
if(!odd)
yield return currentByte;
}
Same version as Peter O. but in VB.NET
Public Shared Function ToBcd(ByVal pValue As Integer) As Byte()
If pValue < 0 OrElse pValue > 99999999 Then Throw New ArgumentOutOfRangeException("value")
Dim ret As Byte() = New Byte(3) {} 'All bytes are init with 0's
For i As Integer = 0 To 3
ret(i) = CByte(pValue Mod 10)
pValue = Math.Floor(pValue / 10.0)
ret(i) = ret(i) Or CByte((pValue Mod 10) << 4)
pValue = Math.Floor(pValue / 10.0)
If pValue = 0 Then Exit For
Next
Return ret
End Function
The trick here is to be aware that simply using pValue /= 10 will round the value so if for instance the argument is "16", the first part of the byte will be correct, but the result of the division will be 2 (as 1.6 will be rounded up). Therefore I use the Math.Floor method.
I made a generic routine posted at IntToByteArray that you could use like:
var yearInBytes = ConvertBigIntToBcd(2010, 2);
static byte[] IntToBCD(int input) {
byte[] bcd = new byte[] {
(byte)(input>> 8),
(byte)(input& 0x00FF)
};
return bcd;
}

Categories