Inconsistent accessibility with protected internal member - c#

Attempting to make a protected internal member of a protected internal class within a public class results with the following issue:
Inconsistent accessibility: field type
'what.Class1.ProtectedInternalClass' is less accessible than field
'what.Class1.SomeDataProvider.data'
The accessibility should be equivalent, as far as I know.
Where am I mistaken?
Origination class:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace what
{
public class Class1
{
// This class cannot be modified, is only
// here to produce a complete example.
public class PublicClass
{
public PublicClass() { }
}
protected internal class ProtectedInternalClass : PublicClass
{
public ProtectedInternalClass() { }
public void SomeExtraFunction() { }
}
public class SomeDataProvider
{
public int AnInterestingValue;
public int AnotherInterestingValue;
protected internal ProtectedInternalClass data; //<--- Occurs here.
public PublicClass Data { get { return data; } }
}
public static SomeDataProvider RetrieveProvider()
{
SomeDataProvider provider = new SomeDataProvider();
provider.data = new ProtectedInternalClass();
provider.data.SomeExtraFunction();
return provider;
}
}
}
Verifying protected and internal properties, same assembly:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace what
{
public class Class2 : Class1
{
public Class2()
{
var pi = new ProtectedInternalClass();
var provider = new SomeDataProvider();
provider.data = pi;
}
// no errors here
}
public class Class3
{
public Class3()
{
var pi = new Class1.ProtectedInternalClass();
var provider = new Class1.SomeDataProvider();
provider.data = pi;
}
// no errors here
}
}
Verifying protected and internal properties, different assembly:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace some_other_assembly
{
public class Class4 : what.Class1
{
public Class4()
{
var pi = new ProtectedInternalClass();
var provider = new SomeDataProvider();
provider.data = pi;
}
// no errors here
}
public class Class5
{
public Class5()
{
var pi = new what.Class1.ProtectedInternalClass(); // <--- Inaccessible due to protection level, as it should be.
var provider = new what.Class1.SomeDataProvider();
provider.data = pi; // <--- Intellisense implies inaccessible, but not indicated via error.
}
}
}

The protected applies to different classes, and this can be seen with
class Derived : what.Class1.SomeDataProvider // note: Derived is not a nested class
{
public void f()
{
var data = this.data;
}
}
in a different assembly.
this.data has to be accessible, since the class derives from SomeDataProvider. Its type, ProtectedInternalClass, is not accessible, since the class does not derive from Class1.

Related

Unable to access public type members in another assembly. I have two assemblies, I want to access public members from one assembly in another assembly

using System;
namespace AssemblyOne
{
public class AssemblyOneClassOne
{
protected internal int ID = 101;
public int id = 102;
public void Print()
{
Console.WriteLine("Abdullah is a handsome hunk!");
}
}
public class AssemblyOneClassTwo
{
public void SampleMethod()
{
AssemblyOneClassOne a1 = new AssemblyOneClassOne();
Console.WriteLine(a1.ID);
}
}
public class A
{
public static void Main()
{
AssemblyOneClassTwo a2 = new AssemblyOneClassTwo();
a2.SampleMethod();
Console.ReadKey();
}
}
}
using System;
using AssemblyOne;
namespace AssemblyTwo
{
public class AssemblyTwoClassOne
{
AssemblyOneClassOne instance = new AssemblyOneClassOne();
instance.Print();//Over here I am getting compile time error, 'instance' does not exist in the current context, 'instance.Print' does not exist in the current context
}
}
As far as I know, public types can be accessed in anywhere in the same assembly as well as in another assembly
Yes, public types can be accessed from another assembly but your method Print() should be called inside a method of class AssemblyTwoClassOne.
Something like this -
namespace AssemblyTwo
{
public class AssemblyTwoClassOne
{
AssemblyOneClassOne instance = new();
public void Method() => instance.Print();
}
}

Deserialize JSON into Derived classes

{
"Class1": {
"Class2": [
{"Name": "DerivedV1"},
{"Name": "DerivedV2"},
{"Name": "DerivedV3"}
]
}
}
JsonConvert.DeserializeObject<Class1>(jsonString, settings);
public class Class1
{
public List<BaseClass> DerivedClasses { get; set; }
}
public abstract BaseClass
{
public string Name { get; set; }
public abstract bool DoSomething;
}
public class DerivedV1 : BaseClass
{
public override bool DoSomething()
{
// Logic here, different for each derived class.
}
}
When trying to deserialize Class1, I can't figure out how to create the list of derived classed from name. I can't declare something like List BaseClass where BaseClass is abstract and I'm not sure how to use reflection during deserialization within Class2 to determine the derived class from the "name" value. I also looked into ICloneable but didn't get anywhere with it in this context.
Edit:
Here is what I ended up creating and calling from get and set
public static List<T> DeserializeJObjectsToObjects<T>(IEnumerable<JObject> jObjects, string typeKey, string nameSpaceOfClass)
{
Assembly assembly = Assembly.GetExecutingAssembly();
List<T> convert = new List<T>();
foreach (var jObject in jObjects)
{
JToken typeName;
jObject.TryGetValue(typeKey, out typeName);
string fullNameSpace = string.Format(namespaceFormat, nameSpaceOfClass, typeName);
Type t = Type.GetType(string.Format(fullNameSpace));
convert.Add((T) Activator.CreateInstance(t));
}
return convert;
}
public static List<JObject> SerializeObjectsToJObjects<T>(IEnumerable<T> variableObjects )
{
List<JObject> convert = new List<JObject>();
foreach (T variableObject in variableObjects)
{
var jsonString = JsonConvert.SerializeObject(variableObject);
convert.Add(JObject.Parse(jsonString));
}
return convert;
}
First, some notes - I don't use JSonConvert, but there are articles that show you how to do this with. See Json.net serialize/deserialize derived types?, for example. However, you didn't include a json.net tag, so I'm assuming this should hopefully help, or at least point you to the right place.
I used the built in .Net JavaScriptSerializer. You may need to adjust this to work with your input. I created my input based on your code, and my json looks nothing like yours. So, you may still have some work left.
I was able to get it working with a SimpleTypeResolver. Code below:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Web.Script.Serialization;
using System.Windows.Forms;
using System.Xml.Serialization;
namespace WindowsFormsApplication6
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
private void button1_Click(object sender, EventArgs e)
{
Class1 oClass = new Class1();
DerivedV1 v1 = new DerivedV1();
v1.Name = "DerivedV1";
oClass.DerivedClasses.Add(v1);
DerivedV2 v2 = new DerivedV2();
v2.Name = "DerivedV2";
oClass.DerivedClasses.Add(v2);
DerivedV3 v3 = new DerivedV3();
v3.Name = "DerivedV3";
oClass.DerivedClasses.Add(v3);
JavaScriptSerializer ser = new JavaScriptSerializer(new SimpleTypeResolver());
string sSer = ser.Serialize(oClass);
var test =ser.Deserialize(sSer,typeof(Class1));
foreach (var tst in ((Class1)test).DerivedClasses)
{
Console.WriteLine(tst.Name + Environment.NewLine);
Console.WriteLine(tst.GetType().ToString() + Environment.NewLine);
}
}
public class Class1
{
public List<BaseClass> DerivedClasses { get; set; }
public Class1()
{
DerivedClasses = new List<BaseClass>();
}
}
public abstract class BaseClass
{
public string Name { get; set; }
private bool _dosom;
public abstract bool DoSomething();
public BaseClass(){}
}
public class DerivedV1 : BaseClass
{
public override bool DoSomething()
{
return true;
// Logic here, different for each derived class.
}
}
public class DerivedV2 : BaseClass
{
public override bool DoSomething()
{
return false;
// Logic here, different for each derived class.
}
}
public class DerivedV3 : BaseClass
{
public override bool DoSomething()
{
return true;
// Logic here, different for each derived class.
}
}
}
}
my output json (with the SimpleTypeResolver):
{"__type":"WindowsFormsApplication6.Form1+Class1, WindowsFormsApplication6, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null","DerivedClasses":[{"__type":"WindowsFormsApplication6.Form1+DerivedV1, WindowsFormsApplication6, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null","Name":"DerivedV1"},{"__type":"WindowsFormsApplication6.Form1+DerivedV2, WindowsFormsApplication6, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null","Name":"DerivedV2"},{"__type":"WindowsFormsApplication6.Form1+DerivedV3, WindowsFormsApplication6, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null","Name":"DerivedV3"}]}
and without the type resolver, for comparison (causes errors):
{"DerivedClasses":[{"Name":"DerivedV1"},{"Name":"DerivedV2"},{"Name":"DerivedV3"}]}
And once I deserialize (in the for loop, Console.WriteLine)...
DerivedV1
WindowsFormsApplication6.Form1+DerivedV1
DerivedV2
WindowsFormsApplication6.Form1+DerivedV2
DerivedV3
WindowsFormsApplication6.Form1+DerivedV3
Using this as my solution.
public static List<T> DeserializeJObjectsToObjects<T>(IEnumerable<JObject> jObjects, string typeKey, string nameSpaceOfClass)
{
Assembly assembly = Assembly.GetExecutingAssembly();
List<T> convert = new List<T>();
foreach (var jObject in jObjects)
{
JToken typeName;
jObject.TryGetValue(typeKey, out typeName);
string fullNameSpace = string.Format(nameSpaceFormat, nameSpaceOfClass, typeName);
Type t = Type.GetType(string.Format(fullNameSpace));
convert.Add((T) Activator.CreateInstance(t));
}
return convert;
}
public static List<JObject> SerializeObjectsToJObjects<T>(IEnumerable<T> variableObjects )
{
List<JObject> convert = new List<JObject>();
foreach (T variableObject in variableObjects)
{
var jsonString = JsonConvert.SerializeObject(variableObject);
convert.Add(JObject.Parse(jsonString));
}
return convert;
}

MEF plugin calling another plugin with same interface

I am trying to make a (my first MEF) system in which plugins can be recursive, i.e. my main system calls a MEF plugin with a standard interface, which on its own can then call another (or several) plugin(s), and so on.
When testing though, my plugin does not call the underlying plugin, but starts processing itself (creating a loop).
Any idea how I can prevent this?
Interface:
public interface IConnector
{
XDocument Run(object serviceCredentials, object connectorIds, object connectorKeys);
}
My main plugin inherits the interface, and defines the import for the next (The subplugin has the same definition):
[Export(typeof(IConnector))]
public class Connector : IConnector
{
[Import(typeof(IConnector))]
private IConnector connector;
....
The called plugin is initiated (in the Run method of the main plugin):
public XDocument Run(object serviceCredentials, object connectorIds, object connectorKeys)
{
string calledConnector = Path.Combine(AssemblyDirectory, "subplugin.dll");
AssemblyCatalog assembyCatalog = new AssemblyCatalog(Assembly.LoadFrom(calledConnector));
CompositionContainer container = new CompositionContainer(assembyCatalog);
container.ComposeParts(this);
....
The container should now contain just one plugin, the subplugin.dll.
I call the method 'Run' which is in the interface to invoke the subplugin method:
XDocument something = connector.Run(serviceCredentials, connectorids, connectorkeys);
But, instead of running the subplugin code, the 'Run' method in my main plugin activates, which keeps activating itself.
When I remove the [Export(typeof(iConnector)] in the main plugin, the subplugin is activated, but I want my main plugin to be able to be called in the same manner.
Being new to MEF I am stuck as to how to solve this. Any help would be much appreciated!
You should use Contracts and specify your intent, otherwise MEF will go into an infinite loop or pick the Connector as it exposes IConnector itself.
Some more info from MSDN.
For example
[Export("Container", typeof(IConnector))]
public class Connector : IConnector
{
[Import("Component", typeof(IConnector))]
private IConnector connector;
....
UPDATE
So after giving it some thought, here is an example of metadata based approach, and one that also limits the number of expensive catalog operations.
The IConnector
using System.Xml.Linq;
namespace Common
{
public interface IConnector
{
XDocument Run(object serviceCredentials, object connectorIds, object connectorKeys);
void Identify();
}
}
The metadata attribute ConnectorMetadata
using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
namespace Common
{
[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class)]
public class ConnectorMetadata : ExportAttribute
{
public string Name { get; private set; }
public ConnectorMetadata(string name):base(typeof(IConnector))
{
Name = name;
}
public ConnectorMetadata(IDictionary<string, object> metaData) : base(typeof (IConnector))
{
Name = Convert.ToString(metaData["Name"]);
}
}
}
The lazy singleton for PluginsCatalog
using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.IO;
using System.Linq;
using System.Reflection;
using Common;
namespace Common
{
public class PluginsCatalog
{
[ImportMany]
public Lazy<IConnector, ConnectorMetadata>[] Connectors;
private static readonly Lazy<PluginsCatalog> LazyInstance = new Lazy<PluginsCatalog>(() => new PluginsCatalog());
private PluginsCatalog()
{
var assemblyCatalog = new AssemblyCatalog(Assembly.GetExecutingAssembly());
var path = Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location) ?? Directory.GetCurrentDirectory();
var directoryCatalog = new DirectoryCatalog(path, "*plugin.dll");
var aggregateCatalog = new AggregateCatalog(assemblyCatalog, directoryCatalog);
var container = new CompositionContainer(aggregateCatalog);
container.SatisfyImportsOnce(this);
}
public static PluginsCatalog Instance { get { return LazyInstance.Value; } }
public IConnector GetConnector(string name)
{
var match = Connectors.SingleOrDefault(s => s.Metadata.Name.Equals(name));
return match == null ? null : match.Value;
}
}
}
The "Primary" IConnector
using System;
using System.Xml.Linq;
using Common;
namespace Common
{
[ConnectorMetadata("Primary")]
public class Connector : IConnector
{
public XDocument Run(object serviceCredentials, object connectorIds, object connectorKeys)
{
PluginsCatalog.Instance.GetConnector("Sub").Identify();
return default(XDocument);
}
public void Identify()
{
Console.WriteLine(GetType().FullName);
}
}
}
The "Sub" IConnector
using System;
using System.Xml.Linq;
using Common;
namespace SubPlugin
{
[ConnectorMetadata("Sub")]
public class SubConnector:IConnector
{
public XDocument Run(object serviceCredentials, object connectorIds, object connectorKeys)
{
return default(XDocument);
}
public void Identify()
{
Console.WriteLine(GetType().FullName);
}
}
}
and finally the program itself:
namespace SOMEF
{
class Program
{
static void Main(string[] args)
{
var connector = PluginsCatalog.Instance.GetConnector("Primary");
connector.Identify();
connector.Run(null, null, null);
}
}
}
Which prints:
SOMEF.Connector
SubPlugin.SubConnector
Hope this helps ... :)
You might want to read this https://msdn.microsoft.com/en-us/library/ee155691(v=vs.110).aspx
With exmplanation how named exports are used
public class MyClass
{
[Import("MajorRevision")]
public int MajorRevision { get; set; }
}
public class MyExportClass
{
[Export("MajorRevision")] //This one will match.
public int MajorRevision = 4;
[Export("MinorRevision")]
public int MinorRevision = 16;
}

Static method of class A is not called from the static constructor of class B

I have the following classes
public class A
{
protected static Dictionary<string,Func<BaseClass>> dict = new Dictionary<string,Func<BaseClass>>();
public static void AddGenerator(string type,Func<BaseClass> fncCreateObject)
{
dict.Add(type,fncCreateObject);
}
}
class B : BaseClass
{
static B()
{
A.AddGenerator("b",CreateObject);
}
protected B()
{}
pulic static B CreateObject()
{
return new B();
}
}
NOTE: The above code is simply an example but very closely relates to the what I'm trying to achieve.
Many people would advice using an IoC container such as NInject or Unity but my main reason for this post if to figure out why the above code does not execute as it is expected to.
So, in the above code, I'm expecting class B's static constructor to call on the static method of class A and an entry should be available in the dictionary for the rest of the application life cycle.
However, when I run the code and debug, I found that the dictionary is empty.
Why is the code invoked from class B's static constructor not executing?
From the documentation:
A static constructor is called automatically to initialize the class before the first instance is created or any static members are referenced.
Clearly, at the point in your code where you inspect the dictionary, no instance has yet been created, and no static members have been referenced.
Not exactly a 1:1 translation, of your sample into MEF, but it should give you a good idea what MEF is capable of:
using System;
using System.Collections.Generic;
namespace ConsoleApplication4
{
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Reflection;
class Program
{
static void Main(string[] args)
{
var assemblyCatalog = new AssemblyCatalog(Assembly.GetExecutingAssembly());
var directoryCatalog = new DirectoryCatalog(".");
var compositeCatalog = new AggregateCatalog(assemblyCatalog, directoryCatalog);
var container = new CompositionContainer(compositeCatalog);
var a = A.Instance;
container.SatisfyImportsOnce(a);
a.PrintCatalog();
}
}
public sealed class A
{
private static readonly A instance = new A();
static A() { }
private A() { }
public static A Instance { get { return instance; } }
[ImportMany]
private List<IBType> BTypes;
public void PrintCatalog()
{
foreach (var bType in BTypes)
{
Console.WriteLine(bType.GetType());
}
}
}
[Export(typeof(IBType))]
class B:IBType
{
static B()
{
}
protected B()
{}
public void DoSomething() { }
}
[Export(typeof(IBType))]
class B2:IBType
{
static B2()
{
}
protected B2()
{}
public void DoSomething() { }
}
interface IBType
{
void DoSomething();
}
}
I've also included the safest implementation of a Singleton pattern known to me. MEF will allow you to source many implementations of the same interface which are resolved dynamically at runtime. I used it also with metadata attributes, like version and name.
But if you need it to work with a base abstract class, check out this article.
The same code as above, but with metadata attributes use sample:
using System;
using System.Collections.Generic;
namespace ConsoleApplication4
{
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Linq;
using System.Reflection;
class Program
{
static void Main(string[] args)
{
var assemblyCatalog = new AssemblyCatalog(Assembly.GetExecutingAssembly());
var directoryCatalog = new DirectoryCatalog(".");
var compositeCatalog = new AggregateCatalog(assemblyCatalog, directoryCatalog);
var container = new CompositionContainer(compositeCatalog);
var a = A.Instance;
container.SatisfyImportsOnce(a);
a.PrintCatalog();
a.BTypes.Single(s=>s.Metadata.Name.Equals("Second")).Value.DoSomething();
}
}
public sealed class A
{
private static readonly A instance = new A();
static A() { }
private A() { }
public static A Instance { get { return instance; } }
[ImportMany]
public List<Lazy<IBType,IBTypeMetadata>> BTypes;
public void PrintCatalog()
{
foreach (var bType in BTypes)
{
Console.WriteLine(bType.Value.GetType());
}
}
}
[Export(typeof(IBType))]
[BTypeMetadata("First")]
class B:IBType
{
static B()
{
}
protected B()
{}
public void DoSomething() { }
}
[Export(typeof(IBType))]
[BTypeMetadata("Second")]
class B2 : IBType
{
static B2()
{
}
protected B2()
{}
public void DoSomething()
{
Console.WriteLine("Hello from Second");
}
}
public interface IBType
{
void DoSomething();
}
public interface IBTypeMetadata
{
string Name { get; }
}
[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
public class BTypeMetadataAttribute : ExportAttribute
{
public string Name { get; set; }
public BTypeMetadataAttribute(string name)
: base(typeof(IBTypeMetadata)) { Name = name; }
}
}
IMHO, MEF might help you as long as your plan is to call some public methods from a particular instance of any of the B-types. In your sample, you simply create new instances of a B-type, and I think there is more to it than what your sample shows.
MEF will create catalogs for you from your currently loaded assembly, as well as any number of assemblies from any number of directories. You can even have it dynamically re-composable, meaning, at runtime, you could potentially retrieve a DLL from a server, and have it added to your catalog without shutting down the application.
MEF is also hierarchical, so your B-types can have their own "catalogs". And to wire it all up, all you have to do is to call SatifyImportsOnce passing an instance of class A.

C# Instantiate Class from String given an Interface

I am trying to make an instance of a class based on a string that will be retrieved from the User Interface, and then I want to access the properties of the instance of the class.
Here is an overview of what I have so far -
namespace MamdaAdapter
{
public interface IExchange
{
string GetTransport();
}
}
namespace MamdaAdapter
{
public class Exchange
{
public class Arca : IExchange
{
private const string _Transport = "tportname";
public string GetTransport()
{
return _Transport;
}
}
public static IExchange DeriveExchange(string ExchangeName)
{
IExchange SelectedExchange = (IExchange)Activator.CreateInstance(Type.GetType(ExchangeName));
return SelectedExchange;
}
}
}
namespace MyUserInterface
{
public class MainForm
{
private void simpleButton1_Click(object sender, EventArgs e)
{
IExchange SelectedExchange = Exchange.DeriveExchange("Exchange.Arca");
Console.WriteLine(SelectedExchange.GetTransport());
}
}
}
UPDATE:
Right now, I'm getting an Exception that says the "Value cannot be null" which to me means that it is unable to create the instance of the class given the string provided -
The problem here is how you specify the name of your class:
First, specify the namespace. Second, since Arca is an inner class you must use '+' instead of '.'
(...) = Exchange.DeriveExchange("MamdaAdapter.Exchange+Arca");
Assuming you UI doesnt expose the full type name, you typically want a dictionary to associate the display name to the type:
Dictionary<string, Type> _associations = new Dictionary<string, Type>();
Then, you simply instantiate the new object:
if(_associations.ContainsKey(someString))
{
Type selectedType = _associations[someString];
return Activator.CreateInstance(selectedType) as IExchange;
}
throw new ApplicationException("No type defined for that string yo");
If the string is not known at compile time, you basically need to check for the existance of the type:
var type = Type.GetType(someString);
if(type != null)
{
// Do Stuff
}
I wrote a small c# console application to simulate your need, tested ok, hope it helps:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MamdaAdapter;
using System.Reflection;
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
IExchange SelectedExchange = Exchange.DeriveExchange("MamdaAdapter.Arca");
Console.WriteLine(SelectedExchange.GetTransport());
}
}
}
namespace MamdaAdapter
{
public interface IExchange
{
string GetTransport();
}
}
namespace MamdaAdapter
{
public class Arca : IExchange
{
private const string _Transport = "tportname";
public string GetTransport()
{
return _Transport;
}
}
}
namespace MamdaAdapter
{
public class Exchange
{
public static IExchange DeriveExchange(string ExchangeName)
{
IExchange SelectedExchange = (IExchange)Assembly.GetAssembly(typeof(IExchange)).CreateInstance(ExchangeName, false, BindingFlags.CreateInstance, null, null, null, null);
return SelectedExchange;
}
}
}
If the Type you are looking for is not defined in the same assembly that is executing Type.GetType you must use the AssemblyQualifiedName (something like MyNamespace.MyClass, MyAssembly, Version=1.3.0.0, Culture=neutral, PublicKeyToken=b17a5c561934e089), even the FullName is not enough. Otherwise you could first get the assembly containing the class and then execute the GetType method of the Assembly class.

Categories