I have a .wav mono file (16bit,44.1kHz) and im using this code below. If im not wrong, this would give me an output of values between -1 and 1 which i can apply FFT on ( to be converted to a spectrogram later on). However, my output is no where near -1 and 1.
This is a portion of my output
7.01214599609375
17750.2552337646
8308.42733764648
0.000274658203125
1.00001525878906
0.67291259765625
1.3458251953125
16.0000305175781
24932
758.380676269531
0.0001068115234375
This is the code which i got from another post
Edit 1:
public static Double[] prepare(String wavePath, out int SampleRate)
{
Double[] data;
byte[] wave;
byte[] sR = new byte[4];
System.IO.FileStream WaveFile = System.IO.File.OpenRead(wavePath);
wave = new byte[WaveFile.Length];
data = new Double[(wave.Length - 44) / 4];//shifting the headers out of the PCM data;
WaveFile.Read(wave, 0, Convert.ToInt32(WaveFile.Length));//read the wave file into the wave variable
/***********Converting and PCM accounting***************/
for (int i = 0; i < data.Length; i += 2)
{
data[i] = BitConverter.ToInt16(wave, i) / 32768.0;
}
/**************assigning sample rate**********************/
for (int i = 24; i < 28; i++)
{
sR[i - 24] = wave[i];
}
SampleRate = BitConverter.ToInt16(sR, 0);
return data;
}
Edit 2 : Im getting ouput with 0s every 2nd number
0.009002685546875
0
0.009613037109375
0
0.0101318359375
0
0.01080322265625
0
0.01190185546875
0
0.01312255859375
0
0.014068603515625
If your samples are 16 bits (which appears to be the case), then you want to work with Int16. Each 2 bytes of the sample data is a signed 16-bit integer in the range -32768 .. 32767, inclusive.
If you want to convert a signed Int16 to a floating point value from -1 to 1, then you have to divide by Int16.MaxValue + 1 (which is equal to 32768). So, your code becomes:
for (int i = 0; i < data.Length; i += 2)
{
data[i] = BitConverter.ToInt16(wave, i) / 32768.0;
}
We use 32768 here because the values are signed.
So -32768/32768 will give -1.0, and 32767/32768 gives 0.999969482421875.
If you used 65536.0, then your values would only be in the range -0.5 .. 0.5.
Related
I have a byte array as follows -
byte[] arrByt = new byte[] { 0xF, 0xF, 0x11, 0x4 };
so in binary
arrByt = 00001111 00001111 00010001 000000100
Now I want to create a new byte array by removing leading 0s for each byte from arrByt
arrNewByt = 11111111 10001100 = { 0xFF, 0x8C };
I know that this can be done by converting the byte values into binary string values, removing the leading 0s, appending the values and converting back to byte values into the new array.
However this is a slow process for a large array.
Is there a faster way to achieve this (like logical operations, bit operations, or other efficient ways)?
Thanks.
This should do the job quite fast. At least only standard loops and operators. Give it a try, will also work for longer source arrays.
// source array of bytes
var arrByt = new byte[] {0xF, 0xF, 0x11, 0x4 };
// target array - first with the size of the source array
var targetArray = new byte[arrByt.Length];
// bit index in target array
// from left = byte 0, bit 7 = index 31; to the right = byte 4, bit 0 = index 0
var targetIdx = targetArray.Length * 8 - 1;
// go through all bytes of the source array from left to right
for (var i = 0; i < arrByt.Length; i++)
{
var startFound = false;
// go through all bits of the current byte from the highest to the lowest
for (var x = 7; x >= 0; x--)
{
// copy the bit if it is 1 or if there was already a 1 before in this byte
if (startFound || ((arrByt[i] >> x) & 1) == 1)
{
startFound = true;
// copy the bit from its position in the source array to its new position in the target array
targetArray[targetArray.Length - ((targetIdx / 8) + 1)] |= (byte) (((arrByt[i] >> x) & 1) << (targetIdx % 8));
// advance the bit + byte position in the target array one to the right
targetIdx--;
}
}
}
// resize the target array to only the bytes that were used above
Array.Resize(ref targetArray, (int)Math.Ceiling((targetArray.Length * 8 - (targetIdx + 1)) / 8d));
// write target array content to console
for (var i = 0; i < targetArray.Length; i++)
{
Console.Write($"{targetArray[i]:X} ");
}
// OUTPUT: FF 8C
If you are trying to find the location of the most-significant bit, you can do a log2() of the byte (and if you don't have log2, you can use log(x)/log(2) which is the same as log2(x))
For instance, the number 7, 6, 5, and 4 all have a '1' in the 3rd bit position (0111, 0110, 0101, 0100). The log2() of them are all between 2 and 2.8. Same thing happens for anything in the 4th bit, it will be a number between 3 and 3.9. So you can find out the Most Significant Bit by adding 1 to the log2() of the number (round down).
floor(log2(00001111)) + 1 == floor(3.9) + 1 == 3 + 1 == 4
You know how many bits are in a byte, so you can easily know the number of bits to shift left:
int numToShift = 8 - floor(log2(bytearray[0])) + 1;
shiftedValue = bytearray[0] << numToShift;
From there, it's just a matter of keeping track of how many outstanding bits (not pushed into a bytearray yet) you have, and then pushing some/all of them on.
The above code would only work for the first byte array. If you put this in a loop, the numToShift would maybe need to keep track of the latest empty slot to shift things into (you might have to shift right to fit in current byte array, and then use the leftovers to put into the start of the next byte array). So instead of doing "8 -" in the above code, you would maybe put the starting location. For instance, if only 3 bits were left to fill in the current byte array, you would do:
int numToShift = 3 - floor(log2(bytearray[0])) + 1;
So that number should be a variable:
int numToShift = bitsAvailableInCurrentByte - floor(log2(bytearray[0])) + 1;
Please check this code snippet. This might help you.
byte[] arrByt = new byte[] { 0xF, 0xF, 0x11, 0x4 };
byte[] result = new byte[arrByt.Length / 2];
var en = arrByt.GetEnumerator();
int count = 0;
byte result1 = 0;
int index = 0;
while (en.MoveNext())
{
count++;
byte item = (byte)en.Current;
if (count == 1)
{
while (item < 128)
{
item = (byte)(item << 1);
}
result1 ^= item;
}
if (count == 2)
{
count = 0;
result1 ^= item;
result[index] = result1;
index++;
result1 = 0;
}
}
foreach (var s in result)
{
Console.WriteLine(s.ToString("X"));
}
I have integer array and I need to convert it to byte array
but I need to take (only and just only) first 11 bit of each element of the هinteger array
and then convert it to a byte array
I tried this code
// ***********convert integer values to byte values
//***********to avoid the left zero padding on the byte array
// *********** first step : convert to binary string
// ***********second step : convert binary string to byte array
// *********** first step
string ByteString = Convert.ToString(IntArray[0], 2).PadLeft(11,'0');
for (int i = 1; i < IntArray.Length; i++)
ByteString = ByteString + Convert.ToString(IntArray[i], 2).PadLeft(11, '0');
// ***********second step
int numOfBytes = ByteString.Length / 8;
byte[] bytes = new byte[numOfBytes];
for (int i = 0; i < numOfBytes; ++i)
{
bytes[i] = Convert.ToByte(ByteString.Substring(8 * i, 8), 2);
}
But it takes too long time (if the file size large , the code takes more than 1 minute)
I need a very very fast code (very few milliseconds only )
can any one help me ?
Basically, you're going to be doing a lot of shifting and masking. The exact nature of that depends on the layout you want. If we assume that we pack little-endian from each int, appending on the left, so two 11-bit integers with positions:
abcdefghijk lmnopqrstuv
become the 8-bit chunks:
defghijk rstuvabc 00lmnopq
(i.e. take the lowest 8 bits of the first integer, which leaves 3 left over, so pack those into the low 3 bits of the next byte, then take the lowest 5 bits of the second integer, then finally the remaining 6 bits, padding with zero), then something like this should work:
using System;
using System.Linq;
static class Program
{
static string AsBinary(int val) => Convert.ToString(val, 2).PadLeft(11, '0');
static string AsBinary(byte val) => Convert.ToString(val, 2).PadLeft(8, '0');
static void Main()
{
int[] source = new int[1432];
var rand = new Random(123456);
for (int i = 0; i < source.Length; i++)
source[i] = rand.Next(0, 2047); // 11 bits
// Console.WriteLine(string.Join(" ", source.Take(5).Select(AsBinary)));
var raw = Encode(source);
// Console.WriteLine(string.Join(" ", raw.Take(6).Select(AsBinary)));
var clone = Decode(raw);
// now prove that it worked OK
if (source.Length != clone.Length)
{
Console.WriteLine($"Length: {source.Length} vs {clone.Length}");
}
else
{
int failCount = 0;
for (int i = 0; i < source.Length; i++)
{
if (source[i] != clone[i] && failCount++ == 0)
{
Console.WriteLine($"{i}: {source[i]} vs {clone[i]}");
}
}
Console.WriteLine($"Errors: {failCount}");
}
}
static byte[] Encode(int[] source)
{
long bits = source.Length * 11;
int len = (int)(bits / 8);
if ((bits % 8) != 0) len++;
byte[] arr = new byte[len];
int bitOffset = 0, index = 0;
for (int i = 0; i < source.Length; i++)
{
// note: this encodes little-endian
int val = source[i] & 2047;
int bitsLeft = 11;
if(bitOffset != 0)
{
val = val << bitOffset;
arr[index++] |= (byte)val;
bitsLeft -= (8 - bitOffset);
val >>= 8;
}
if(bitsLeft >= 8)
{
arr[index++] = (byte)val;
bitsLeft -= 8;
val >>= 8;
}
if(bitsLeft != 0)
{
arr[index] = (byte)val;
}
bitOffset = bitsLeft;
}
return arr;
}
private static int[] Decode(byte[] source)
{
int bits = source.Length * 8;
int len = (int)(bits / 11);
// note no need to worry about remaining chunks - no ambiguity since 11 > 8
int[] arr = new int[len];
int bitOffset = 0, index = 0;
for(int i = 0; i < source.Length; i++)
{
int val = source[i] << bitOffset;
int bitsLeftInVal = 11 - bitOffset;
if(bitsLeftInVal > 8)
{
arr[index] |= val;
bitOffset += 8;
}
else if(bitsLeftInVal == 8)
{
arr[index++] |= val;
bitOffset = 0;
}
else
{
arr[index++] |= (val & 2047);
if(index != arr.Length) arr[index] = val >> 11;
bitOffset = 8 - bitsLeftInVal;
}
}
return arr;
}
}
If you need a different layout you'll need to tweak it.
This encodes 512 MiB in just over a second on my machine.
Overview to the Encode method:
The first thing is does is pre-calculate the amount of space that is going to be required, and allocate the output buffer; since each input contributes 11 bits to the output, this is just some modulo math:
long bits = source.Length * 11;
int len = (int)(bits / 8);
if ((bits % 8) != 0) len++;
byte[] arr = new byte[len];
We know the output position won't match the input, and we know we're going to be starting each 11-bit chunk at different positions in bytes each time, so allocate variables for those, and loop over the input:
int bitOffset = 0, index = 0;
for (int i = 0; i < source.Length; i++)
{
...
}
return arr;
So: taking each input in turn (where the input is the value at position i), take the low 11 bits of the value - and observe that we have 11 bits (of this value) still to write:
int val = source[i] & 2047;
int bitsLeft = 11;
Now, if the current output value is partially written (i.e. bitOffset != 0), we should deal with that first. The amount of space left in the current output is 8 - bitOffset. Since we always have 11 input bits we don't need to worry about having more space than values to fill, so: left-shift our value by bitOffset (pads on the right with bitOffset zeros, as a binary operation), and "or" the lowest 8 bits of this with the output byte. Essentially this says "if bitOffset is 3, write the 5 low bits of val into the 5 high bits of the output buffer"; finally, fixup the values: increment our write position, record that we have fewer bits of the current value still to write, and use right-shift to discard the 8 low bits of val (which is made of bitOffset zeros and 8 - bitOffset "real" bits):
if(bitOffset != 0)
{
val = val << bitOffset;
arr[index++] |= (byte)val;
bitsLeft -= (8 - bitOffset);
val >>= 8;
}
The next question is: do we have (at least) an entire byte of data left? We might not, if bitOffset was 1 for example (so we'll have written 7 bits already, leaving just 4). If we do, we can just stamp that down and increment the write position - then once again track how many are left and throw away the low 8 bits:
if(bitsLeft >= 8)
{
arr[index++] = (byte)val;
bitsLeft -= 8;
val >>= 8;
}
And it is possible that we've still got some left-over; for example, if bitOffset was 7 we'll have written 1 bit in the first chunk, 8 bits in the second, leaving 2 more to write - or if bitOffset was 0 we won't have written anything in the first chunk, 8 in the second, leaving 3 left to write. So, stamp down whatever is left, but do not increment the write position - we've written to the low bits, but the next value might need to write to the high bits. Finally, update bitOffset to be however many low bits we wrote in the last step (which could be zero):
if(bitsLeft != 0)
{
arr[index] = (byte)val;
}
bitOffset = bitsLeft;
The Decode operation is the reverse of this logic - again, calculate the sizes and prepare the state:
int bits = source.Length * 8;
int len = (int)(bits / 11);
int[] arr = new int[len];
int bitOffset = 0, index = 0;
Now loop over the input:
for(int i = 0; i < source.Length; i++)
{
...
}
return arr;
Now, bitOffset is the start position that we want to write to in the current 11-bit value, so if we start at the start, it will be 0 on the first byte, then 8; 3 bits of the second byte join with the first 11-bit integer, so the 5 bits become part of the second - so bitOffset is 5 on the 3rd byte, etc. We can calculate the number of bits left in the current integer by subtracting from 11:
int val = source[i] << bitOffset;
int bitsLeftInVal = 11 - bitOffset;
Now we have 3 possible scenarios:
1) if we have more than 8 bits left in the current value, we can stamp down our input (as a bitwise "or") but do not increment the write position (as we have more to write for this value), and note that we're 8-bits further along:
if(bitsLeftInVal > 8)
{
arr[index] |= val;
bitOffset += 8;
}
2) if we have exactly 8 bits left in the current value, we can stamp down our input (as a bitwise "or") and increment the write position; the next loop can start at zero:
else if(bitsLeftInVal == 8)
{
arr[index++] |= val;
bitOffset = 0;
}
3) otherwise, we have less than 8 bits left in the current value; so we need to write the first bitsLeftInVal bits to the current output position (incrementing the output position), and whatever is left to the next output position. Since we already left-shifted by bitOffset, what this really means is simply: stamp down (as a bitwise "or") the low 11 bits (val & 2047) to the current position, and whatever is left (val >> 11) to the next if that wouldn't exceed our output buffer (padding zeros). Then calculate our new bitOffset:
else
{
arr[index++] |= (val & 2047);
if(index != arr.Length) arr[index] = val >> 11;
bitOffset = 8 - bitsLeftInVal;
}
And that's basically it. Lots of bitwise operations - shifts (<< / >>), masks (&) and combinations (|).
If you wanted to store the least significant 11 bits of an int into two bytes such that the least significant byte has bits 1-8 inclusive and the most significant byte has 9-11:
int toStore = 123456789;
byte msb = (byte) ((toStore >> 8) & 7); //or 0b111
byte lsb = (byte) (toStore & 255); //or 0b11111111
To check this, 123456789 in binary is:
0b111010110111100110100010101
MMMLLLLLLLL
The bits above L are lsb, and have a value of 21, above M are msb and have a value of 5
Doing the work is the shift operator >> where all the binary digits are slid to the right 8 places (8 of them disappear from the right hand side - they're gone, into oblivion):
0b111010110111100110100010101 >> 8 =
0b1110101101111001101
And the mask operator & (the mask operator works by only keeping bits where, in each position, they're 1 in the value and also 1 in the mask) :
0b111010110111100110100010101 &
0b000000000000000000011111111 (255) =
0b000000000000000000000010101
If you're processing an int array, just do this in a loop:
byte[] bs = new byte[ intarray.Length*2 ];
for(int x = 0, b=0; x < intarray.Length; x++){
int toStore = intarray[x];
bs[b++] = (byte) ((toStore >> 8) & 7);
bs[b++] = (byte) (toStore & 255);
}
I am trying to read a WAV file into a buffer array in c# but am having some problems. I am using a file stream to manage the audio file. Here is what I have...
FileStream WAVFile = new FileStream(#"test.wav", FileMode.Open);
//Buffer for the wave file...
BinaryReader WAVreader = new BinaryReader(WAVFile);
//Read information from the header.
chunkID = WAVreader.ReadInt32();
chunkSize = WAVreader.ReadInt32();
RiffFormat = WAVreader.ReadInt32();
...
channels = WAVreader.ReadInt16();
samplerate = WAVreader.ReadInt32();
byteRate = WAVreader.ReadInt32();
blockAllign = WAVreader.ReadInt16();
bitsPerSample = WAVreader.ReadInt16();
dataID = WAVreader.ReadInt32();
dataSize = WAVreader.ReadInt32();
The above is reading data from the WAV file header. Then I have this:
musicalData = WAVreader.ReadBytes(dataSize);
...to read the actual sample data but this is only 26 bytes for 60 seconds of audio. Is this correct?
How would I go about converting the byte[] array to double[]?
This code should do the trick. It converts a wave file to a normalized double array (-1 to 1), but it should be trivial to make it an int/short array instead (remove the /32768.0 bit and add 32768 instead). The right[] array will be set to null if the loaded wav file is found to be mono.
I can't claim it's completely bullet proof (potential off-by-one errors), but after creating a 65536 sample array, and creating a wave from -1 to 1, none of the samples appear to go 'through' the ceiling or floor.
// convert two bytes to one double in the range -1 to 1
static double bytesToDouble(byte firstByte, byte secondByte)
{
// convert two bytes to one short (little endian)
short s = (secondByte << 8) | firstByte;
// convert to range from -1 to (just below) 1
return s / 32768.0;
}
// Returns left and right double arrays. 'right' will be null if sound is mono.
public void openWav(string filename, out double[] left, out double[] right)
{
byte[] wav = File.ReadAllBytes(filename);
// Determine if mono or stereo
int channels = wav[22]; // Forget byte 23 as 99.999% of WAVs are 1 or 2 channels
// Get past all the other sub chunks to get to the data subchunk:
int pos = 12; // First Subchunk ID from 12 to 16
// Keep iterating until we find the data chunk (i.e. 64 61 74 61 ...... (i.e. 100 97 116 97 in decimal))
while(!(wav[pos]==100 && wav[pos+1]==97 && wav[pos+2]==116 && wav[pos+3]==97))
{
pos += 4;
int chunkSize = wav[pos] + wav[pos + 1] * 256 + wav[pos + 2] * 65536 + wav[pos + 3] * 16777216;
pos += 4 + chunkSize;
}
pos += 8;
// Pos is now positioned to start of actual sound data.
int samples = (wav.Length - pos)/2; // 2 bytes per sample (16 bit sound mono)
if (channels == 2)
{
samples /= 2; // 4 bytes per sample (16 bit stereo)
}
// Allocate memory (right will be null if only mono sound)
left = new double[samples];
if (channels == 2)
{
right = new double[samples];
}
else
{
right = null;
}
// Write to double array/s:
int i=0;
while (pos < length)
{
left[i] = bytesToDouble(wav[pos], wav[pos + 1]);
pos += 2;
if (channels == 2)
{
right[i] = bytesToDouble(wav[pos], wav[pos + 1]);
pos += 2;
}
i++;
}
}
If you wanted to use plugins, then assuming your WAV file contains 16 bit PCM (which is the most common), you can use NAudio to read it out into a byte array, and then copy that into an array of 16 bit integers for convenience. If it is stereo, the samples will be interleaved left, right.
using (WaveFileReader reader = new WaveFileReader("myfile.wav"))
{
Assert.AreEqual(16, reader.WaveFormat.BitsPerSample, "Only works with 16 bit audio");
byte[] buffer = new byte[reader.Length];
int read = reader.Read(buffer, 0, buffer.Length);
short[] sampleBuffer = new short[read / 2];
Buffer.BlockCopy(buffer, 0, sampleBuffer, 0, read);
}
I personally try to avoid using third-party libraries as much as I can. But the option is still there if you'd like the code to look better and easier to handle.
It's been a good 10-15 years since I touched WAVE file processing, but unlike the first impression that most people get about wave files as simple fixed-size header followed by PCM encoded audio data, WAVE files are a bit more complex RIFF format files.
Instead of re-engineering RIFF file processing and various cases, I would suggest to use interop and call on APIs that deal with RIFF file format.
You can see example of how to open and get data buffer (and meta information about what buffer is) in this example. It's in C++, but it shows use of mmioOpen, mmioRead, mmioDescend, mmioAscend APIs that you would need to use to get your hands on a proper audio buffer.
I have a 2d array of UInt16s which I've converted to raw bytes - I would like to take those bytes and convert them back into the original 2D array. I've managed to do this with a 2d array of doubles, but I can't figure out how to do it with UInt16.
Here's my code:
UInt16[,] dataArray;
//This array is populated with this data:
[4 6 2]
[0 2 0]
[1 3 4]
long byteCountUInt16Array = dataArray.GetLength(0) * dataArray.GetLength(1) * sizeof(UInt16);
var bufferUInt16 = new byte[byteCountUInt16Array];
Buffer.BlockCopy(newUint16Array, 0, bufferUInt16, 0, bufferUInt16.Length);
//Here is where I try to convert the values and print them out to see if the values are still the same:
UInt16[] originalUInt16Values = new UInt16[bufferUInt16.Length / 8];
for (int i = 0; i < 5; i++)
{
originalUInt16Values[i] = BitConverter.ToUInt16(bufferUInt16, i * 8);
Console.WriteLine("Values: " + originalUInt16Values[i]);
}
The print statement does not show the same values as the original 2d array. I'm pretty new to coding with bytes and UInt16 so most of this I'm learning in the process.
*Also, I know the last chunk of my code isn't putting values into a 2d array like the original array - right now I'm just trying to print out the values to see if they even match the original data.
If what you want is just to cast UInt16[,]->Byte, and then Byte->UInt16 you can do another Block copy, which is very fast at run-time, code should look like this:
UInt16[,] dataArray = new UInt16[,] {
{4, 6, 2},
{0, 2, 0},
{1, 3, 4}
};
for (int j = 0; j < 3; j++)
{
for (int i = 0; i < 3; i++)
{
Console.WriteLine("Value[" + i + ", " + j + "] = " + dataArray[j,i]);
}
}
long byteCountUInt16Array = dataArray.GetLength(0) * dataArray.GetLength(1) * sizeof(UInt16);
var bufferUInt16 = new byte[byteCountUInt16Array];
Buffer.BlockCopy(dataArray, 0, bufferUInt16, 0, bufferUInt16.Length);
//Here is where I try to convert the values and print them out to see if the values are still the same:
UInt16[] originalUInt16Values = new UInt16[bufferUInt16.Length / 2];
Buffer.BlockCopy(bufferUInt16, 0, originalUInt16Values, 0, BufferUInt16.Length);
for (int i = 0; i < 5; i++)
{
//originalUInt16Values[i] = BitConverter.ToUInt16(bufferUInt16, i * 8);
Console.WriteLine("Values---: " + originalUInt16Values[i]);
}
by the way, you only divided each UInt16 into two bytes, so you should calculate your new size dividing by two, not eight
The program
public static void Main(string[] args)
{
UInt16[,] dataArray = new ushort[,]{ {4,6,2}, {0,2,0}, {1,3,4}};
//This array is populated with this data:
long byteCountUInt16Array = dataArray.GetLength(0) * dataArray.GetLength(1) * sizeof(UInt16);
var byteBuffer = new byte[byteCountUInt16Array];
Buffer.BlockCopy(dataArray, 0, byteBuffer, 0, byteBuffer.Length);
for(int i=0; i < byteBuffer.Length; i++) {
Console.WriteLine("byteBuf[{0}]= {1}", i, byteBuffer[i]);
}
Console.WriteLine("Byte buffer len: {0} data array len: {1}", byteBuffer.Length, dataArray.GetLength(0)* dataArray.GetLength(1));
UInt16[] originalUInt16Values = new UInt16[byteBuffer.Length / 2];
for (int i = 0; i < byteBuffer.Length; i+=2)
{
ushort _a = (ushort)( (byteBuffer[i]) | (byteBuffer[i+1]) << 8);
originalUInt16Values[i/2] = _a;
Console.WriteLine("Values: " + originalUInt16Values[i/2]);
}
}
Outputs
byteBuf[0]= 4
byteBuf[1]= 0
byteBuf[2]= 6
byteBuf[3]= 0
byteBuf[4]= 2
byteBuf[5]= 0
byteBuf[6]= 0
byteBuf[7]= 0
byteBuf[8]= 2
byteBuf[9]= 0
byteBuf[10]= 0
byteBuf[11]= 0
byteBuf[12]= 1
byteBuf[13]= 0
byteBuf[14]= 3
byteBuf[15]= 0
byteBuf[16]= 4
byteBuf[17]= 0
Byte buffer len: 18 data array len: 9
Values: 4
Values: 6
Values: 2
Values: 0
Values: 2
Values: 0
Values: 1
Values: 3
Values: 4
You see that a ushort, aka UInt16 is stored in a byte-order in which 4 = 0x04 0x00, which is why I chose the conversion formula
ushort _a = (ushort)( (byteBuffer[i]) | (byteBuffer[i+1]) << 8);
Which will grab the byte at index i and take the next byte at i+1 and left shift it by the size of a byte (8 bits) to make up the 16 bits of a ushort. In orhter words, ushort _a = 0x[second byte] 0x[first byte], which is then repeated. This conversion code is specific for the endianess of the machine you are on and thus non-portable.
Also I fixed the error where the byteBuffer array was to big because it was multiplied with factor 8. A ushort is double the size of a byte, thus we only need factor 2 in the array length.
Addressing the title of your question (Convert byte[] to UInt16):
UInt16 result = (UInt16)BitConverter.ToInt16(yourByteArray, startIndex = 0);
Your casting up so you should be able to do things implicitly
var list = new List<byte> { 1, 2 ,
var uintList = new List<UInt16>();
//Cast in your select
uintList = list.Select(x => (UInt16)x).ToList();
I understand how to read 8-bit, 16-bit & 32-bit samples (PCM & floating-point) from a .wav file, since (conveniently) the .Net Framework has an in-built integral type for those exact sizes. But, I don't know how to read (and store) 24-bit (3 byte) samples.
How can I read 24-bit audio? Is there maybe some way I can alter my current method (below) for reading 32-bit audio to solve my problem?
private List<float> Read32BitSamples(FileStream stream, int sampleStartIndex, int sampleEndIndex)
{
var samples = new List<float>();
var bytes = ReadChannelBytes(stream, Channels.Left, sampleStartIndex, sampleEndIndex); // Reads bytes of a single channel.
if (audioFormat == WavFormat.PCM) // audioFormat determines whether to process sample bytes as PCM or floating point.
{
for (var i = 0; i < bytes.Length / 4; i++)
{
samples.Add(BitConverter.ToInt32(bytes, i * 4) / 2147483648f);
}
}
else
{
for (var i = 0; i < bytes.Length / 4; i++)
{
samples.Add(BitConverter.ToSingle(bytes, i * 4));
}
}
return samples;
}
Reading (and storing) 24-bit samples is very simple. Now, as you've rightly said, a 3 byte integral type does not exist within the framework, which means you're left with two choices; either create your own type, or, you can pad your 24-bit samples by inserting an empty byte (0) to the start of your sample's byte array therefore making them 32-bit samples (so you can then use an int to store/manipulate them).
I will explain and demonstrate how to do the later (which is also in my opinion the more simpler approach).
First we must look at how a 24-bit sample would be stored within an int,
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ MSB ~ ~ 2ndMSB ~ ~ 2ndLSB ~ ~ LSB ~ ~
24-bit sample: 11001101 01101001 01011100 00000000
32-bit sample: 11001101 01101001 01011100 00101001
MSB = Most Significant Byte, LSB = Lest Significant Byte.
As you can see the LSB of the 24-bit sample is 0, therefore all you have to is declare a byte[] with 4 elements, then read the 3 bytes of the sample into the array (starting at element 1) so that your array looks like below (effectively bit shifting by 8 places to the left),
myArray[0]: 00000000
myArray[1]: 01011100
myArray[2]: 01101001
myArray[3]: 11001101
Once you have your byte array full you can pass it to BitConverter.ToInt32(myArray, 0);, you will then need to shift the sample by 8 places to the right to get the sample in it's proper 24-bit intergal representation (from -8388608 to 8388608); then divide by 8388608 to have it as a floating-point value.
So, putting that all together you should end up with something like this,
Note, I wrote the following code with the intention to be "easy-to-follow", therefore this will not be the most performant method, for a faster solution see the code below this one.
private List<float> Read24BitSamples(FileStream stream, int startIndex, int endIndex)
{
var samples = new List<float>();
var bytes = ReadChannelBytes(stream, Channels.Left, startIndex, endIndex);
var temp = new List<byte>();
var paddedBytes = new byte[bytes.Length / 3 * 4];
// Right align our samples to 32-bit (effectively bit shifting 8 places to the left).
for (var i = 0; i < bytes.Length; i += 3)
{
temp.Add(0); // LSB
temp.Add(bytes[i]); // 2nd LSB
temp.Add(bytes[i + 1]); // 2nd MSB
temp.Add(bytes[i + 2]); // MSB
}
// BitConverter requires collection to be an array.
paddedBytes = temp.ToArray();
temp = null;
bytes = null;
for (var i = 0; i < paddedBytes.Length / 4; i++)
{
samples.Add(BitConverter.ToInt32(paddedBytes, i * 4) / 2147483648f); // Skip the bit shift and just divide, since our sample has been "shited" 8 places to the right we need to divide by 2147483648, not 8388608.
}
return samples;
}
For a faster1 implementation you can do the following instead,
private List<float> Read24BitSamples(FileStream stream, int startIndex, int endIndex)
{
var bytes = ReadChannelBytes(stream, Channels.Left, startIndex, endIndex);
var samples = new float[bytes.Length / 3];
for (var i = 0; i < bytes.Length; i += 3)
{
samples[i / 3] = (bytes[i] << 8 | bytes[i + 1] << 16 | bytes[i + 2] << 24) / 2147483648f;
}
return samples.ToList();
}
1 After benchmarking the above code against the previous method, this solution is approximately 450% to 550% faster.