Isn't blindly using InvokeRequired just bad practice? - c#

I am a novice programmer so I could be completely mistaken here, but this issue bugs me more then it should.
This is actually a follow-up from this question.
The accepted answer was, that you have to call InvokeRequired in order to avoid some overhead, because there is a chance you are already operating on the UI thread.
In theory, I agree that it could save some time. After some tests I found out that using Invoke takes about twice the time compared to calling an operation normally (tests like setting the text of a label n times, or placing a very, very big string in a RichTextBox).
But! Then there is practice.
MSDN documentation says:
This property can be used to determine if you must call an invoke method, which can be useful if you do not know what thread owns a control.
In most cases, you do know when you try to access a control from another thread. Actually the only situation I can think of is, when the control is accessed from a method that can be called by thread X aswell as the owner thread. And that to me is a very unlikely situation.
And even if you genuinely don't know which thread tries to manipulate the control, there is the fact that the UI thread doesn't have to be updated that frequently. Anything between 25-30 fps should be okay for your GUI. And most of the changes made in the UI-controls takes far less then milliseconds to perform.
So if I understand corrrectly, the only scenario where you have to check if an invoke is required is when you don't know which thread is accessing the control and when the GUI update takes more than about 40 ms to finish.
Then there is the answer to this question I asked on http://programmers.stackexchange.com. Which states that you shouldn't be busy with premature optimisation when you don't need it. Especially if it sacrifices code readability.
So this brings me to my question: shouldn't you just use invoke when you know a different thread accesses a control, and only when you know your UI thread can access that piece of code and you find that it should run faster, that you should check if an Invoke is required?
PS: after proofreading my question it really sounds like I am ranting. But actually I am just curious why InvokeRequired is seemingly overused by many more-experienced-than-me programmers.

You are taking things out of context here. The first question you linked linked another question which specifically was about writing a thread-safe method to access a UI control.
If you don't need a thread-safe access to a UI control, because you know you won't update it from another thread, then certainly, you shouldn't employ this technique. Simply update your UI control without using InvokeRequired or Invoke.
On the other hand, if the call will always originate in a thread other than the UI thread, simply use Invoke without first checking for InvokeRequired.
This leads to three simple rules:
If you update the control only from the UI thread, use neither InvokeRequired nor Invoke
If you update the control only from a thread other than the UI thread, use only Invoke.
If you update the control from both the UI thread and other threads, use Invoke in combination with InvokeRequired.

In practice people tend to call the same method from both the foreign and the owning thread. The usual pattern is that the method itself determines whether the thread is the owning thread. If it is, it executes the follow-up code. If it isn't the method calls its own self using Invoke this time.
One benefit of this is that it makes the code more compact, as you have one method related to the operation instead of two.
Another and probably more important benefit is that it reduces the chance that the cross thread exception will be raised. If both methods were available at any time and both threads could choose any of the two, then there would be a chance of a seemingly legitimate method call raising an exception. On the other hand, if there's only one method that adapts to the situation, it provides a safer interface.

Related

C# Threading - Using a class in a thread-safe way vs. implementing it as thread-safe

Suppose I want to use a non thread-safe class from the .Net Framework (the documentation states that it is not thread-safe). Sometimes I change the value of Property X from one thread, and sometimes from another thread, but I never access it from two threads at the same time. And sometimes I call Method Y from one thread, and sometimes from another thread, but never at the same time.
Is this means that I use the class in a thread-safe way, and the fact that the documentation state that it's not thread-safe
is no longer relevant to my situation?
If the answer is No: Can I do everything related to a specific object in the same thread - i.e, creating it and calling its members always in the same thread (but not the GUI thread)? If so, how do I do that? (If relevant, it's a WPF app).
No, it is not thread safe. As a general rule, you should never write multi threaded code without some kind of synchronization. In your first example, even if you somehow manage to ensure that modifying/reading is never done at the same time, still there is a problem of caching values and instructions reordering.
Just for example, CPU caches values into a register, you update it on one thread, read it from another. If the second one has it cached, it doesn't go to RAM to fetch it and doesn't see the updated value.
Take a look at this great post for more info and problems with writing lock free multi threaded code link. It has a great explanation how CPU, compiler and CLI byte code compiler can reorder instructions.
Suppose I want to use a non thread-safe class from the .Net Framework (the documentation states that it is not thread-safe).
"Thread-safe" has a number of different meanings. Most objects fall into one of three categories:
Thread-affine. These objects can only be accessed from a single thread, never from another thread. Most UI components fall into this category.
Thread-safe. These objects can be accessed from any thread at any time. Most synchronization objects (including concurrent collections) fall into this category.
One-at-a-time. These objects can be accessed from one thread at a time. This is the "default" category, with most .NET types falling into this category.
Sometimes I change the value of Property X from one thread, and sometimes from another thread, but I never access it from two threads at the same time. And sometimes I call Method Y from one thread, and sometimes from another thread, but never at the same time.
As another answerer noted, you have to take into consideration instruction reordering and cached reads. In other words, it's not sufficient to just do these at different times; you'll need to implement proper barriers to ensure it is guaranteed to work correctly.
The easiest way to do this is to protect all access of the object with a lock statement. If all reads, writes, and method calls are all within the same lock, then this would work (assuming the object does have a one-at-a-time kind of threading model and not thread-affine).
Suppose I want to use a non thread-safe class from the .Net Framework (the documentation states that it is not thread-safe). Sometimes I change the value of Property X from one thread, and sometimes from another thread, but I never access it from two threads at the same time. And sometimes I call Method Y from one thread, and sometimes from another thread, but never at the same time.
All Classes are by default non thread safe, except few Collections like Concurrent Collections designed specifically for the thread safety. So for any other class that you may choose and if you access it via multiple threads or in a Non atomic manner, whether read / write then it's imperative to introduce thread safety while changing the state of an object. This only applies to the objects whose state can be modified in a multi-threaded environment but Methods as such are just functional implementation, they are themselves not a state, which can be modified, they just introduce thread safety for maintaining the object state.
Is this means that I use the class in a thread-safe way, and the fact that the documentation state that it's not thread-safe is no longer relevant to my situation? If the answer is No: Can I do everything related to a class in the same thread (but not the GUI thread)? If so, how do I do that? (If relevant, it's a WPF app).
For a Ui application, consider introducing Async-Await for IO based operations, like file read, database read and use TPL for compute bound operations. Benefit of Async-Await is that:
It doesn't block the Ui thread at all, and keeps Ui completely responsive, in fact post await Ui controls can be directly updated with no Cross thread concern, since only one thread is involved
The TPL concurrency too makes compute operations blocking, they summon the threads from the thread Pool and can't be used for the Ui update due to Cross thread concern
And last: there are classes in which one method starts an operation, and another one ends it. For example, using the SpeechRecognitionEngine class you can start a speech recognition session with RecognizeAsync (this method was before the TPL library so it does not return a Task), and then cancel the recognition session with RecognizeAsyncCancel. What if I call RecognizeAsync from one thread and RecognizeAsyncCancel from another one? (It works, but is it "safe"? Will it fail on some conditions which I'm not aware of?)
As you have mentioned the Async method, this might be an older implementation, based on APM, which needs AsyncCallBack to coordinate, something on the lines of BeginXX, EndXX, if that's the case, then nothing much would be required to co-ordinate, as they use AsyncCallBack to execute a callback delegate. In fact as mentioned earlier, there's no extra thread involved here, whether its old version or new Async-Await. Regarding task cancellation, CancellationTokenSource can be used for the Async-Await, a separate cancellation task is not required. Between multiple threads coordination can be done via Auto / Manual ResetEvent.
If the calls mentioned above are synchronous, then use the Task wrapper to return the Task can call them via Async method as follows:
await Task.Run(() => RecognizeAsync())
Though its a sort of Anti-Pattern, but can be useful in making whole call chain Async
Edits (to answer OP questions)
Thanks for your detailed answer, but I didn't understand some of it. At the first point you are saying that "it's imperative to introduce thread safety", but how?
Thread safety is introduced using synchronization constructs like lock, mutex, semaphore, monitor, Interlocked, all of them serve the purpose of saving an object from getting corrupt / race condition. I don't see any steps.
Does the steps I have taken, as described in my post, are enough?
I don't see any thread safety steps in your post, please highlight which steps you are talking about
At the second point I'm asking how to use an object in the same thread all the time (whenever I use it). Async-Await has nothing to do with this, AFAIK.
Async-Await is the only mechanism in concurrency, which since doesn't involved any extra thread beside calling thread, can ensure everything always runs on same thread, since it use the IO completion ports (hardware based concurrency), otherwise if you use Task Parallel library, then there's no way for you to ensure that same / given thread is always use, as that's a very high level abstraction
Check one of my recent detailed answer on threading here, it may help in providing some more detailed aspects
It is not thread-safe, as the technical risk exists, but your policy is designed to cope with the problem and work around the risk. So, if things stand as you described, then you are not having a thread-safe environment, however, you are safe. For now.

How to cilck a button on background thread? [duplicate]

I'm building a WPF application. I'm doing some async communication with the server side, and I use event aggregation with Prism on the client. Both these things results in new threads to be spawned which are not the UI thread. If I attempt to do "WPF operations" on these callback and event handler threads the world will fall apart, which it now has started doing.
First I met problems trying to create some WPF objects in the callback from server. I was told that the thread needed to run in STA mode. Now I'm trying to update some UI data in a Prism event handler, and I'm told that:
The caller cannot access this thread because a different thread owns it.
So; what's the key to getting things right in WPF? I've read up on the WPF Dispatcher in this MSDN post. I'm starting to get it, but I'm no wizard yet.
Is the key to always use Dispatcher.Invoke when I need to run something which I'm not sure will be called on the UI thread?
Does it matter if it actually was called on the UI thread, and I do Dispatcher.Invoke anyway?
Dispatcher.Invoke = synchronously. Dispathcher.BeginInvoke = async?
Will Dispatcher.Invoke request the UI thread, and then stop to wait for it? Is it bad practice and risk of less responsive programs?
How do I get the dispatcher anyway? Will Dispatcher.CurrentDispatcher always give me the dispatcher representing the UI thread?
Will there exist more than one Dispatcher, or is "Dispatcher" basically the same as the UI thread for the application?
And what's the deal with the BackgroundWorker? When do I use this instead? I assume this is always async?
Will everything that runs on the UI thread (by being Invoked) be run in STA apartment mode? I.e. if I have something that requires to be run in STA mode - will Dispatcher.Invoke be sufficient?
Anyone wanna clearify things for me? Any related recommendations, etc? Thanks!
Going over each of your questions, one by one:
Not quite; you should only invoke onto the UI thread when necessary. See #2.
Yes, it does matter. You should not just automatically Invoke everything. The key is to only invoke onto the UI thread if necessary. To do this, you can use the Dispatcher.CheckAccess method.
That is correct.
Also correct, and yes, you do run the risk of less responsive programs. Most of the time, you are not going to be looking at a severe performance hit (we're talking about milliseconds for a context switch), but you should only Invoke if necessary. That being said, at some points it is unavoidable, so no, I would not say it is bad practice at all. It is just one solution to a problem that you will encounter every now and then.
In every case I have seen, I have made due with Dispatcher.CurrentDispatcher. For complex scenarios, this may not be sufficient, but I (personally) have not seen them.
Not entirely correct, but this line of thinking will not do any harm. Let me put it this way: the Dispatcher can be used to gain access to the UI thread for the application. But it is not in and of itself the UI thread.
BackgroundWorker is generally used when you have a time-consuming operation and want to maintain a responsive UI while running that operation in the background. Normally you do not use BackgroundWorker instead of Invoke, rather, you use BackgroundWorker in conjunction with Invoke. That is, if you need to update some UI object in your BackgroundWorker, you can Invoke onto the UI thread, perform the update, and then return to the original operation.
Yes. The UI thread of a WPF application, by definition, must be running in a single-threaded apartment.
There's a lot to be said about BackgroundWorker, I'm sure many questions are already devoted to it, so I won't go into too much depth. If you're curious, check out the MSDN page for BackgroundWorker class.

How InvokeRequired and Invoke let us make app thread safe

How InvokeRequired and Invoke let us make our apps thread safe.
Let's consider such code:
private void ThreadSafeUpdate(string message)
{
if (this.textBoxSome.InvokeRequired)
{
SetTextCallback d = new SetTextCallback(msg);
this.Invoke
(d, new object[] { message });
}
else
{
// It's on the same thread, no need for Invoke
this.textBoxSome.Text = message;
}
}
Is it possible to change state of InvokeRequired after InvokeRequired and before Invoke? If not, then why?
How does Invoking make it thread safe?
If InvokeRequired illustrate is current thread owning control, how would the thread know that it is or it is not the owner.
Let's consider that SomeMethod() is currently running on Thread1. We would like to call it from Thread2. Internally this method updates some field. Does Method.Invoke contain some kind of lock mechanism internally?
What if SomeMethod() takes very long time and we would like to run something other on the control owner thread. Does Invoking lock the owner thread or is it some kind of a background thread safe task?
ThreadSafeUpdate() //takes 5 minutes in Thread2
ThreadSafeUpdate() //after 2 minutes, we are running it in other thread2
ThreadSafeUpdate() //next run from Thread3
I think it is some kind of general pattern which can be implemented outside of winforms, what's its name?
Is it possible to change state of InvokeRequired
Yes, and it is a pretty common occurrence. Either because you started the thread too soon, before the form's Load event fired. Or because the user closed the window just as this code is running. In both cases this code fails with an exception. InvokeRequired fails when the thread races ahead of the window creation, the invoked code fails when the UI thread races ahead of the thread. The odds for an exception are low, too low to ever diagnose the bug when you test the code.
How Invoking make it thread safe?
You cannot make it safe with this code, it is a fundamental race. It must be made safe by interlocking the closing of the window with the thread execution. You must make sure that the thread stopped before allowing the window to close. The subject of this answer.
how would he know that he is or he is not owner.
This is something that can be discovered with a winapi call, GetWindowsThreadProcessId(). The Handle property is the fundamental oracle for that. Pretty decent test, but with the obvious flaw that it cannot work when the Handle is no longer valid. Using an oracle in general is unwise, you should always know when code runs on a worker thread. Such code is very fundamentally different from code that runs on the UI thread. It is slow code.
We would like to call it from Thread2
This is not in general possible. Marshaling a call from one thread to a specific other thread requires that other thread to co-operate. It must solve the producer-consumer problem. Take a look at the link, the fundamental solution to that problem is a dispatcher loop. You probably recognize it, that's how the UI thread of a program operates. Which must solve this problem, it gets notifications from arbitrary other threads and UI is never thread-safe. But worker threads in general don't try to solve this problem themselves, unless you write it explicitly, you need a thread-safe Queue and a loop that empties it.
What's if SomeMethod() takes very long time
Not sure I follow, the point of using threads is to let code that takes a long time not do anything to harm the responsiveness of the user interface.
I think it is some kind of general pattern
There is, it doesn't look like this. This kind of code tends to be written when you have an oh-shoot moment and discover that your UI is freezing. Bolting threading on top of code that was never designed to support threading is forever a bad idea. You'll overlook too many nasty little details. Very important to minimize the number of times the worker thread interacts with the UI thread, your code is doing the opposite. Fall in the pit of success with the BackgroundWorker class, its RunWorkerCompleted event gives a good synchronized way to update UI with the result of the background operation. And if you like Tasks then the TaskScheduler.FromCurrentSynchronizationContext() method helps you localize the interactions.
Usually, no. But it could happen if you're using await between the InvokeRequired check and Invoke call without capturing the execution context. Of course, if you're already using await, you're probably not going to be using Invoke and InvokeRequired.
EDIT: I just noticed that InvokeRequired will return false when the control handle hasn't been created yet. It shouldn't make much of a difference, because your call will fail anyway when the control hasn't quite been created yet, but it is something to keep in mind.
It doesn't make it thread-safe. It just adds the request to the control's queue, so that it's executed the next available time on the same thread the control was created on. This has more to do with windows architecture than with general thread-safety. The end result, however, is that the code runs on a single thread - of course, this still means you need to handle shared state synchronization manually, if any.
Well, it's complicated. But in the end, it boils down to comparing the thread ID of the thread that created the control, and the current thread ID. Internally, this calls the native method GetWindowThreadProcessId - the operating system keeps track of the controls (and more importantly, their message loops).
Invoke cannot return until the GUI thread returns to its message loop. Invoke itself only posts the command to the queue and waits for it to be processed. But the command is run on the GUI thread, not the Invoke-caller. So the SomeMethod calls in your example will be serialized, and the Invoke call itself will wait until the second call finishes.
This should already be answered. The key point is "only run GUI code on the GUI thread". That's how you get reliable and responsive GUI at all times.
You can use it anywhere you've got a loop or a wait on some queue. It probably isn't all that useful, although I have actually used it already a few times (mostly in legacy code).
However, all of this is just a simple explanation of the workings. The truth is, you shouldn't really need InvokeRequired... well, ever. It's an artifact of a different age. This is really mostly about juggling threads with little order, which isn't exactly a good practice. The uses I've seen are either lazy coding, or hotfixes for legacy code - using this in new code is silly. The argument for using InvokeRequired is usually like "it allows us to handle this business logic safely whether it runs in the GUI thread or not". Hopefully, you can see the problem with that logic :)
Also, it's not free thread-safety. It does introduce delays (especially when the GUI thread is also doing some work that isn't GUI - very likely in code that uses InvokeRequired in the first place). It does not protect you from accesses to the shared state from other threads. It can introduce deadlocks. And don't even get me started on doing anything with code that uses Application.DoEvents.
And of course, it's even less useful once you take await into consideration - writing asynchronous code is vastly easier, and it allows you to make sure the GUI code always runs in the GUI context, and the rest can run wherever you want (if it uses a thread at all).

UI freezing problem in c# 2.0

Sometimes I saw that when I call a method from my form to do something that my UI freezes. How to solve this problem? If I call that method in separate thread then problem will be solved?
If I call method in separate thread like the code below
new System.Threading.Thread(delegate()
{
HeavyMethod();
}).Start();
does this solve my problem or is there any better solution?
Call the method on a Background Worker would be the best solution.
http://msdn.microsoft.com/en-us/library/system.componentmodel.backgroundworker.aspx
Doing that you can control when things get updated (using the Report Progress Feature) and allow you to cancel the work.
Also, make sure that whatever resources you manipulate in the backgroundWorker1.RunWorkerAsync(); are properly shared. You can get into what is called "Race Conditions" which causes your output to be non-determanistic (e.g. you won't get the same results every time you run the method)
For a good walk through on Multithreading and shared resources, see this link:
http://www.c-sharpcorner.com/uploadfile/mgold/multithreadingintro10062005000439am/multithreadingintro.aspx?articleid=920ecafc-e83b-4a9c-a64d-0b39ad885705
If you are calling your method in response to an event, then by default the method will be running on the GUI thread (the thread that the runtime uses to handle all user events). If that method is huge and/or heavy, then it will "freeze" the UI as you describe.
Making it run on a separate thread is a viable solution for many of these cases.
There are cases, however, when you'll actually want the UI to "block" (for example, if you are updating a lot of controls, you don't want the user to mess with them in the meanwhile). For such cases, the sanest approach is to pop up a modal "wait" dialog.
Since it is C# 2.0, I suppose it is WinForms. Don't hold up the UI thread with CPU-bound code.
You can spawn a new thread to run your CPU-bound code, but you have to be careful not to access WinForms controls, especially not to update control properties. Many WinForms controls can only be accessed/updated from the UI thread. Check the InvokeRequired field to see if you need to marshal (i.e. use Invoke) the call from another thread back to the UI thread.
Also consider using the ThreadPool instead of creating a new thread.
That is correct, If you move the heavy processing off of the UI Thread then it should free up the UI to redraw. For what you want to do your implementation should work just fine. Although ThreadPooling or BackgroundWorker would be the suggested implementations (http://msdn.microsoft.com/en-us/library/system.threading.threadpool(v=VS.80).aspx), (http://msdn.microsoft.com/en-us/library/system.componentmodel.backgroundworker.aspx).

Proper way to pass GUI values to backgroundworker?

I am working with a fairly complex GUI and am trying to pass a lot of data from the GUI to a backgroudWorker. The problem I am running into is accessing some of the GUI values from the background worker. For example, if I try to get ComboBox.Text I get a InvalidOperationException due to cross-threading. However, if I say do TextBox.Text, everything seems to work fine. Granted I am fairly new to C#, so I'm a little unclear on why some of these are OK and others fail.
I have come up with several ways to fix my issues but am seeking the best practice from someone who is experienced in c#.
Here are a couple ways i can think of fixing this
create class/struct of all the values you want to pass to the background worker and pass this when you call RunworkAsync. I did not find this very attractive as i was having to build a class/struct for every page on my GUI to pass to the backgroundWorker
Create a bunch of different background workers that had specific task. I still had some issues with passing data but the amount of data I had to pass was cut down quite a bit. However, the number of DoWork/ProgressChanged/RunworkerCompleted went up significantly which was less than ideal.
(this lead me to what I'm currently doing)
create a delegate and method to capture the information
private delegate string ReadComboDelegate(ComboBox c);
private string ReadComboBox(ComboBox c)
{
if(c.InvokeRequired)
{
ReadComboDelegate del = new ReadComboDelegate(this.ReadComboBox);
return (string) c.Invoke(del,c);
}
else
{
return c.Text
}
}
then within DoWork, do somthing like string txt = this.ReadComboBox(this.comboBox1);
When you have a simple GUI and you don't have to pass a lot of data this is pretty simple problem. However, the more items and complex the GUI gets the bigger this problem becomes. If anyone has any info that would make this easier, I would appreciate it.
Thanks
The Cross Threading issue you are running into is due to the requirement that only the UI thread is allowed to "touch" UI controls.
I think that the most agreed upon method of passing data to a background worker is your solution #1 - create a simple structure that contains all of the data needed to perform the processing.
This is much simpler than creating ReadXXX methods for every control in the UI, and it defines what the background process needs to perform its task...
It is rather by accident that TextBox doesn't cause this exception. Its Text property is cached in a string. That's not the case for ComboBox.Text, and the vast majority of other control properties, it asks the native Windows control and at that point Windows Forms discovers that you are trying to use a control from a thread other than the UI thread. No can do.
You definitely need to think of a way to restructure this code. It is not only illegal, it is incredibly expensive and fundamentally thread unsafe since the UI could be updated while your worker is running. Collect the info from the controls you need into a little helper class, pass that as an argument to the RunWorkerAsync(object) overload. And get it back in DoWork from e.Argument.
I would definitely avoid #3. Despite the fervor over using Control.Invoke to coordinate worker and UI threads it is often overused and is usually a suboptimal strategy at best. I much prefer #1 and #2 over #3. Here are the reasons why I tend to avoid #3.
It tightly couples the UI and worker threads.
The worker thread gets to dictate how much work the UI thread performs.
The worker thread has to wait for the UI thread to respond before proceeding.
It is an expensive operation.
I know it may require some additional upfront effort on your part to get #1 or #2 going, but the end result will be better in the long run.
As a corollary to my answer the Control.Invoke method tends to be overused when data needs to follow the opposite direction as well (from worker thread to UI thread as in the case of sending progress information to the UI). Sadly this is the method that BackgroundWorker uses internally with its ReportProgress method. It is usually better to have the UI thread poll a shared data structure for this information for some of the same reasons as above plus:
The UI thread gets to dictate when and how often the update should take place.
It puts the responsibility of updating the UI thread on the UI thread where it should belong anyway.
There is no risk of the UI message pump being overrun as would be the case with the marshaling techniques initiated by the worker thread.
However, with that said I am not suggesting that you abandon BackgroundWorker entirely. Just keep some of these points in mind.

Categories