Nondeterministic (random) rounding based on decimal places - c#

I want to do something like this:
return Utils.RandomDouble() < value - Math.Floor(value) : (int)Math.Floor(value) : (int)Math.Ceil(value);
Hard to google it ;) Is there any literature about such kind of rounding mechanism or a name for it?
Just a little background:
We use it for a game where we have health based on integers (hitpoints) but calculate the damages based on doubles to be more exact.

Banker's rounding could be ok, thought it's not random: it just tries to uniformly distribute deviations in case the input is somehwat spread (say a stddev of >1)
However, you're describing
Stochastic Rounding (WikiPedia)
Another unbiased tie-breaking method is stochastic rounding:
If the fractional part of y is .5, choose q randomly among y + 0.5 and y − 0.5, with equal probability.
Like round-half-to-even, this rule is essentially free of overall bias; but it is also fair among even and odd q values. On the other hand, it introduces a random component into the result; performing the same computation twice on the same data may yield two different results. Also, it is open to nonconscious bias if humans (rather than computers or devices of chance) are "randomly" deciding in which direction to round.
Somewhat related: Alternating tie-breaking (can still introduce bias, but lacks the random component)

Related

Cutting corners with float-to-string representation?

I have a float I need to turn into a string with 5 decimals precision (X.XXXXX), which means I need to have at least 6 decimals for round up/down. The issue is that the operation to get integer representation results in a very big number which I cant store (I'd need something like Big Integer but I cant rely on any built-in stuff for compatibility reasons and I wont pretend I understand how to re-invent one, in a fairly simple manner as well). I can pre-emptively limit it:
result = (m * Pow(5, +exp) / Pow(10,8));
but this will only give correct results for a handful of normalized floats like 0.3f, something like 1-E5 or 113.754f (this now has 3 more "leading" digits for the "ceil" part) will be wrong.
Taking into account I need 5 (6) decimals precision max - is there a shortcut I can take?
is there a shortcut I can take?
No and yes.
No in getting the best conversion result. Shortcuts run into the table-maker's dilemma. In short, there will be corner cases that oblige a fair amount of code for float to string conversion. Typically this means doing most of the conversion using integer math. Example.
Yes if code is willing to tolerate some error. This error results from the accumulated rounding of floating point operations. As typical float has 24 bits of binary precision (akin to at least 6 significant decimal digits) the "5 decimals precision (X.XXXXX)," (which is really 6 significant decimal digits) will be hard to obtain without error.
Using wider math can greatly reduces errors (perhaps by a factor of 100s millions), yet not eliminate them.

Computations in C# as accurately as with Windows Calculator

When I do the following double multiplication in C# 100.0 * 1.005 I get 100,49999999999999 as a result. I believe this is because the exact number (or some intermedia result when evaluting the expression) cannot be represented. When I do the same computation in calc.exe I get 100.5 as expected.
Another example is the ninefold incrementation of 0.001 (that is the first time a deviation occurs) so basically 9d * 0.001d = 0,0090000000000000011. When I do the same computation in calc.exe I get 0.009 as expected.
Now one can argue, that I should choose decimal instead. But with decimal I get the problem with other computations for example with ((1M / 3M) * 3M) = 0,9999999999999999999999999999 while calc.exe says 1.
With calc.exe I can divide 1 by 3 several times until some real small number and then multiply with 3 again as many several times and then I reach exacty 1. I therefore suspect, that calc.exe computes internally with fractions, but obviously with real big ones, because it computes
(677605234775492641 / 116759166847407000) + (932737194383944703 / 2451942503795547000)
where the common denominator is -3422539506717149376 (an overflow occured) when doing a long computation, so it must be at least ulong. Does anybody know how computation in calc.exe is implemented? Is this implementation made somewhere public for reuse?
As described here, calc uses an arbitrary-precision engine for its calculations, while double is standard IEEE-754 arithmetic, and decimal is also floating-point arithmetic, just in decimal, which, as you point out, has the same problems, just in another base.
You can try finding such an arbitrary-precision arithmetic library for C# and use it, e.g. this one (no idea whether it's good; was the first result). The one inside calc is not available as an API, so you cannot use it.
Another point is that when you round the result to a certain number of places (less than 15), you'd also get the intuitively "correct" result in a lot of cases. C# already does some rounding to hide the exact value of a double from you (where 0.3 is definitely not exactly 0.3, but probably something like 0.30000000000000004). By reducing the number of digits you display you lessen the occurrence of such very small differences from the correct value.

"Convert.ToInt32" Behave Differently For Odd and Even Numbers [duplicate]

According to the documentation, the decimal.Round method uses a round-to-even algorithm which is not common for most applications. So I always end up writing a custom function to do the more natural round-half-up algorithm:
public static decimal RoundHalfUp(this decimal d, int decimals)
{
if (decimals < 0)
{
throw new ArgumentException("The decimals must be non-negative",
"decimals");
}
decimal multiplier = (decimal)Math.Pow(10, decimals);
decimal number = d * multiplier;
if (decimal.Truncate(number) < number)
{
number += 0.5m;
}
return decimal.Round(number) / multiplier;
}
Does anybody know the reason behind this framework design decision?
Is there any built-in implementation of the round-half-up algorithm into the framework? Or maybe some unmanaged Windows API?
It could be misleading for beginners that simply write decimal.Round(2.5m, 0) expecting 3 as a result but getting 2 instead.
The other answers with reasons why the Banker's algorithm (aka round half to even) is a good choice are quite correct. It does not suffer from negative or positive bias as much as the round half away from zero method over most reasonable distributions.
But the question was why .NET use Banker's actual rounding as default - and the answer is that Microsoft has followed the IEEE 754 standard. This is also mentioned in MSDN for Math.Round under Remarks.
Also note that .NET supports the alternative method specified by IEEE by providing the MidpointRounding enumeration. They could of course have provided more alternatives to solving ties, but they choose to just fulfill the IEEE standard.
Probably because it's a better algorithm. Over the course of many roundings performed, you will average out that all .5's end up rounding equally up and down. This gives better estimations of actual results if you are for instance, adding a bunch of rounded numbers. I would say that even though it isn't what some may expect, it's probably the more correct thing to do.
While I cannot answer the question of "Why did Microsoft's designers choose this as the default?", I just want to point out that an extra function is unnecessary.
Math.Round allows you to specify a MidpointRounding:
ToEven - When a number is halfway between two others, it is rounded toward the nearest even number.
AwayFromZero - When a number is halfway between two others, it is rounded toward the nearest number that is away from zero.
Decimals are mostly used for money; banker’s rounding is common when working with money. Or you could say.
It is mostly bankers that need the
decimal type; therefore it does
“banker’s rounding”
Bankers rounding have the advantage that on average you will get the same result if you:
round a set of “invoice lines” before adding them up,
or add them up then round the total
Rounding before adding up saved a lot of work in the days before computers.
(In the UK when we went decimal banks would not deal with half pence, but for many years there was still a half pence coin and shop often had prices ending in half pence – so lots of rounding)
Use another overload of Round function like this:
decimal.Round(2.5m, 0,MidpointRounding.AwayFromZero)
It will output 3. And if you use
decimal.Round(2.5m, 0,MidpointRounding.ToEven)
you will get banker's rounding.

Bitwise representation of division of floats - how division of floats works

A number can have multiple representations if we use a float, so the results of a division of floats may produce bitwise different floats. But what if the denominator is a power of 2?
AFAIK, dividing by a power of 2 would only shift the exponent, leaving the same mantissa, always producing bitwise identical floats. Is that right?
float a = xxx;
float result = n/1024f; // always the same result?
--- UPDATE ----------------------
Sorry for my lack of knowledge in the IEEE black magic for floating points :) , but I'm talking about those numbers Guvante mentioned: no representation for certain decimal numbers, 'inaccurate' floats. For the rest of this post I'll use 'accurate' and 'inaccurate' considering Guvante's definition of these words.
To simplify, let's say the numerator is always an 'accurate' number. Also, let's divide not by any power of 2, but always for 1024. Additionally, I'm doing the operation the same way every time (same method), so I'm talking about getting the same results in different executions (for the same inputs, sure).
I'm asking all this because I see different numbers coming from the same inputs, so I thought: well if I only use 'accurate' floats as numerators and divide by 1024 I will only shift the exponent, still having an 'accurate' float.
You asked for an example. The real problem is this: I have a simulator producing sometimes 0.02999994 and sometimes 0.03000000 for the same inputs. I thought I could multiply these numbers by 1024, round to get an 'integer' ('accurate' float) that would be the same for those two numbers, and then divide by 1024 to get an 'accurate' rounded float.
I was told (in my other question) that I could convert to decimal, round and cast to float, but I want to know if this way works.
A number can have multiple representations if we use a float
The question appears to be predicated on an incorrect premise; the only number that has multiple representations as a float is zero, which can be represented as either "positive zero" or "negative zero". Other than zero a given number only has one representation as a float, assuming that you are talking about the "double" or "float" types.
Or perhaps I misunderstand. Is the issue that you are referring to the fact that the compiler is permitted to do floating point operations in higher precision than the 32 or 64 bits available for storage? That can cause divisions and multiplications to produce different results in some cases.
Since people often don't fully grasp floating point numbers I will go over some of your points real quick. Each particular combination of bits in a floating point number represent a unique number. However because that number has a base 2 fractional component, there is no representation for certain decimal numbers. For instance 1.1. In those cases you take the closest number. IEEE 754-2008 specifies round to nearest, ties to even in these cases.
The real difficulty is when you combine two of these 'inaccurate' numbers. This can introduce problems as each intermediate step will involve rounding. If you calculate the same value using two different methods, you could come up with subtly different values. Typically this is handled with an epsilon when you want equality.
Now onto your real question, can you divide by a power of two and avoid introducing any additional 'inaccuracies'? Normally you can, however as with all floating point numbers, denormals and other odd cases have their own logic, and obviously if your mantissa overflows you will have difficulty. And again note, that no mathematical errors are introduced during any of this, it is simply math being done with limited percision, which involves intermittent rounding of results.
EDIT: In response to new question
What you are saying could work, but is pretty much equivalent to rounding. Additionally if you are just looking for equality, you should use an episilon as I mentioned earlier (a - b) < e for some small value e (0.0001 would work in your example). If you are looking to print out a pretty number, and the framework you are using isn't doing it to your liking, some rounding would be the most direct way of describing your solution, which is always a plus.

Why can't c# calculate exact values of mathematical functions

Why can't c# do any exact operations.
Math.Pow(Math.Sqrt(2.0),2) == 2.0000000000000004
I know how doubles work, I know where the rounding error is from, I know that it's almost the correct value, and I know that you can't store infinite numbers in a finite double. But why isn't there a way that c# can calculate it exactly, while my calculator can do it.
Edit
It's not about my calculator, I was just giving an example:
http://www.wolframalpha.com/input/?i=Sqrt%282.000000000000000000000000000000000000000000000000000000000000000000000000000000001%29%5E2
Cheers
Chances are your calculator can't do it exactly - but it's probably storing more information than it's displaying, so the error after squaring ends up outside the bounds of what's displayed. Either that, or its errors happen to cancel out in this case - but that's not the same as getting it exactly right in a deliberate way.
Another option is that the calculator is remembering the operations that resulted in the previous results, and applying algebra to cancel out the operations... that seems pretty unlikely though. .NET certainly won't try to do that - it will calculate the intermediate value (the root of two) and then square it.
If you think you can do any better, I suggest you try writing out the square root of two to (say) 50 decimal places, and then square it exactly. See whether you come out with exactly 2...
Your calculator is not calculating it exactly, it just that the rounding error is so small that it's not displayed.
I believe most calculators use binary-coded decimals, which is the equivalent of C#'s decimal type (and thus is entirely accurate). That is, each byte contains two digits of the number and maths is done via logarithms.
What makes you think your calculator can do it? It's almost certainly displaying less digits than it calculates with and you'd get the 'correct' result if you printed out your 2.0000000000000004 with only five fractional digits (for example).
I think you'll probably find that it can't. When I do the square root of 2 and then multiply that by itself, I get 1.999999998.
The square root of 2 is one of those annoying irrational numbers like PI and therefore can't be represented with normal IEEE754 doubles or even decimal types. To represent it exactly, you need a system capable of symbolic math where the value is stored as "the square root of two" so that subsequent calculations can deliver correct results.
The way calculators round up numbers vary from model to model. My TI Voyage 200 does algebra to simplify equations (among other things) but most calculators will display only a portion of the real value calculated, after applying a round function on the result. For example, you may find the square root of 2 and the calculator would store (let's say) 54 decimals, but will only display 12 rounded decimals. Thus when doing a square root of 2, then do a power of that result by 2 would return the same value since the result is rounded. In any case, unless the calculator can keep an infinite number of decimals, you'll always have a best approximate result from complexe operations.
By the way, try to represent 10.0 in binary and you'll realize that you can't represent it evenly and you'll end up with (something like) 10.00000000000..01
Your calculator has methods which recognize and manipulate irrational input values.
For example: 2^(1/2) is likely not evaluated to a number in the calculator if you do not explicitly tell it to do so (as in the ti89/92).
Additionally, the calculator has logic it can use to manipulate them such as x^(1/2) * y^(1/2) = (x*y)^1/2 where it can then wash, rinse, repeat the method for working with irrational values.
If you were to give c# some method to do this, I suppose it could as well. After all, algebraic solvers such as mathematica are not magical.
It has been mentioned before, but I think what you are looking for is a computer algebra system. Examples of these are Maxima and Mathematica, and they are designed solely to provide exact values to mathematical calculations, something not covered by the CPU.
The mathematical routines in languages like C# are designed for numerical calculations: it is expected that if you are doing calculations as a program you will have simplified it already, or you will only need a numerical result.
2.0000000000000004 and 2. are both represented as 10. in single precision. In your case, using single precision for C# should give the exact answer
For your other example, Wolfram Alpha may use higher precision than machine precision for calculation. This adds a big performance penalty. For instance, in Mathematica, going to higher precision makes calculations about 300 times slower
k = 1000000;
vec1 = RandomReal[1, k];
vec2 = SetPrecision[vec1, 20];
AbsoluteTiming[vec1^2;]
AbsoluteTiming[vec2^2;]
It's 0.01 second vs 3 seconds on my machine
You can see the difference in results using single precision and double precision introduced by doing something like the following in Java
public class Bits {
public static void main(String[] args) {
double a1=2.0;
float a2=(float)2.0;
double b1=Math.pow(Math.sqrt(a1),2);
float b2=(float)Math.pow(Math.sqrt(a2),2);
System.out.println(Long.toBinaryString(Double.doubleToRawLongBits(a1)));
System.out.println(Integer.toBinaryString(Float.floatToRawIntBits(a2)));
System.out.println(Long.toBinaryString(Double.doubleToRawLongBits(b1)));
System.out.println(Integer.toBinaryString(Float.floatToRawIntBits(b2)));
}
}
You can see that single precision result is exact, whereas double precision is off by one bit

Categories