I have
Dictionary<string, List<int>> myDict = new Dictionary<string, List<int>>();
and at some points I want to add numbers to myDict for a specific Dictionary key.
I am currently doing
if (!myDict.ContainsKey(newKey)){
myDict[newKey] = new List<int>();
}
myDict[newKey].Add(myNumber);
but that seems to be error prone to forgetting the ContainsKey check at some point.
I have searched for a way to make Dictionaries return a new List in case myDict["entry"] doesn't exist yet, but I couldn't find anything.
Here's a relatively simple implementation of the LazyLookup example I mentioned. It only implements IEnumerable out of brevity/simplicity to answer the question.
Essentially, upon accessing an index, it will make sure it has already been initialized to a new instance of the List<T> class.
public class LazyLookup<TKey, TValue> : IEnumerable<List<TValue>>
{
private readonly Dictionary<TKey, List<TValue>> CachedEntries;
private readonly Func<List<TValue>> LazyListCreator;
public LazyLookup()
: this(() => new List<TValue>())
{
}
public LazyLookup(Func<List<TValue>> lazyListCreator)
{
this.LazyListCreator = lazyListCreator;
this.CachedEntries = new Dictionary<TKey, List<TValue>>();
}
public List<TValue> this[TKey key]
{
get
{
return GetOrCreateValue(key);
}
}
private List<TValue> GetOrCreateValue(TKey key)
{
List<TValue> returnValue;
if (!CachedEntries.TryGetValue(key, out returnValue))
{
returnValue = LazyListCreator();
CachedEntries[key] = returnValue;
}
return returnValue;
}
public IEnumerator<List<TValue>> GetEnumerator()
{
return CachedEntries.Values.GetEnumerator();
}
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
With some usage:
var lazyLookup = new LazyLookup<string, int>();
lazyLookup["nocheck"].Add(9001);
//outputs 9001
Console.WriteLine(lazyLookup["nocheck"][0]);
//outputs 0 as it's a newly initialized list
Console.WriteLine(lazyLookup["someOtherLookup"].Count);
At this point, you could update it to be threadsafe (as GetOrCreateValue currently is not threadsafe), or generalize it so it doesn't assume it's of List<T> but any type, or extend it to implement the full IDictionary<TKey, TValue> interface. But at minimum, if the above pattern you posted is used often, you may consider swapping direct usage of the dictionaries with some encapsulation which trivializes the task for you and eliminates code duplication.
You can use TryGetValue:
List<int> list;
if(!myDict.TryGetValue(newKey, out list))
{
list = new List<int>();
myDict.Add(newKey, list);
}
list.Add(myNumber);
If the Dictionary is a field i would encapsulate the acces in a method:
Dictionary<string, List<int>> myDict = new Dictionary<string, List<int>>();
public void AddNumber(string key, int value)
{
List<int> list;
if(!myDict.TryGetValue(key, out list))
{
list = new List<int>();
myDict.Add(key, list);
}
list.Add(value);
}
If you use ConcurrentDictionary<T>, you can do this:
myDict.GetOrAdd(newKey, new List<int>()).Add(myNumber);
You can actually use the others' suggestions. By encapsulating the access in a method or even using ConcurrentDictionary.
But for me, I would have a custom dictionary so you can actually implement what myDict["entry"] does if it did not see an element.
Good thing with this is you have full control on how you would like this dictionary to behave.
class MyCustomDictionary<TKey, TValue> : IDictionary<TKey, TValue>
where TValue : class, new()
{
private Dictionary<TKey, TValue> _dictionary;
public MyCustomDictionary()
{
_dictionary = new Dictionary<TKey, TValue>();
}
public TValue this[TKey key] // this is what's important
{
get
{
TValue val;
if (!_dictionary.TryGetValue(key, out val)) // if there is no element for that key, add a new element and return it
{
_dictionary.Add(key, new TValue());
return _dictionary[key];
}
else // else return the found element
{
return val;
}
}
set
{
_dictionary[key] = value;
}
}
public void Add(TKey key, TValue value)
{
_dictionary.Add(key, value);
}
public bool ContainsKey(TKey key)
{
return _dictionary.ContainsKey(key);
}
public ICollection<TKey> Keys
{
get { return _dictionary.Keys; }
}
public bool Remove(TKey key)
{
return _dictionary.Remove(key);
}
public bool TryGetValue(TKey key, out TValue value)
{
return _dictionary.TryGetValue(key, out value);
}
public ICollection<TValue> Values
{
get { return _dictionary.Values; }
}
public void Add(KeyValuePair<TKey, TValue> item)
{
_dictionary.Add(item.Key, item.Value);
}
public void Clear()
{
_dictionary.Clear();
}
public bool Contains(KeyValuePair<TKey, TValue> item)
{
return _dictionary.Contains(item);
}
public void CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex)
{
_dictionary.ToList().CopyTo(array, arrayIndex); // do you need this? you can leave this :)
}
public int Count
{
get { return _dictionary.Count; }
}
public bool IsReadOnly
{
get { return false; }
}
public bool Remove(KeyValuePair<TKey, TValue> item)
{
return _dictionary.Remove(item.Key);
}
public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator()
{
return _dictionary.GetEnumerator();
}
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
return _dictionary.GetEnumerator();
}
}
Then you use it like:
MyCustomDictionary<string, List<int>> myCustomDict = new MyCustomDictionary<int, List<int>>();
// return a new List of int
var someElementThatIsNotFound = myCustomDict["keyThatIsNonExistent"];
You can use TryGetValue method: if there's the key in the dictionary
you should just add the value into the list; otherwise you should
add a list with a value:
List<int> list
if (myDict.TryGetValue(newKey, out list))
list.Add(myNumber);
else
myDict.Add(newKey, new List<int>() { myNumber });
Lots of good answers already. I implemented an extension method for this exact reason:
public static TVALUE GetOrSet<TKEY, TVALUE>(this IDictionary<TKEY, TVALUE> self,
TKEY key,
Func<TVALUE> defaultValue)
{
TVALUE value;
if (!self.TryGetValue(key, out value))
{
value = defaultValue();
self[key] = value;
}
return value;
} // eo GetOrSet
Note that it takes a function to assign the value if it is not present. Either way, the value will be returned. Usage:
var dict = new Dictionary<string, List<int>>();
List<int> ints = dict.GetOrSet("list1", () => return new List<int>());
ints.Add(1);
If you're not referencing it again, you could potentially be less verbose:
dict.GetOrSet("list1", () => return new List<int>()).Add(1);
There doesn't appear to be a generic implementation of OrderedDictionary (which is in the System.Collections.Specialized namespace) in .NET 3.5. Is there one that I'm missing?
I've found implementations out there to provide the functionality, but wondered if/why there isn't a generic implementation out-of-the-box and if anyone knows whether it's something in .NET 4.0?
Implementing a generic OrderedDictionary isn't terribly difficult, but it's unnecessarily time consuming and frankly this class is a huge oversight on Microsoft's part. There are multiple ways of implementing this, but I chose to use a KeyedCollection for my internal storage. I also chose to implement various methods for sorting the way that List<T> does since this is essentially a hybrid IList and IDictionary. I've included my implementation here for posterity.
Here's the interface. Notice that it includes System.Collections.Specialized.IOrderedDictionary, which is the non-generic version of this interface that was provided by Microsoft.
// http://unlicense.org
using System;
using System.Collections.Generic;
using System.Collections.Specialized;
namespace mattmc3.Common.Collections.Generic {
public interface IOrderedDictionary<TKey, TValue> : IDictionary<TKey, TValue>, IOrderedDictionary {
new TValue this[int index] { get; set; }
new TValue this[TKey key] { get; set; }
new int Count { get; }
new ICollection<TKey> Keys { get; }
new ICollection<TValue> Values { get; }
new void Add(TKey key, TValue value);
new void Clear();
void Insert(int index, TKey key, TValue value);
int IndexOf(TKey key);
bool ContainsValue(TValue value);
bool ContainsValue(TValue value, IEqualityComparer<TValue> comparer);
new bool ContainsKey(TKey key);
new IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator();
new bool Remove(TKey key);
new void RemoveAt(int index);
new bool TryGetValue(TKey key, out TValue value);
TValue GetValue(TKey key);
void SetValue(TKey key, TValue value);
KeyValuePair<TKey, TValue> GetItem(int index);
void SetItem(int index, TValue value);
}
}
Here's the implementation along with helper classes:
// http://unlicense.org
using System;
using System.Collections.ObjectModel;
using System.Diagnostics;
using System.Collections;
using System.Collections.Specialized;
using System.Collections.Generic;
using System.Linq;
namespace mattmc3.Common.Collections.Generic {
/// <summary>
/// A dictionary object that allows rapid hash lookups using keys, but also
/// maintains the key insertion order so that values can be retrieved by
/// key index.
/// </summary>
public class OrderedDictionary<TKey, TValue> : IOrderedDictionary<TKey, TValue> {
#region Fields/Properties
private KeyedCollection2<TKey, KeyValuePair<TKey, TValue>> _keyedCollection;
/// <summary>
/// Gets or sets the value associated with the specified key.
/// </summary>
/// <param name="key">The key associated with the value to get or set.</param>
public TValue this[TKey key] {
get {
return GetValue(key);
}
set {
SetValue(key, value);
}
}
/// <summary>
/// Gets or sets the value at the specified index.
/// </summary>
/// <param name="index">The index of the value to get or set.</param>
public TValue this[int index] {
get {
return GetItem(index).Value;
}
set {
SetItem(index, value);
}
}
public int Count {
get { return _keyedCollection.Count; }
}
public ICollection<TKey> Keys {
get {
return _keyedCollection.Select(x => x.Key).ToList();
}
}
public ICollection<TValue> Values {
get {
return _keyedCollection.Select(x => x.Value).ToList();
}
}
public IEqualityComparer<TKey> Comparer {
get;
private set;
}
#endregion
#region Constructors
public OrderedDictionary() {
Initialize();
}
public OrderedDictionary(IEqualityComparer<TKey> comparer) {
Initialize(comparer);
}
public OrderedDictionary(IOrderedDictionary<TKey, TValue> dictionary) {
Initialize();
foreach (KeyValuePair<TKey, TValue> pair in dictionary) {
_keyedCollection.Add(pair);
}
}
public OrderedDictionary(IOrderedDictionary<TKey, TValue> dictionary, IEqualityComparer<TKey> comparer) {
Initialize(comparer);
foreach (KeyValuePair<TKey, TValue> pair in dictionary) {
_keyedCollection.Add(pair);
}
}
#endregion
#region Methods
private void Initialize(IEqualityComparer<TKey> comparer = null) {
this.Comparer = comparer;
if (comparer != null) {
_keyedCollection = new KeyedCollection2<TKey, KeyValuePair<TKey, TValue>>(x => x.Key, comparer);
}
else {
_keyedCollection = new KeyedCollection2<TKey, KeyValuePair<TKey, TValue>>(x => x.Key);
}
}
public void Add(TKey key, TValue value) {
_keyedCollection.Add(new KeyValuePair<TKey, TValue>(key, value));
}
public void Clear() {
_keyedCollection.Clear();
}
public void Insert(int index, TKey key, TValue value) {
_keyedCollection.Insert(index, new KeyValuePair<TKey, TValue>(key, value));
}
public int IndexOf(TKey key) {
if (_keyedCollection.Contains(key)) {
return _keyedCollection.IndexOf(_keyedCollection[key]);
}
else {
return -1;
}
}
public bool ContainsValue(TValue value) {
return this.Values.Contains(value);
}
public bool ContainsValue(TValue value, IEqualityComparer<TValue> comparer) {
return this.Values.Contains(value, comparer);
}
public bool ContainsKey(TKey key) {
return _keyedCollection.Contains(key);
}
public KeyValuePair<TKey, TValue> GetItem(int index) {
if (index < 0 || index >= _keyedCollection.Count) {
throw new ArgumentException(String.Format("The index was outside the bounds of the dictionary: {0}", index));
}
return _keyedCollection[index];
}
/// <summary>
/// Sets the value at the index specified.
/// </summary>
/// <param name="index">The index of the value desired</param>
/// <param name="value">The value to set</param>
/// <exception cref="ArgumentOutOfRangeException">
/// Thrown when the index specified does not refer to a KeyValuePair in this object
/// </exception>
public void SetItem(int index, TValue value) {
if (index < 0 || index >= _keyedCollection.Count) {
throw new ArgumentException("The index is outside the bounds of the dictionary: {0}".FormatWith(index));
}
var kvp = new KeyValuePair<TKey, TValue>(_keyedCollection[index].Key, value);
_keyedCollection[index] = kvp;
}
public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator() {
return _keyedCollection.GetEnumerator();
}
public bool Remove(TKey key) {
return _keyedCollection.Remove(key);
}
public void RemoveAt(int index) {
if (index < 0 || index >= _keyedCollection.Count) {
throw new ArgumentException(String.Format("The index was outside the bounds of the dictionary: {0}", index));
}
_keyedCollection.RemoveAt(index);
}
/// <summary>
/// Gets the value associated with the specified key.
/// </summary>
/// <param name="key">The key associated with the value to get.</param>
public TValue GetValue(TKey key) {
if (_keyedCollection.Contains(key) == false) {
throw new ArgumentException("The given key is not present in the dictionary: {0}".FormatWith(key));
}
var kvp = _keyedCollection[key];
return kvp.Value;
}
/// <summary>
/// Sets the value associated with the specified key.
/// </summary>
/// <param name="key">The key associated with the value to set.</param>
/// <param name="value">The the value to set.</param>
public void SetValue(TKey key, TValue value) {
var kvp = new KeyValuePair<TKey, TValue>(key, value);
var idx = IndexOf(key);
if (idx > -1) {
_keyedCollection[idx] = kvp;
}
else {
_keyedCollection.Add(kvp);
}
}
public bool TryGetValue(TKey key, out TValue value) {
if (_keyedCollection.Contains(key)) {
value = _keyedCollection[key].Value;
return true;
}
else {
value = default(TValue);
return false;
}
}
#endregion
#region sorting
public void SortKeys() {
_keyedCollection.SortByKeys();
}
public void SortKeys(IComparer<TKey> comparer) {
_keyedCollection.SortByKeys(comparer);
}
public void SortKeys(Comparison<TKey> comparison) {
_keyedCollection.SortByKeys(comparison);
}
public void SortValues() {
var comparer = Comparer<TValue>.Default;
SortValues(comparer);
}
public void SortValues(IComparer<TValue> comparer) {
_keyedCollection.Sort((x, y) => comparer.Compare(x.Value, y.Value));
}
public void SortValues(Comparison<TValue> comparison) {
_keyedCollection.Sort((x, y) => comparison(x.Value, y.Value));
}
#endregion
#region IDictionary<TKey, TValue>
void IDictionary<TKey, TValue>.Add(TKey key, TValue value) {
Add(key, value);
}
bool IDictionary<TKey, TValue>.ContainsKey(TKey key) {
return ContainsKey(key);
}
ICollection<TKey> IDictionary<TKey, TValue>.Keys {
get { return Keys; }
}
bool IDictionary<TKey, TValue>.Remove(TKey key) {
return Remove(key);
}
bool IDictionary<TKey, TValue>.TryGetValue(TKey key, out TValue value) {
return TryGetValue(key, out value);
}
ICollection<TValue> IDictionary<TKey, TValue>.Values {
get { return Values; }
}
TValue IDictionary<TKey, TValue>.this[TKey key] {
get {
return this[key];
}
set {
this[key] = value;
}
}
#endregion
#region ICollection<KeyValuePair<TKey, TValue>>
void ICollection<KeyValuePair<TKey, TValue>>.Add(KeyValuePair<TKey, TValue> item) {
_keyedCollection.Add(item);
}
void ICollection<KeyValuePair<TKey, TValue>>.Clear() {
_keyedCollection.Clear();
}
bool ICollection<KeyValuePair<TKey, TValue>>.Contains(KeyValuePair<TKey, TValue> item) {
return _keyedCollection.Contains(item);
}
void ICollection<KeyValuePair<TKey, TValue>>.CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex) {
_keyedCollection.CopyTo(array, arrayIndex);
}
int ICollection<KeyValuePair<TKey, TValue>>.Count {
get { return _keyedCollection.Count; }
}
bool ICollection<KeyValuePair<TKey, TValue>>.IsReadOnly {
get { return false; }
}
bool ICollection<KeyValuePair<TKey, TValue>>.Remove(KeyValuePair<TKey, TValue> item) {
return _keyedCollection.Remove(item);
}
#endregion
#region IEnumerable<KeyValuePair<TKey, TValue>>
IEnumerator<KeyValuePair<TKey, TValue>> IEnumerable<KeyValuePair<TKey, TValue>>.GetEnumerator() {
return GetEnumerator();
}
#endregion
#region IEnumerable
IEnumerator IEnumerable.GetEnumerator() {
return GetEnumerator();
}
#endregion
#region IOrderedDictionary
IDictionaryEnumerator IOrderedDictionary.GetEnumerator() {
return new DictionaryEnumerator<TKey, TValue>(this);
}
void IOrderedDictionary.Insert(int index, object key, object value) {
Insert(index, (TKey)key, (TValue)value);
}
void IOrderedDictionary.RemoveAt(int index) {
RemoveAt(index);
}
object IOrderedDictionary.this[int index] {
get {
return this[index];
}
set {
this[index] = (TValue)value;
}
}
#endregion
#region IDictionary
void IDictionary.Add(object key, object value) {
Add((TKey)key, (TValue)value);
}
void IDictionary.Clear() {
Clear();
}
bool IDictionary.Contains(object key) {
return _keyedCollection.Contains((TKey)key);
}
IDictionaryEnumerator IDictionary.GetEnumerator() {
return new DictionaryEnumerator<TKey, TValue>(this);
}
bool IDictionary.IsFixedSize {
get { return false; }
}
bool IDictionary.IsReadOnly {
get { return false; }
}
ICollection IDictionary.Keys {
get { return (ICollection)this.Keys; }
}
void IDictionary.Remove(object key) {
Remove((TKey)key);
}
ICollection IDictionary.Values {
get { return (ICollection)this.Values; }
}
object IDictionary.this[object key] {
get {
return this[(TKey)key];
}
set {
this[(TKey)key] = (TValue)value;
}
}
#endregion
#region ICollection
void ICollection.CopyTo(Array array, int index) {
((ICollection)_keyedCollection).CopyTo(array, index);
}
int ICollection.Count {
get { return ((ICollection)_keyedCollection).Count; }
}
bool ICollection.IsSynchronized {
get { return ((ICollection)_keyedCollection).IsSynchronized; }
}
object ICollection.SyncRoot {
get { return ((ICollection)_keyedCollection).SyncRoot; }
}
#endregion
}
public class KeyedCollection2<TKey, TItem> : KeyedCollection<TKey, TItem> {
private const string DelegateNullExceptionMessage = "Delegate passed cannot be null";
private Func<TItem, TKey> _getKeyForItemDelegate;
public KeyedCollection2(Func<TItem, TKey> getKeyForItemDelegate)
: base() {
if (getKeyForItemDelegate == null) throw new ArgumentNullException(DelegateNullExceptionMessage);
_getKeyForItemDelegate = getKeyForItemDelegate;
}
public KeyedCollection2(Func<TItem, TKey> getKeyForItemDelegate, IEqualityComparer<TKey> comparer)
: base(comparer) {
if (getKeyForItemDelegate == null) throw new ArgumentNullException(DelegateNullExceptionMessage);
_getKeyForItemDelegate = getKeyForItemDelegate;
}
protected override TKey GetKeyForItem(TItem item) {
return _getKeyForItemDelegate(item);
}
public void SortByKeys() {
var comparer = Comparer<TKey>.Default;
SortByKeys(comparer);
}
public void SortByKeys(IComparer<TKey> keyComparer) {
var comparer = new Comparer2<TItem>((x, y) => keyComparer.Compare(GetKeyForItem(x), GetKeyForItem(y)));
Sort(comparer);
}
public void SortByKeys(Comparison<TKey> keyComparison) {
var comparer = new Comparer2<TItem>((x, y) => keyComparison(GetKeyForItem(x), GetKeyForItem(y)));
Sort(comparer);
}
public void Sort() {
var comparer = Comparer<TItem>.Default;
Sort(comparer);
}
public void Sort(Comparison<TItem> comparison) {
var newComparer = new Comparer2<TItem>((x, y) => comparison(x, y));
Sort(newComparer);
}
public void Sort(IComparer<TItem> comparer) {
List<TItem> list = base.Items as List<TItem>;
if (list != null) {
list.Sort(comparer);
}
}
}
public class Comparer2<T> : Comparer<T> {
//private readonly Func<T, T, int> _compareFunction;
private readonly Comparison<T> _compareFunction;
#region Constructors
public Comparer2(Comparison<T> comparison) {
if (comparison == null) throw new ArgumentNullException("comparison");
_compareFunction = comparison;
}
#endregion
public override int Compare(T arg1, T arg2) {
return _compareFunction(arg1, arg2);
}
}
public class DictionaryEnumerator<TKey, TValue> : IDictionaryEnumerator, IDisposable {
readonly IEnumerator<KeyValuePair<TKey, TValue>> impl;
public void Dispose() { impl.Dispose(); }
public DictionaryEnumerator(IDictionary<TKey, TValue> value) {
this.impl = value.GetEnumerator();
}
public void Reset() { impl.Reset(); }
public bool MoveNext() { return impl.MoveNext(); }
public DictionaryEntry Entry {
get {
var pair = impl.Current;
return new DictionaryEntry(pair.Key, pair.Value);
}
}
public object Key { get { return impl.Current.Key; } }
public object Value { get { return impl.Current.Value; } }
public object Current { get { return Entry; } }
}
}
And no implementation would be complete without a few tests (but tragically, SO won't let me post that much code in one post), so I'll have to leave you to write your tests. But, I left a few of them in so that you could get an idea of how it works:
// http://unlicense.org
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using mattmc3.Common.Collections.Generic;
namespace mattmc3.Tests.Common.Collections.Generic {
[TestClass]
public class OrderedDictionaryTests {
private OrderedDictionary<string, string> GetAlphabetDictionary(IEqualityComparer<string> comparer = null) {
OrderedDictionary<string, string> alphabet = (comparer == null ? new OrderedDictionary<string, string>() : new OrderedDictionary<string, string>(comparer));
for (var a = Convert.ToInt32('a'); a <= Convert.ToInt32('z'); a++) {
var c = Convert.ToChar(a);
alphabet.Add(c.ToString(), c.ToString().ToUpper());
}
Assert.AreEqual(26, alphabet.Count);
return alphabet;
}
private List<KeyValuePair<string, string>> GetAlphabetList() {
var alphabet = new List<KeyValuePair<string, string>>();
for (var a = Convert.ToInt32('a'); a <= Convert.ToInt32('z'); a++) {
var c = Convert.ToChar(a);
alphabet.Add(new KeyValuePair<string, string>(c.ToString(), c.ToString().ToUpper()));
}
Assert.AreEqual(26, alphabet.Count);
return alphabet;
}
[TestMethod]
public void TestAdd() {
var od = new OrderedDictionary<string, string>();
Assert.AreEqual(0, od.Count);
Assert.AreEqual(-1, od.IndexOf("foo"));
od.Add("foo", "bar");
Assert.AreEqual(1, od.Count);
Assert.AreEqual(0, od.IndexOf("foo"));
Assert.AreEqual(od[0], "bar");
Assert.AreEqual(od["foo"], "bar");
Assert.AreEqual(od.GetItem(0).Key, "foo");
Assert.AreEqual(od.GetItem(0).Value, "bar");
}
[TestMethod]
public void TestRemove() {
var od = new OrderedDictionary<string, string>();
od.Add("foo", "bar");
Assert.AreEqual(1, od.Count);
od.Remove("foo");
Assert.AreEqual(0, od.Count);
}
[TestMethod]
public void TestRemoveAt() {
var od = new OrderedDictionary<string, string>();
od.Add("foo", "bar");
Assert.AreEqual(1, od.Count);
od.RemoveAt(0);
Assert.AreEqual(0, od.Count);
}
[TestMethod]
public void TestClear() {
var od = GetAlphabetDictionary();
Assert.AreEqual(26, od.Count);
od.Clear();
Assert.AreEqual(0, od.Count);
}
[TestMethod]
public void TestOrderIsPreserved() {
var alphabetDict = GetAlphabetDictionary();
var alphabetList = GetAlphabetList();
Assert.AreEqual(26, alphabetDict.Count);
Assert.AreEqual(26, alphabetList.Count);
var keys = alphabetDict.Keys.ToList();
var values = alphabetDict.Values.ToList();
for (var i = 0; i < 26; i++) {
var dictItem = alphabetDict.GetItem(i);
var listItem = alphabetList[i];
var key = keys[i];
var value = values[i];
Assert.AreEqual(dictItem, listItem);
Assert.AreEqual(key, listItem.Key);
Assert.AreEqual(value, listItem.Value);
}
}
[TestMethod]
public void TestTryGetValue() {
var alphabetDict = GetAlphabetDictionary();
string result = null;
Assert.IsFalse(alphabetDict.TryGetValue("abc", out result));
Assert.IsNull(result);
Assert.IsTrue(alphabetDict.TryGetValue("z", out result));
Assert.AreEqual("Z", result);
}
[TestMethod]
public void TestEnumerator() {
var alphabetDict = GetAlphabetDictionary();
var keys = alphabetDict.Keys.ToList();
Assert.AreEqual(26, keys.Count);
var i = 0;
foreach (var kvp in alphabetDict) {
var value = alphabetDict[kvp.Key];
Assert.AreEqual(kvp.Value, value);
i++;
}
}
[TestMethod]
public void TestInvalidIndex() {
var alphabetDict = GetAlphabetDictionary();
try {
var notGonnaWork = alphabetDict[100];
Assert.IsTrue(false, "Exception should have thrown");
}
catch (Exception ex) {
Assert.IsTrue(ex.Message.Contains("index is outside the bounds"));
}
}
[TestMethod]
public void TestMissingKey() {
var alphabetDict = GetAlphabetDictionary();
try {
var notGonnaWork = alphabetDict["abc"];
Assert.IsTrue(false, "Exception should have thrown");
}
catch (Exception ex) {
Assert.IsTrue(ex.Message.Contains("key is not present"));
}
}
[TestMethod]
public void TestUpdateExistingValue() {
var alphabetDict = GetAlphabetDictionary();
Assert.IsTrue(alphabetDict.ContainsKey("c"));
Assert.AreEqual(2, alphabetDict.IndexOf("c"));
Assert.AreEqual(alphabetDict[2], "C");
alphabetDict[2] = "CCC";
Assert.IsTrue(alphabetDict.ContainsKey("c"));
Assert.AreEqual(2, alphabetDict.IndexOf("c"));
Assert.AreEqual(alphabetDict[2], "CCC");
}
[TestMethod]
public void TestInsertValue() {
var alphabetDict = GetAlphabetDictionary();
Assert.IsTrue(alphabetDict.ContainsKey("c"));
Assert.AreEqual(2, alphabetDict.IndexOf("c"));
Assert.AreEqual(alphabetDict[2], "C");
Assert.AreEqual(26, alphabetDict.Count);
Assert.IsFalse(alphabetDict.ContainsValue("ABC"));
alphabetDict.Insert(2, "abc", "ABC");
Assert.IsTrue(alphabetDict.ContainsKey("c"));
Assert.AreEqual(2, alphabetDict.IndexOf("abc"));
Assert.AreEqual(alphabetDict[2], "ABC");
Assert.AreEqual(27, alphabetDict.Count);
Assert.IsTrue(alphabetDict.ContainsValue("ABC"));
}
[TestMethod]
public void TestValueComparer() {
var alphabetDict = GetAlphabetDictionary();
Assert.IsFalse(alphabetDict.ContainsValue("a"));
Assert.IsTrue(alphabetDict.ContainsValue("a", StringComparer.OrdinalIgnoreCase));
}
[TestMethod]
public void TestSortByKeys() {
var alphabetDict = GetAlphabetDictionary();
var reverseAlphabetDict = GetAlphabetDictionary();
Comparison<string> stringReverse = ((x, y) => (String.Equals(x, y) ? 0 : String.Compare(x, y) >= 1 ? -1 : 1));
reverseAlphabetDict.SortKeys(stringReverse);
for (int j = 0, k = 25; j < alphabetDict.Count; j++, k--) {
var ascValue = alphabetDict.GetItem(j);
var dscValue = reverseAlphabetDict.GetItem(k);
Assert.AreEqual(ascValue.Key, dscValue.Key);
Assert.AreEqual(ascValue.Value, dscValue.Value);
}
}
-- UPDATE --
Source for this and other really useful missing core .NET libraries here: https://github.com/mattmc3/dotmore/blob/master/dotmore/Collections/Generic/OrderedDictionary.cs
You're right. There's no generic equivalent of OrderedDictionary in the framework itself.
(That's still the case for .NET 4 too, as far as I'm aware.)
For the record, there is a generic KeyedCollection that allows objects to be indexed by an int and a key. The key must be embedded in the value.
Here's a bizarre find: the System.Web.Util namespace in System.Web.Extensions.dll contains a generic OrderedDictionary<TKey,TValue>
// Type: System.Web.Util.OrderedDictionary`2
// Assembly: System.Web.Extensions, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35
// Assembly location: C:\Windows\Microsoft.NET\Framework\v4.0.30319\System.Web.Extensions.dll
namespace System.Web.Util
{
internal class OrderedDictionary<TKey, TValue> : IDictionary<TKey, TValue>, ICollection<KeyValuePair<TKey, TValue>>, IEnumerable<KeyValuePair<TKey, TValue>>, IEnumerable
Not sure why MS placed it there instead of the System.Collections.Generic package, but I assume you can simply copy paste the code and use it (it's internal, so can't use it directly). Looks like the implementation uses a standard dictionary and separate Key/Value lists. Pretty straightforward...
Source code: https://referencesource.microsoft.com/#System.Web.Extensions/Util/OrderedDictionary.cs
A different implementation in System.Runtime.Collections that wraps the non-generic System.Collections.Specialized.OrderedDictionary: https://referencesource.microsoft.com/#System.ServiceModel.Internals/System/Runtime/Collections/OrderedDictionary.cs
For what it's worth, here is how I solved it:
public class PairList<TKey, TValue> : List<KeyValuePair<TKey, TValue>> {
Dictionary<TKey, int> itsIndex = new Dictionary<TKey, int>();
public void Add(TKey key, TValue value) {
Add(new KeyValuePair<TKey, TValue>(key, value));
itsIndex.Add(key, Count-1);
}
public TValue Get(TKey key) {
var idx = itsIndex[key];
return this[idx].Value;
}
}
It can be initialized like this:
var pairList = new PairList<string, string>
{
{ "pitcher", "Ken" },
{ "catcher", "Brad"},
{ "left fielder", "Stan"},
};
and accessed like this:
foreach (var pair in pairList)
{
Console.WriteLine("position: {0}, player: {1}",
pair.Key, pair.Value);
}
// Guaranteed to print in the order of initialization
A major conceptual problem with a generic version of OrderedDictionary is that users of a OrderedDictionary<TKey,TValue> would expect expect to be able to index it either numerically using an int, or by lookup using a TKey. When the only type of key was Object, as was the case with non-generic OrderedDictionary, the type of argument passed to the indexer would be sufficient to distinguish whether what type of indexing operation should be performed. As it is, though, it's unclear how the indexer of an OrderedDictionary<int, TValue> should behave.
If classes like Drawing.Point had recommended and followed a rule that piecewise-mutable structures should expose their mutable elements as fields rather than properties, and refrain from using property setters that modify this, then an OrderedDictionary<TKey,TValue> could efficiently expose a ByIndex property that returned an Indexer struct which held a reference to the dictionary, and had an indexed property whose getter and setter would call GetByIndex and SetByIndex upon it. Thus, one could say something like MyDict.ByIndex[5] += 3; to add 3 to the sixth element of the dictionary.
Unfortunately, for the compiler to accept such a thing, it would be necessary to make the ByIndex property return a new class instance rather than a struct every time it's invoked, eliminating the advantages one would get by avoiding boxing.
In VB.NET, one could get around that issue by using a named indexed property (so MyDict.ByIndex[int] would be a member of MyDict, rather than requiring MyDict.ByIndex to be a member of MyDict which includes an indexer), but C# doesn't allow such things.
It might still have been worthwhile to offer an OrderedDictionary<TKey,TValue> where TKey:class, but much of the reason for providing generics in the first place was to allow their use with value types.
For a lot of purposes I've found one can get by with a List<KeyValuePair<K, V>>. (Not if you need it to extend Dictionary, obviously, and not if you need better than O(n) key-value lookup.)
Right, it's an unfortunate omission. I miss Python's OrderedDict
A dictionary that remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the original insertion position is left unchanged. Deleting an entry and reinserting it will move it to the end.
So I wrote my own OrderedDictionary<K,V> class in C#. How does it work? It maintains two collections - a vanilla unordered dictionary and an ordered list of keys. With this solution, the standard dictionary operations keep their fast complexities, and look up by index is fast too.
https://gist.github.com/hickford/5137384
Here's the interface
/// <summary>
/// A dictionary that remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the original insertion position is left unchanged. Deleting an entry and reinserting it will move it to the end.
/// </summary>
/// <typeparam name="TKey">The type of keys</typeparam>
/// <typeparam name="TValue">The type of values</typeparam>
public interface IOrderedDictionary<TKey, TValue> : IDictionary<TKey, TValue>
{
/// <summary>
/// The value of the element at the given index.
/// </summary>
TValue this[int index] { get; set; }
/// <summary>
/// Find the position of an element by key. Returns -1 if the dictionary does not contain an element with the given key.
/// </summary>
int IndexOf(TKey key);
/// <summary>
/// Insert an element at the given index.
/// </summary>
void Insert(int index, TKey key, TValue value);
/// <summary>
/// Remove the element at the given index.
/// </summary>
void RemoveAt(int index);
}
For those looking for an "official" package option in NuGet, an implementation of a generic OrderedDictionary has been accepted into .NET CoreFX Lab. If all goes well, the type will eventually be approved and integrated to the main .NET CoreFX repo.
There is a possibility that this implementation will be rejected.
The committed implementation can be referenced here
https://github.com/dotnet/corefxlab/blob/57be99a176421992e29009701a99a370983329a6/src/Microsoft.Experimental.Collections/Microsoft/Collections/Extensions/OrderedDictionary.cs
The NuGet package that definitively has this type available for use can be found here
https://www.nuget.org/packages/Microsoft.Experimental.Collections/1.0.6-e190117-3
Or you can install the package within Visual Studio. Browse for the package "Microsoft.Experimental.Collections" and make sure the "Include prerelease" checkbox is selected.
Will update this post if and when the type is made officially available.
There is SortedDictionary<TKey, TValue>. Although semantically close, I am not claiming it's the same as OrderedDictionary simply because they are not. Even from performance characteristics. However the very interesting and quite important difference between Dictionary<TKey, TValue> (and to that extent OrderedDictionary and implementations provided in answers) and SortedDictionary is that the latter is using binary tree underneath. This is critical distinction because it makes the class immune to memory constraints applied to generic class. See this thread about OutOfMemoryExceptions thrown when generic class is used for handling large set of key-value pairs.
How to figure out the max value for capacity parameter passed to Dictionary constructor to avoid OutOfMemoryException?
As a follow up to the comment from #V.B. here's an accessible implementation of the System.Runtime.Collections.OrderedDictionary<,>. I was originally going to access it by reflection and provide it via a factory but the dll this is in does not seem to be very accessible at all so I just pulled the source itself.
One thing to note is the indexer here will not throw KeyNotFoundException. I absolutely hate that convention and that was the 1 liberty i took in this implementation. If that's important to you, just replace the line for return default(TValue);. Uses C# 6 (compatible with Visual Studio 2013)
/// <summary>
/// System.Collections.Specialized.OrderedDictionary is NOT generic.
/// This class is essentially a generic wrapper for OrderedDictionary.
/// </summary>
/// <remarks>
/// Indexer here will NOT throw KeyNotFoundException
/// </remarks>
public class OrderedDictionary<TKey, TValue> : IDictionary<TKey, TValue>, IDictionary
{
private readonly OrderedDictionary _privateDictionary;
public OrderedDictionary()
{
_privateDictionary = new OrderedDictionary();
}
public OrderedDictionary(IDictionary<TKey, TValue> dictionary)
{
if (dictionary == null) return;
_privateDictionary = new OrderedDictionary();
foreach (var pair in dictionary)
{
_privateDictionary.Add(pair.Key, pair.Value);
}
}
public bool IsReadOnly => false;
public int Count => _privateDictionary.Count;
int ICollection.Count => _privateDictionary.Count;
object ICollection.SyncRoot => ((ICollection)_privateDictionary).SyncRoot;
bool ICollection.IsSynchronized => ((ICollection)_privateDictionary).IsSynchronized;
bool IDictionary.IsFixedSize => ((IDictionary)_privateDictionary).IsFixedSize;
bool IDictionary.IsReadOnly => _privateDictionary.IsReadOnly;
ICollection IDictionary.Keys => _privateDictionary.Keys;
ICollection IDictionary.Values => _privateDictionary.Values;
void IDictionary.Add(object key, object value)
{
_privateDictionary.Add(key, value);
}
void IDictionary.Clear()
{
_privateDictionary.Clear();
}
bool IDictionary.Contains(object key)
{
return _privateDictionary.Contains(key);
}
IDictionaryEnumerator IDictionary.GetEnumerator()
{
return _privateDictionary.GetEnumerator();
}
void IDictionary.Remove(object key)
{
_privateDictionary.Remove(key);
}
object IDictionary.this[object key]
{
get { return _privateDictionary[key]; }
set { _privateDictionary[key] = value; }
}
void ICollection.CopyTo(Array array, int index)
{
_privateDictionary.CopyTo(array, index);
}
public TValue this[TKey key]
{
get
{
if (key == null) throw new ArgumentNullException(nameof(key));
if (_privateDictionary.Contains(key))
{
return (TValue) _privateDictionary[key];
}
return default(TValue);
}
set
{
if (key == null) throw new ArgumentNullException(nameof(key));
_privateDictionary[key] = value;
}
}
public ICollection<TKey> Keys
{
get
{
var keys = new List<TKey>(_privateDictionary.Count);
keys.AddRange(_privateDictionary.Keys.Cast<TKey>());
return keys.AsReadOnly();
}
}
public ICollection<TValue> Values
{
get
{
var values = new List<TValue>(_privateDictionary.Count);
values.AddRange(_privateDictionary.Values.Cast<TValue>());
return values.AsReadOnly();
}
}
public void Add(KeyValuePair<TKey, TValue> item)
{
Add(item.Key, item.Value);
}
public void Add(TKey key, TValue value)
{
if (key == null) throw new ArgumentNullException(nameof(key));
_privateDictionary.Add(key, value);
}
public void Clear()
{
_privateDictionary.Clear();
}
public bool Contains(KeyValuePair<TKey, TValue> item)
{
if (item.Key == null || !_privateDictionary.Contains(item.Key))
{
return false;
}
return _privateDictionary[item.Key].Equals(item.Value);
}
public bool ContainsKey(TKey key)
{
if (key == null) throw new ArgumentNullException(nameof(key));
return _privateDictionary.Contains(key);
}
public void CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex)
{
if (array == null) throw new ArgumentNullException(nameof(array));
if (arrayIndex < 0) throw new ArgumentOutOfRangeException(nameof(arrayIndex));
if (array.Rank > 1 || arrayIndex >= array.Length
|| array.Length - arrayIndex < _privateDictionary.Count)
throw new ArgumentException("Bad Copy ToArray", nameof(array));
var index = arrayIndex;
foreach (DictionaryEntry entry in _privateDictionary)
{
array[index] =
new KeyValuePair<TKey, TValue>((TKey) entry.Key, (TValue) entry.Value);
index++;
}
}
public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator()
{
foreach (DictionaryEntry entry in _privateDictionary)
{
yield return
new KeyValuePair<TKey, TValue>((TKey) entry.Key, (TValue) entry.Value);
}
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
public bool Remove(KeyValuePair<TKey, TValue> item)
{
if (false == Contains(item)) return false;
_privateDictionary.Remove(item.Key);
return true;
}
public bool Remove(TKey key)
{
if (key == null) throw new ArgumentNullException(nameof(key));
if (false == _privateDictionary.Contains(key)) return false;
_privateDictionary.Remove(key);
return true;
}
public bool TryGetValue(TKey key, out TValue value)
{
if (key == null) throw new ArgumentNullException(nameof(key));
var keyExists = _privateDictionary.Contains(key);
value = keyExists ? (TValue) _privateDictionary[key] : default(TValue);
return keyExists;
}
}
Pull requests/discussion accepted on GitHub
I implemented a generic OrderedDictionary<TKey, TValue> by wraping around SortedList<TKey, TValue> and adding a private Dictionary<TKey, int> _order. Then I created an internal implementation of Comparer<TKey>, passing a reference to the _order dictionary. Then I use this comparer for the internal SortedList. This class keeps the order of elements passed to the constructor and order of additions.
This implementation has almost the same big O characteristics as SortedList<TKey, TValue> since adding and removing to _order is O(1). Each element will take (according to the book 'C# 4 in a Nutshell', p. 292, table 7-1) additional memory space of 22 (overhead) + 4 (int order) + TKey size (let's assume 8) = 34. Together with SortedList<TKey, TValue>'s overhead of two bytes, the total overhead is 36 bytes, while the same book says that non-generic OrderedDictionary has an overhead of 59 bytes.
If I pass sorted=true to constructor, then _order is not used at all, the OrderedDictionary<TKey, TValue> is exactly SortedList<TKey, TValue> with minor overhead for wrapping, if at all meaningful.
I am going to store not-so-many large reference objects in the OrderedDictionary<TKey, TValue>, so for me this ca. 36 bytes overhead is tolerable.
The main code is below. The complete updated code is on this gist.
public class OrderedList<TKey, TValue> : IDictionary<TKey, TValue>, IDictionary
{
private readonly Dictionary<TKey, int> _order;
private readonly SortedList<TKey, TValue> _internalList;
private readonly bool _sorted;
private readonly OrderComparer _comparer;
public OrderedList(IDictionary<TKey, TValue> dictionary, bool sorted = false)
{
_sorted = sorted;
if (dictionary == null)
dictionary = new Dictionary<TKey, TValue>();
if (_sorted)
{
_internalList = new SortedList<TKey, TValue>(dictionary);
}
else
{
_order = new Dictionary<TKey, int>();
_comparer = new OrderComparer(ref _order);
_internalList = new SortedList<TKey, TValue>(_comparer);
// Keep order of the IDictionary
foreach (var kvp in dictionary)
{
Add(kvp);
}
}
}
public OrderedList(bool sorted = false)
: this(null, sorted)
{
}
private class OrderComparer : Comparer<TKey>
{
public Dictionary<TKey, int> Order { get; set; }
public OrderComparer(ref Dictionary<TKey, int> order)
{
Order = order;
}
public override int Compare(TKey x, TKey y)
{
var xo = Order[x];
var yo = Order[y];
return xo.CompareTo(yo);
}
}
private void ReOrder()
{
var i = 0;
_order = _order.OrderBy(kvp => kvp.Value).ToDictionary(kvp => kvp.Key, kvp => i++);
_comparer.Order = _order;
_lastOrder = _order.Values.Max() + 1;
}
public void Add(TKey key, TValue value)
{
if (!_sorted)
{
_order.Add(key, _lastOrder);
_lastOrder++;
// Very rare event
if (_lastOrder == int.MaxValue)
ReOrder();
}
_internalList.Add(key, value);
}
public bool Remove(TKey key)
{
var result = _internalList.Remove(key);
if (!_sorted)
_order.Remove(key);
return result;
}
// Other IDictionary<> + IDictionary members implementation wrapping around _internalList
// ...
}
This is not yet another version/solution of an OrderedDictionary<,> but an experiment I did testing each of 4 versions mentioned in the answers: of #Colonel Panic, #mattmc3, #V.B. #Chris Marisic. It is meant as a feedback. Well, partial because I have to admit I haven't dissected the code, so there may be differences in functionality or safety checks. But still, I thought feedback would be useful on their performance. And as you'll see time can get from a couple of milliseconds to a quarter of hour.
Then I scribbled a naive minimal version with 2 lists of key and value class objects with O(n) search just to see the magnitude of the benefit of O(1) access.
Testbed is Microsoft Visual Studio Community 2019 with Unity 3D, 4 consecutive times for each test and the code that I wanted to replicate a real-ish scenario in is
using System.Text;
using UnityEngine;
public class TessyOne : MonoBehaviour
{
public const int iterations = 50000;
private System.Diagnostics.Stopwatch stopwatch;
private System.Random random;
public float stopwatchDuration;
public class Ala
{
public int inta;
public float fla;
public string stra;
public Ben bena;
public Ala(int i, float f, string s, Ben b)
{
inta = i; fla = f; stra = s; bena = b;
}
}
public class Ben
{
public int inte;
public float fle;
public string stre;
public Ben(int i, float f, string s)
{
inte = i; fle = f; stre = s;
}
}
//public Naive.OrderedDictionary<Ala, Ben> alasToBens = new Naive.OrderedDictionary<Ala, Ben>();
//public Hickford.OrderedDictionary<Ala, Ben> alasToBens = new Hickford.OrderedDictionary<Ala, Ben>();
//public Mattmc3.OrderedDictionary<Ala, Ben> alasToBens = new Mattmc3.OrderedDictionary<Ala, Ben>();
public Marisic.OrderedDictionary<Ala, Ben> alasToBens = new Marisic.OrderedDictionary<Ala, Ben>();
//public VB.OrderedList<Ala, Ben> alasToBens = new VB.OrderedList<Ala, Ben>(null, false);
Ala[] alarray = new Ala[iterations];
Ben[] berray = new Ben[iterations];
// This is the entry point of the application
private void Start()
{
stopwatch = new System.Diagnostics.Stopwatch();
random = new System.Random(2020);
for(int i = 0; i < iterations; ++i)
{
berray[i] = new Ben(random.Next(),
(float)random.NextDouble(),
MakeRandomString((ushort)random.Next(1, 10)));
alarray[i] = new Ala(random.Next(),
(float)random.NextDouble(),
MakeRandomString((ushort)random.Next(1, 10)),
berray[i]);
// uncomment for testing ContainsKey() and Remove(), comment for Add()
alasToBens.Add(alarray[i], berray[i]);
}
stopwatch.Start();
for(int i = iterations - 1; i > -1; --i)
{
//alasToBens.Add(alarray[i], berray[i]);
//alasToBens.ContainsKey(alarray[i]);
alasToBens.Remove(alarray[i]);
}
stopwatch.Stop();
stopwatchDuration = stopwatch.ElapsedMilliseconds;
}
public string MakeRandomString(ushort length)
{
StringBuilder sb = new StringBuilder();
for(ushort u = 0; u < length; ++u)
{
sb.Append((char)Random.Range(33, 126)); // regular ASCII chars
}
return sb.ToString();
}
}
Note that the tests are for worst case scenarios in the case of naive version at least, as it iterates through the collection from index 0 through iterations and searching is done from end to start. I measured Add(), ContainsKey() and Remove() in milliseconds for a dictionary of 50000 entries.
Results:
+----------+----------------+----------------+--------------------------------+
| ms | Add() | ContainsKey() | Remove() |
+----------+----------------+----------------+--------------------------------+
| Hickford | 7, 8, 7, 8 | 2, 2, 3, 2 | 7400, 7503, 7419, 7421 |
| Mattmc3 | 23, 24, 24, 23 | 3, 3, 3, 3 | 890404, 913465, 875387, 877792 |
| Marisic | 27, 28, 28, 27 | 4, 4, 4, 4 | 27401, 27627, 27341, 27349 |
| V.B. | 76, 76, 75, 75 | 59, 60, 60, 60 | 66, 67, 67, 67 |
| | | | |
| Naive | 19651, 19761 | 25335, 25416 | 25259, 25306 |
+----------+----------------+----------------+--------------------------------+
This question already has answers here:
Is there an IDictionary implementation that, on missing key, returns the default value instead of throwing?
(17 answers)
Closed 9 years ago.
I find myself using the current pattern quite often in my code nowadays
var dictionary = new Dictionary<type, IList<othertype>>();
// Add stuff to dictionary
var somethingElse = dictionary.ContainsKey(key) ? dictionary[key] : new List<othertype>();
// Do work with the somethingelse variable
Or sometimes
var dictionary = new Dictionary<type, IList<othertype>>();
// Add stuff to dictionary
IList<othertype> somethingElse;
if(!dictionary.TryGetValue(key, out somethingElse) {
somethingElse = new List<othertype>();
}
Both of these ways feel quite roundabout. What I really would like is something like
dictionary.GetValueOrDefault(key)
Now, I could write an extension method for the dictionary class that does this for me, but I figured that I might be missing something that already exists. SO, is there a way to do this in a way that is more "easy on the eyes" without writing an extension method to dictionary?
TryGetValue will already assign the default value for the type to the dictionary, so you can just use:
dictionary.TryGetValue(key, out value);
and just ignore the return value. However, that really will just return default(TValue), not some custom default value (nor, more usefully, the result of executing a delegate). There's nothing more powerful built into the framework. I would suggest two extension methods:
public static TValue GetValueOrDefault<TKey, TValue>(
this IDictionary<TKey, TValue> dictionary,
TKey key,
TValue defaultValue)
{
return dictionary.TryGetValue(key, out var value) ? value : defaultValue;
}
public static TValue GetValueOrDefault<TKey, TValue>(
this IDictionary<TKey, TValue> dictionary,
TKey key,
Func<TValue> defaultValueProvider)
{
return dictionary.TryGetValue(key, out var value) ? value : defaultValueProvider();
}
(You may want to put argument checking in, of course :)
I do favor extension methods, but here's a simple class I use from time to time to handle dictionaries when I need default values.
I wish this were just part of the base Dictionary class.
public class DictionaryWithDefault<TKey, TValue> : Dictionary<TKey, TValue>
{
TValue _default;
public TValue DefaultValue {
get { return _default; }
set { _default = value; }
}
public DictionaryWithDefault() : base() { }
public DictionaryWithDefault(TValue defaultValue) : base() {
_default = defaultValue;
}
public new TValue this[TKey key]
{
get {
TValue t;
return base.TryGetValue(key, out t) ? t : _default;
}
set { base[key] = value; }
}
}
Beware, however. By subclassing and using new (since override is not available on the native Dictionary type), if a DictionaryWithDefault object is upcast to a plain Dictionary, calling the indexer will use the base Dictionary implementation (throwing an exception if missing) rather than the subclass's implementation.
I created a DefaultableDictionary to do exactly what you are asking for!
using System;
using System.Collections;
using System.Collections.Generic;
using System.Collections.ObjectModel;
namespace DefaultableDictionary {
public class DefaultableDictionary<TKey, TValue> : IDictionary<TKey, TValue> {
private readonly IDictionary<TKey, TValue> dictionary;
private readonly TValue defaultValue;
public DefaultableDictionary(IDictionary<TKey, TValue> dictionary, TValue defaultValue) {
this.dictionary = dictionary;
this.defaultValue = defaultValue;
}
public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator() {
return dictionary.GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator() {
return GetEnumerator();
}
public void Add(KeyValuePair<TKey, TValue> item) {
dictionary.Add(item);
}
public void Clear() {
dictionary.Clear();
}
public bool Contains(KeyValuePair<TKey, TValue> item) {
return dictionary.Contains(item);
}
public void CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex) {
dictionary.CopyTo(array, arrayIndex);
}
public bool Remove(KeyValuePair<TKey, TValue> item) {
return dictionary.Remove(item);
}
public int Count {
get { return dictionary.Count; }
}
public bool IsReadOnly {
get { return dictionary.IsReadOnly; }
}
public bool ContainsKey(TKey key) {
return dictionary.ContainsKey(key);
}
public void Add(TKey key, TValue value) {
dictionary.Add(key, value);
}
public bool Remove(TKey key) {
return dictionary.Remove(key);
}
public bool TryGetValue(TKey key, out TValue value) {
if (!dictionary.TryGetValue(key, out value)) {
value = defaultValue;
}
return true;
}
public TValue this[TKey key] {
get
{
try
{
return dictionary[key];
} catch (KeyNotFoundException) {
return defaultValue;
}
}
set { dictionary[key] = value; }
}
public ICollection<TKey> Keys {
get { return dictionary.Keys; }
}
public ICollection<TValue> Values {
get
{
var values = new List<TValue>(dictionary.Values) {
defaultValue
};
return values;
}
}
}
public static class DefaultableDictionaryExtensions {
public static IDictionary<TKey, TValue> WithDefaultValue<TValue, TKey>(this IDictionary<TKey, TValue> dictionary, TValue defaultValue ) {
return new DefaultableDictionary<TKey, TValue>(dictionary, defaultValue);
}
}
}
This project is a simple decorator for an IDictionary object and an extension method to make it easy to use.
The DefaultableDictionary will allow for creating a wrapper around a dictionary that provides a default value when trying to access a key that does not exist or enumerating through all the values in an IDictionary.
Example: var dictionary = new Dictionary<string, int>().WithDefaultValue(5);
Blog post on the usage as well.
No, nothing like that exists. The extension method is the way to go, and your name for it (GetValueOrDefault) is a pretty good choice.