I want to use a list as storing actions to a framework while making async operations.
Then later when the framework synchronizes, then I will loop trought the list and perform the actions.
Is there a way to do this, with this in focus:
- No Reflection/DynamicInvoke.
- Not creating classes/structs for each new method to call.
- Type safe.
- store the actions in a list.
- store different kinds of methods and parameters.
- Execute the list later.
The reason I don't want to use reflection, is because it is a performance concern. It is gonna be use very frequently.
In this case, it is game related, but the code can be used as an allround, and would be excellent for multithreading, if reflection/DynamicInvoke could be avoided.
If this is not possible, then are there other nice alternatives?
I've made an example in code, but it uses reflection and isn't type safe.
Basicly the steps are:
1. Populate a list with methods with multiple different parameters.
2. Loop through the list & execute all methods with there parameters.
3. Clear the list for the next cycle.
{
struct MyDelayedCaller
{
public Delegate TheTarget;
public object[] MyParameters;
public MyDelayedCaller(Delegate target, object[] parameters)
{
TheTarget = target;
MyParameters = parameters;
}
}
List<MyDelayedCaller> Temporary = new List<MyDelayedCaller>();
void Update()
{
//something happened and another class needs to know
//but it will have to wait for the sync so as to not cause any treading problems
Temporary.Add(new MyDelayedCaller(new DelDoSomething1(DoSomething1), new object[] { 10, false }));
Temporary.Add(new MyDelayedCaller(new DelDoSomething1(DoSomething1), new object[] { 11, true }));
Temporary.Add(new MyDelayedCaller(new DelDoSomething3(DoSomething3), new object[] { "Some text" }));
Temporary.Add(new MyDelayedCaller(new DelDoSomething2(DoSomething2), new object[] { 1, 9999, 0.4f }));
}
void Sync()
{
foreach (var item in Temporary)
{
item.TheTarget.DynamicInvoke(item.MyParameters);
}
Temporary.Clear();
}
delegate void DelDoSomething1(int index, bool alive);
void DoSomething1(int index, bool alive)
{
}
delegate void DelDoSomething2(int index, int amount, float scale);
void DoSomething2(int index, int amount, float scale)
{
}
delegate void DelDoSomething3(string text);
void DoSomething3(string text)
{
}
}
I hope I understand the question because the answer seems so simple: Just store a List<Action>. You can put whatever you want in there. You can enumerate the list and call everything.
You absolutely can add parameterized calls to such a list: () => DoSomething1(10, false). The parameters are packaged inside of the Action. The C# compiler generates a (strongly-typed) closure class and does all of that for you.
Doesn't this do what you want?
I would go with following:
IMyDelayedCaller interface:
interface IMyDelayedCaller
{
void Invoke();
}
Set of MyDelayedCaller generic classes:
class MyDelayedCaller<T1> : IMyDelayedCaller
{
private Action<T1> _target;
public T1 _param;
public MyDelayedCaller(Action<T1> target, T1 parameter)
{
_target = target;
_param = parameter;
}
public void Invoke()
{
_target(_param);
}
}
class MyDelayedCaller<T1, T2> : IMyDelayedCaller
{
private Action<T1, T2> _target;
public T1 _param1;
public T2 _param2;
public MyDelayedCaller(Action<T1, T2> target, T1 param1, T2 param2)
{
_target = target;
_param1 = param1;
_param2 = param2;
}
public void Invoke()
{
_target(_param1, _param2);
}
}
I only showed for up to 2 parameters, you can make more if you need.
Change your list to List<IMyDelayedCaller>:
List<IMyDelayedCaller> Temporary = new List<IMyDelayedCaller>();
Add items to the list with compile time type safety:
Temporary.Add(new MyDelayedCaller<int, bool>(DoSomething1, 10, true));
Temporary.Add(new MyDelayedCaller<string>(DoSomething3, "Some text"));
Invoke using interface method:
foreach (var item in Temporary)
{
item.Invoke();
}
Temporary.Clear();
You can make stop 4. easier by providing static class which will allow your type parameters be inferred by compiler:
static class MyDelayedCaller
{
public static MyDelayedCaller<T1> Create<T1>(Action<T1> target, T1 param)
{
return new MyDelayedCaller<T1>(target, param1);
}
public static MyDelayedCaller<T1, T2> Create<T1, T2>(Action<T1, T2> target, T1 param1, T2 param2)
{
return new MyDelayedCaller<T1, T2>(target, param1, param2);
}
}
and usage:
Temporary.Add(MyDelayedCaller.Create(DoSomething1, 10, true));
Temporary.Add(MyDelayedCaller.Create(DoSomething3, "Some text"));
You could queue up your inputs and actions in parallel collections:
var actions = new Dictionary<int, Func<object[], object>>();
var inputs = new Dictionary<int, object[]>();
//when you want to store the action and it's input
int counter = 0;
object[] someObjects = new object[] {};
actions.Add(counter, x => { return x[0]; });
inputs.Add(counter, someObjects);
counter++;
//and then later when it's time to execute
foreach (var input in inputs)
{
actions[input.Key].Invoke(input.Value);
}
Alternatively, you could roll a class that stores both the input and the action, so the input is coupled to the action at execution time by something other than a matching dictionary key.
My other answer shows quite complicated way to do that. There is however one much easier. Why don't you make your list List<Action>?
List<Action> Temporary = new List<Action>();
void Update()
{
//something happened and another class needs to know
//but it will have to wait for the sync so as to not cause any treading problems
Temporary.Add(() => DoSomething1(1, true));
Temporary.Add(() => DoSomething3("Some text"));
}
void Sync()
{
foreach (var item in Temporary)
{
item.Invoke();
}
Temporary.Clear();
}
Should work just fine.
#Eli, you're getting 4's as the input value in your for loop because execution of the actions is deferred. When they actually execute, i = 4;
To avoid this, queue up your inputs.
I'd respond to your comment with a comment, but don't have the rep yet.
Related
How do I create a Dictionary where I can store functions?
Thanks.
I have about 30+ functions which can be executed from the user. I want to be able to execute the function this way:
private void functionName(arg1, arg2, arg3)
{
// code
}
dictionaryName.add("doSomething", functionName);
private void interceptCommand(string command)
{
foreach ( var cmd in dictionaryName )
{
if ( cmd.Key.Equals(command) )
{
cmd.Value.Invoke();
}
}
}
However, the function signature is not always the same, thus having different amount of arguments.
Like this:
Dictionary<int, Func<string, bool>>
This allows you to store functions that take a string parameter and return boolean.
dico[5] = foo => foo == "Bar";
Or if the function is not anonymous:
dico[5] = Foo;
where Foo is defined like this:
public bool Foo(string bar)
{
...
}
UPDATE:
After seeing your update it seems that you don't know in advance the signature of the function you would like to invoke. In .NET in order to invoke a function you need to pass all the arguments and if you don't know what the arguments are going to be the only way to achieve this is through reflection.
And here's another alternative:
class Program
{
static void Main()
{
// store
var dico = new Dictionary<int, Delegate>();
dico[1] = new Func<int, int, int>(Func1);
dico[2] = new Func<int, int, int, int>(Func2);
// and later invoke
var res = dico[1].DynamicInvoke(1, 2);
Console.WriteLine(res);
var res2 = dico[2].DynamicInvoke(1, 2, 3);
Console.WriteLine(res2);
}
public static int Func1(int arg1, int arg2)
{
return arg1 + arg2;
}
public static int Func2(int arg1, int arg2, int arg3)
{
return arg1 + arg2 + arg3;
}
}
With this approach you still need to know the number and type of parameters that need to be passed to each function at the corresponding index of the dictionary or you will get runtime error. And if your functions doesn't have return values use System.Action<> instead of System.Func<>.
However, the function signature is not
always the same, thus having different
amount of arguments.
Let's start with a few functions defined like this:
private object Function1() { return null; }
private object Function2(object arg1) { return null; }
private object Function3(object arg1, object arg3) { return null; }
You really have 2 viable options at your disposal:
1) Maintain type-safety by having clients call your function directly.
This is probably the best solution, unless you have very good reasons for breaking from this model.
When you talk about wanting to intercept function calls, it sounds to me like you're trying to re-invent virtual functions. There's a boat load of ways to get this sort of functionality out of the box, such as inheriting from a base class an overriding its functions.
It sounds to me like you want a class that's more of a wrapper than a derived instance of a base class, so do something like this:
public interface IMyObject
{
object Function1();
object Function2(object arg1);
object Function3(object arg1, object arg2);
}
class MyObject : IMyObject
{
public object Function1() { return null; }
public object Function2(object arg1) { return null; }
public object Function3(object arg1, object arg2) { return null; }
}
class MyObjectInterceptor : IMyObject
{
readonly IMyObject MyObject;
public MyObjectInterceptor()
: this(new MyObject())
{
}
public MyObjectInterceptor(IMyObject myObject)
{
MyObject = myObject;
}
public object Function1()
{
Console.WriteLine("Intercepted Function1");
return MyObject.Function1();
}
public object Function2(object arg1)
{
Console.WriteLine("Intercepted Function2");
return MyObject.Function2(arg1);
}
public object Function3(object arg1, object arg2)
{
Console.WriteLine("Intercepted Function3");
return MyObject.Function3(arg1, arg2);
}
}
2) OR map the input of your functions to a common interface.
This might work if all of your functions are related. For example, if you're writing a game, and all the functions do something to some part of the player or player's inventory. You'd end up with something like this:
class Interceptor
{
private object function1() { return null; }
private object function2(object arg1) { return null; }
private object function3(object arg1, object arg3) { return null; }
Dictionary<string, Func<State, object>> functions;
public Interceptor()
{
functions = new Dictionary<string, Func<State, object>>();
functions.Add("function1", state => function1());
functions.Add("function2", state => function2(state.arg1, state.arg2));
functions.Add("function3", state => function3(state.arg1, state.are2, state.arg3));
}
public object Invoke(string key, object state)
{
Func<object, object> func = functions[key];
return func(state);
}
}
Define the dictionary and add the function reference as the value, using System.Action as the type:
using System.Collections;
using System.Collections.Generic;
public class Actions {
public Dictionary<string, System.Action> myActions = new Dictionary<string, System.Action>();
public Actions() {
myActions ["myKey"] = TheFunction;
}
public void TheFunction() {
// your logic here
}
}
Then invoke it with:
Actions.myActions["myKey"]();
Hey, I hope this helps. What language are you coming from?
internal class ForExample
{
void DoItLikeThis()
{
var provider = new StringMethodProvider();
provider.Register("doSomethingAndGetGuid", args => DoSomeActionWithStringToGetGuid((string)args[0]));
provider.Register("thenUseItForSomething", args => DoSomeActionWithAGuid((Guid)args[0],(bool)args[1]));
Guid guid = provider.Intercept<Guid>("doSomethingAndGetGuid", "I don't matter except if I am null");
bool isEmpty = guid == default(Guid);
provider.Intercept("thenUseItForSomething", guid, isEmpty);
}
private void DoSomeActionWithAGuid(Guid id, bool isEmpty)
{
// code
}
private Guid DoSomeActionWithStringToGetGuid(string arg1)
{
if(arg1 == null)
{
return default(Guid);
}
return Guid.NewGuid();
}
}
public class StringMethodProvider
{
private readonly Dictionary<string, Func<object[], object>> _dictionary = new Dictionary<string, Func<object[], object>>();
public void Register<T>(string command, Func<object[],T> function)
{
_dictionary.Add(command, args => function(args));
}
public void Register(string command, Action<object[]> function)
{
_dictionary.Add(command, args =>
{
function.Invoke(args);
return null;
} );
}
public T Intercept<T>(string command, params object[] args)
{
return (T)_dictionary[command].Invoke(args);
}
public void Intercept(string command, params object[] args)
{
_dictionary[command].Invoke(args);
}
}
The following scenario would allow you to use a dictionary of elements to send in as input parameters and get the same as the output parameters.
First add the following line at the top:
using TFunc = System.Func<System.Collections.Generic.IDictionary<string, object>, System.Collections.Generic.IDictionary<string, object>>;
Then inside your class, define the dictionary as follows:
private Dictionary<String, TFunc> actions = new Dictionary<String, TFunc>(){
{"getmultipledata", (input) =>
{
//DO WORKING HERE
return null;
}
},
{"runproc", (input) =>
{
//DO WORKING HERE
return null;
}
}
};
This would allow you to run these anonymous functions with a syntax similar to this:
var output = actions["runproc"](inputparam);
Why not use params object[] list for method parameters and do some validation inside either your methods (or calling logic), It will allow for a variable number of parameters.
LINQ allows to elegantly transform the collection returned by a method to a different collection, i.e.
var x = SomeMethod().Select(t => new { ... });
Now, is there a concise way in C# to transform the return value of a method without introducing an intermediary variable? Declaring and invoking a lambda seems to work but is quite ugly:
var x = new Func<T, object>(t => { return new { ... }; })(SomeMethod());
Am I missing something obvious or is this the best one can do with C# today?
You can apply Select followed by Single to sequence of one item created from the result of calling SomeMethod, as follows:
var x = Enumerable.Repeat(SomeMethod(), 1).Select(r => new {...}).Single();
If you do it a lot, you can make a generic extension method for this:
static class MyExtensions {
public static TRes Transform<TSrc,TRes>(this TSrc src, Func<TSrc,TRes> selector) {
return selector(src);
}
}
Now the syntax becomes very simple:
var res = SomeMethod().Transform(x => new { ... });
I just figured that a generic extension method could fill the gap:
public static class TransformExtension
{
public static T2 Transform<T1, T2>(this T1 t1, Func<T1, T2> transform)
{
return transform(t1);
}
}
Sample usage:
public class A { };
public class B { };
void Foo()
{
var a = new A();
var b = a.Transform(x => new B());
}
Happy to hear why that's possibly a terrible idea.
I have the following scenario
I have a loop which has an Update callback which several objects use CreateDelegate to creat their own delegates and add themselves to it at runtime.
now I want to avoid creating N delegates for N objects so I thought using a multi cast open delegate I can create one delegate
add all instances to it and call it,
How can I do it via reflection
I create the delegate using CreateDelegate from my method info once and then call NewMultiCastDelegate via reflection and send it the list of objects but things go wron when I call invoke with another dummy instance to call it, unprotected memory violation exception is thrown.
How can I do it?
I can not do it without reflection since my objects methods will be known at runtime and anyone with an Update method should be called by this loop manager.
This is for a game engine
UPDATE:
There are two issues with using MulticastDelegate + open instance delegates.
It's not possible to invoke open instance delegates with multiple unrelated types. Take types A and B, each with an Update method. An open instance delegate of A.Update can be invoked with instances of A (or types derived from A), but not with instances of B. That's because A.Update and B.Update are unrelated as far as the .NET runtime is concerned.
Multiple open instance delegates can be combined in a single MulticastDelegate, but this doesn't fit your use case. You want to call the Update method on each instance in a list. Invoking a MulticastDelegate will sequentially call each delegate in its invocation list with the same parameter list. So a MulticastDelegate with multiple open instance delegates could be used to invoke a list of methods on a single instance, but not a single method on a list of instances. Does that make sense?
I assume you're trying to speed up adding a Unity Component to your engine emulator, and that's why you want to stop calling CreateDelegate for each one.
Instead of using a MulticastDelegate, you can achieve a speedup by creating open instance delegates the first time a type is added, then caching those delegates for reuse.
Here's some code along those lines:
public class ComponentEventAggregator
{
public void AddComponent(object component)
{
var typeGroup = this.GetTypeGroup(component.GetType());
typeGroup.AddComponent(component);
}
public void Update()
{
foreach (var typeGroup in this.typeGroupsByType.Values)
{
typeGroup.Update();
}
}
public void RemoveComponent(object component)
{
TypeGroup typeGroup;
if (this.typeGroupsByType.TryGetValue(component.GetType(), out typeGroup))
{
typeGroup.RemoveComponent(component);
}
}
private TypeGroup GetTypeGroup(Type type)
{
TypeGroup typeGroup;
if (!this.typeGroupsByType.TryGetValue(type, out typeGroup))
{
typeGroup = TypeGroup.Create(type);
this.typeGroupsByType[type] = typeGroup;
}
return typeGroup;
}
private abstract class TypeGroup
{
public abstract void Update();
// ... LateUpdate, OnApplicationPause, etc.
public abstract void AddComponent(object component);
public abstract void RemoveComponent(object component);
// Create a TypeGroup<T> for the specified type
public static TypeGroup Create(Type type)
{
var closedDelegatesType = typeof(TypeGroup<>).MakeGenericType(new[] { type });
var typeDelegates = closedDelegatesType.GetConstructor(Type.EmptyTypes).Invoke(new object[0]);
return (TypeGroup)typeDelegates;
}
}
private class TypeGroup<T> : TypeGroup where T : class
{
public TypeGroup()
{
this.update = CreateOpenDelegate("Update");
this.lateUpdate = CreateOpenDelegate("LateUpdate");
this.onApplicationPause = CreateOpenDelegate<bool>("OnApplicationPause");
// ...other Unity events
}
public override void Update()
{
if (this.update != null)
{
foreach (var component in this.components)
{
this.update(component);
}
}
}
public override void AddComponent(object component)
{
var t = component as T;
if (t != null)
{
this.components.Add(t);
}
}
public override void RemoveComponent(object component)
{
var t = component as T;
if (t != null)
{
this.components.Remove(t);
}
}
private static Action<T> CreateOpenDelegate(string functionName)
{
var method = GetMethod(functionName, Type.EmptyTypes);
if (method == null)
{
return null;
}
return (Action<T>)Delegate.CreateDelegate(typeof(Action<T>), method);
}
private static Action<T, TArg1> CreateOpenDelegate<TArg1>(string functionName)
{
var method = GetMethod(functionName, new[] { typeof(TArg1) });
if (method == null)
{
return null;
}
return (Action<T, TArg1>)Delegate.CreateDelegate(typeof(Action<T, TArg1>), method);
}
private static MethodInfo GetMethod(string functionName, Type[] parameterTypes)
{
return typeT.GetMethod(functionName, BindingFlags.Instance | BindingFlags.Public, null, parameterTypes, null);
}
private readonly Action<T> update;
private readonly Action<T> lateUpdate;
private readonly Action<T, bool> onApplicationPause;
private List<T> components = new List<T>();
private static readonly Type typeT = typeof(T);
}
private Dictionary<Type, TypeGroup> typeGroupsByType = new Dictionary<Type, TypeGroup>();
}
This gives a 50X speedup to add a Component compared to Delegate.CreateDelegate on my PC.
Test times with 1 million A and 1 million B instances:
10892ms add closed delegates with CreateDelegate for all Components
11ms Update via the closed delegates
187ms add all Components to the type-based aggregator
30ms Update via the open instance delegates (i.e. Update on aggregator)
The Update method in both A and B increments a private static int.
ORIGINAL:
It sounds like you would be better off exposing a C# event on your loop manager and adding subscriptions that call the Update methods. Alternately all the types with the Update method could implement an IUpdater interface, then you'd send a list of IUpdater instances to the loop manager instead of a list of objects.
Assuming you really do have some other good reason for using reflection...
class Program
{
public class Updater
{
public void AddUpdateListeners(object[] listeners)
{
Func<object, MethodInfo> getUpdateMethod = l =>
l.GetType()
.GetMethod("Update", BindingFlags.Instance | BindingFlags.Public, null, new Type[0], null);
listeners
.Select(listener => new { listener, update = getUpdateMethod(listener) })
.Where(l => l.update != null)
.Select(l => Delegate.CreateDelegate(typeof(UpdateDelegate), l.listener, l.update))
.OfType<UpdateDelegate>()
.ToList()
.ForEach(d => this.updateDel += d);
}
public void PublishCallbacks()
{
var handler = this.updateDel;
if (handler != null)
{
handler();
}
}
private delegate void UpdateDelegate();
private UpdateDelegate updateDel;
}
static void Main(string[] args)
{
var updater = new Updater();
updater.AddUpdateListeners(new object[] { new A(), new B(), });
updater.PublishCallbacks();
}
public class A
{
public void Update()
{
Console.WriteLine("A updated");
}
}
public class B
{
public void Update()
{
Console.WriteLine("B updated");
}
}
}
Is there a well-known way for simulating the variadic template feature in C#?
For instance, I'd like to write a method that takes a lambda with an arbitrary set of parameters. Here is in pseudo code what I'd like to have:
void MyMethod<T1,T2,...,TReturn>(Fun<T1,T2, ..., TReturn> f)
{
}
C# generics are not the same as C++ templates. C++ templates are expanded compiletime and can be used recursively with variadic template arguments. The C++ template expansion is actually Turing Complete, so there is no theoretically limit to what can be done in templates.
C# generics are compiled directly, with an empty "placeholder" for the type that will be used at runtime.
To accept a lambda taking any number of arguments you would either have to generate a lot of overloads (through a code generator) or accept a LambdaExpression.
There is no varadic support for generic type arguments (on either methods or types). You will have to add lots of overloads.
varadic support is only available for arrays, via params, i.e.
void Foo(string key, params int[] values) {...}
Improtantly - how would you even refer to those various T* to write a generic method? Perhaps your best option is to take a Type[] or similar (depending on the context).
I know this is an old question, but if all you want to do is something simple like print those types out, you can do this very easily without Tuple or anything extra using 'dynamic':
private static void PrintTypes(params dynamic[] args)
{
foreach (var arg in args)
{
Console.WriteLine(arg.GetType());
}
}
static void Main(string[] args)
{
PrintTypes(1,1.0,"hello");
Console.ReadKey();
}
Will print "System.Int32" , "System.Double", "System.String"
If you want to perform some action on these things, as far as I know you have two choices. One is to trust the programmer that these types can do a compatible action, for example if you wanted to make a method to Sum any number of parameters. You could write a method like the following saying how you want to receive the result and the only prerequisite I guess would be that the + operation works between these types:
private static void AddToFirst<T>(ref T first, params dynamic[] args)
{
foreach (var arg in args)
{
first += arg;
}
}
static void Main(string[] args)
{
int x = 0;
AddToFirst(ref x,1,1.5,2.0,3.5,2);
Console.WriteLine(x);
double y = 0;
AddToFirst(ref y, 1, 1.5, 2.0, 3.5, 2);
Console.WriteLine(y);
Console.ReadKey();
}
With this, the output for the first line would be "9" because adding to an int, and the second line would be "10" because the .5s didn't get rounded, adding as a double. The problem with this code is if you pass some incompatible type in the list, it will have an error because the types can't get added together, and you won't see that error at compile time, only at runtime.
So, depending on your use case there might be another option which is why I said there were two choices at first. Assuming you know the choices for the possible types, you could make an interface or abstract class and make all of those types implement the interface. For example, the following. Sorry this is a bit crazy. And it can probably be simplfied.
public interface Applyable<T>
{
void Apply(T input);
T GetValue();
}
public abstract class Convertable<T>
{
public dynamic value { get; set; }
public Convertable(dynamic value)
{
this.value = value;
}
public abstract T GetConvertedValue();
}
public class IntableInt : Convertable<int>, Applyable<int>
{
public IntableInt(int value) : base(value) {}
public override int GetConvertedValue()
{
return value;
}
public void Apply(int input)
{
value += input;
}
public int GetValue()
{
return value;
}
}
public class IntableDouble : Convertable<int>
{
public IntableDouble(double value) : base(value) {}
public override int GetConvertedValue()
{
return (int) value;
}
}
public class IntableString : Convertable<int>
{
public IntableString(string value) : base(value) {}
public override int GetConvertedValue()
{
// If it can't be parsed return zero
int result;
return int.TryParse(value, out result) ? result : 0;
}
}
private static void ApplyToFirst<TResult>(ref Applyable<TResult> first, params Convertable<TResult>[] args)
{
foreach (var arg in args)
{
first.Apply(arg.GetConvertedValue());
}
}
static void Main(string[] args)
{
Applyable<int> result = new IntableInt(0);
IntableInt myInt = new IntableInt(1);
IntableDouble myDouble1 = new IntableDouble(1.5);
IntableDouble myDouble2 = new IntableDouble(2.0);
IntableDouble myDouble3 = new IntableDouble(3.5);
IntableString myString = new IntableString("2");
ApplyToFirst(ref result, myInt, myDouble1, myDouble2, myDouble3, myString);
Console.WriteLine(result.GetValue());
Console.ReadKey();
}
Will output "9" the same as the original Int code, except the only values you can actually pass in as parameters are things that you actually have defined and you know will work and not cause any errors. Of course, you would have to make new classes i.e. DoubleableInt , DoubleableString, etc.. in order to re-create the 2nd result of 10. But this is just an example, so you wouldn't even be trying to add things at all depending on what code you are writing and you would just start out with the implementation that served you the best.
Hopefully someone can improve on what I wrote here or use it to see how this can be done in C#.
Another alternative besides those mentioned above is to use Tuple<,> and reflection, for example:
class PrintVariadic<T>
{
public T Value { get; set; }
public void Print()
{
InnerPrint(Value);
}
static void InnerPrint<Tn>(Tn t)
{
var type = t.GetType();
if (type.IsGenericType && type.GetGenericTypeDefinition() == typeof(Tuple<,>))
{
var i1 = type.GetProperty("Item1").GetValue(t, new object[]{});
var i2 = type.GetProperty("Item2").GetValue(t, new object[]{ });
InnerPrint(i1);
InnerPrint(i2);
return;
}
Console.WriteLine(t.GetType());
}
}
class Program
{
static void Main(string[] args)
{
var v = new PrintVariadic<Tuple<
int, Tuple<
string, Tuple<
double,
long>>>>();
v.Value = Tuple.Create(
1, Tuple.Create(
"s", Tuple.Create(
4.0,
4L)));
v.Print();
Console.ReadKey();
}
}
I don't necessarily know if there's a name for this pattern, but I arrived at the following formulation for a recursive generic interface that allows an unlimited amount of values to be passed in, with the returned type retaining type information for all passed values.
public interface ITraversalRoot<TRoot>
{
ITraversalSpecification<TRoot> Specify();
}
public interface ITraverser<TRoot, TCurrent>: ITraversalRoot<TRoot>
{
IDerivedTraverser<TRoot, TInclude, TCurrent, ITraverser<TRoot, TCurrent>> AndInclude<TInclude>(Expression<Func<TCurrent, TInclude>> path);
}
public interface IDerivedTraverser<TRoot, TDerived, TParent, out TParentTraverser> : ITraverser<TRoot, TParent>
{
IDerivedTraverser<TRoot, TInclude, TDerived, IDerivedTraverser<TRoot, TDerived, TParent, TParentTraverser>> FromWhichInclude<TInclude>(Expression<Func<TDerived, TInclude>> path);
TParentTraverser ThenBackToParent();
}
There's no casting or "cheating" of the type system involved here: you can keep stacking on more values and the inferred return type keeps storing more and more information. Here is what the usage looks like:
var spec = Traversal
.StartFrom<VirtualMachine>() // ITraverser<VirtualMachine, VirtualMachine>
.AndInclude(vm => vm.EnvironmentBrowser) // IDerivedTraverser<VirtualMachine, EnvironmentBrowser, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>
.AndInclude(vm => vm.Datastore) // IDerivedTraverser<VirtualMachine, Datastore, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>
.FromWhichInclude(ds => ds.Browser) // IDerivedTraverser<VirtualMachine, HostDatastoreBrowser, Datastore, IDerivedTraverser<VirtualMachine, Datastore, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>>
.FromWhichInclude(br => br.Mountpoints) // IDerivedTraverser<VirtualMachine, Mountpoint, HostDatastoreBrowser, IDerivedTraverser<VirtualMachine, HostDatastoreBrowser, Datastore, IDerivedTraverser<VirtualMachine, Datastore, VirtualMachine, ITraverser<VirtualMachine, VirtualMachine>>>>
.Specify(); // ITraversalSpecification<VirtualMachine>
As you can see the type signature becomes basically unreadable near after a few chained calls, but this is fine so long as type inference works and suggests the right type to the user.
In my example I am dealing with Funcs arguments, but you could presumably adapt this code to deal with arguments of arbitrary type.
For a simulation you can say:
void MyMethod<TSource, TResult>(Func<TSource, TResult> f) where TSource : Tparams {
where Tparams to be a variadic arguments implementation class. However, the framework does not provide an out-of-box stuff to do that, Action, Func, Tuple, etc., are all have limited length of their signatures. The only thing I can think of is to apply the CRTP .. in a way I've not find somebody blogged. Here's my implementation:
*: Thank #SLaks for mentioning Tuple<T1, ..., T7, TRest> also works in a recursive way. I noticed it's recursive on the constructor and the factory method instead of its class definition; and do a runtime type checking of the last argument of type TRest is required to be a ITupleInternal; and this works a bit differently.
Code
using System;
namespace VariadicGenerics {
public interface INode {
INode Next {
get;
}
}
public interface INode<R>:INode {
R Value {
get; set;
}
}
public abstract class Tparams {
public static C<TValue> V<TValue>(TValue x) {
return new T<TValue>(x);
}
}
public class T<P>:C<P> {
public T(P x) : base(x) {
}
}
public abstract class C<R>:Tparams, INode<R> {
public class T<P>:C<T<P>>, INode<P> {
public T(C<R> node, P x) {
if(node is R) {
Next=(R)(node as object);
}
else {
Next=(node as INode<R>).Value;
}
Value=x;
}
public T() {
if(Extensions.TypeIs(typeof(R), typeof(C<>.T<>))) {
Next=(R)Activator.CreateInstance(typeof(R));
}
}
public R Next {
private set;
get;
}
public P Value {
get; set;
}
INode INode.Next {
get {
return this.Next as INode;
}
}
}
public new T<TValue> V<TValue>(TValue x) {
return new T<TValue>(this, x);
}
public int GetLength() {
return m_expandedArguments.Length;
}
public C(R x) {
(this as INode<R>).Value=x;
}
C() {
}
static C() {
m_expandedArguments=Extensions.GetExpandedGenericArguments(typeof(R));
}
// demonstration of non-recursive traversal
public INode this[int index] {
get {
var count = m_expandedArguments.Length;
for(INode node = this; null!=node; node=node.Next) {
if(--count==index) {
return node;
}
}
throw new ArgumentOutOfRangeException("index");
}
}
R INode<R>.Value {
get; set;
}
INode INode.Next {
get {
return null;
}
}
static readonly Type[] m_expandedArguments;
}
}
Note the type parameter for the inherited class C<> in the declaration of
public class T<P>:C<T<P>>, INode<P> {
is T<P>, and the class T<P> is nested so that you can do some crazy things such as:
Test
[Microsoft.VisualStudio.TestTools.UnitTesting.TestClass]
public class TestClass {
void MyMethod<TSource, TResult>(Func<TSource, TResult> f) where TSource : Tparams {
T<byte>.T<char>.T<uint>.T<long>.
T<byte>.T<char>.T<long>.T<uint>.
T<byte>.T<long>.T<char>.T<uint>.
T<long>.T<byte>.T<char>.T<uint>.
T<long>.T<byte>.T<uint>.T<char>.
T<byte>.T<long>.T<uint>.T<char>.
T<byte>.T<uint>.T<long>.T<char>.
T<byte>.T<uint>.T<char>.T<long>.
T<uint>.T<byte>.T<char>.T<long>.
T<uint>.T<byte>.T<long>.T<char>.
T<uint>.T<long>.T<byte>.T<char>.
T<long>.T<uint>.T<byte>.T<char>.
T<long>.T<uint>.T<char>.T<byte>.
T<uint>.T<long>.T<char>.T<byte>.
T<uint>.T<char>.T<long>.T<byte>.
T<uint>.T<char>.T<byte>.T<long>.
T<char>.T<uint>.T<byte>.T<long>.
T<char>.T<uint>.T<long>.T<byte>.
T<char>.T<long>.T<uint>.T<byte>.
T<long>.T<char>.T<uint>.T<byte>.
T<long>.T<char>.T<byte>.T<uint>.
T<char>.T<long>.T<byte>.T<uint>.
T<char>.T<byte>.T<long>.T<uint>.
T<char>.T<byte>.T<uint>.T<long>
crazy = Tparams
// trying to change any value to not match the
// declaring type makes the compilation fail
.V((byte)1).V('2').V(4u).V(8L)
.V((byte)1).V('2').V(8L).V(4u)
.V((byte)1).V(8L).V('2').V(4u)
.V(8L).V((byte)1).V('2').V(4u)
.V(8L).V((byte)1).V(4u).V('2')
.V((byte)1).V(8L).V(4u).V('2')
.V((byte)1).V(4u).V(8L).V('2')
.V((byte)1).V(4u).V('2').V(8L)
.V(4u).V((byte)1).V('2').V(8L)
.V(4u).V((byte)1).V(8L).V('2')
.V(4u).V(8L).V((byte)1).V('2')
.V(8L).V(4u).V((byte)1).V('2')
.V(8L).V(4u).V('9').V((byte)1)
.V(4u).V(8L).V('2').V((byte)1)
.V(4u).V('2').V(8L).V((byte)1)
.V(4u).V('2').V((byte)1).V(8L)
.V('2').V(4u).V((byte)1).V(8L)
.V('2').V(4u).V(8L).V((byte)1)
.V('2').V(8L).V(4u).V((byte)1)
.V(8L).V('2').V(4u).V((byte)1)
.V(8L).V('2').V((byte)1).V(4u)
.V('2').V(8L).V((byte)1).V(4u)
.V('2').V((byte)1).V(8L).V(4u)
.V('7').V((byte)1).V(4u).V(8L);
var args = crazy as TSource;
if(null!=args) {
f(args);
}
}
[TestMethod]
public void TestMethod() {
Func<
T<byte>.T<char>.T<uint>.T<long>.
T<byte>.T<char>.T<long>.T<uint>.
T<byte>.T<long>.T<char>.T<uint>.
T<long>.T<byte>.T<char>.T<uint>.
T<long>.T<byte>.T<uint>.T<char>.
T<byte>.T<long>.T<uint>.T<char>.
T<byte>.T<uint>.T<long>.T<char>.
T<byte>.T<uint>.T<char>.T<long>.
T<uint>.T<byte>.T<char>.T<long>.
T<uint>.T<byte>.T<long>.T<char>.
T<uint>.T<long>.T<byte>.T<char>.
T<long>.T<uint>.T<byte>.T<char>.
T<long>.T<uint>.T<char>.T<byte>.
T<uint>.T<long>.T<char>.T<byte>.
T<uint>.T<char>.T<long>.T<byte>.
T<uint>.T<char>.T<byte>.T<long>.
T<char>.T<uint>.T<byte>.T<long>.
T<char>.T<uint>.T<long>.T<byte>.
T<char>.T<long>.T<uint>.T<byte>.
T<long>.T<char>.T<uint>.T<byte>.
T<long>.T<char>.T<byte>.T<uint>.
T<char>.T<long>.T<byte>.T<uint>.
T<char>.T<byte>.T<long>.T<uint>.
T<char>.T<byte>.T<uint>.T<long>, String>
f = args => {
Debug.WriteLine(String.Format("Length={0}", args.GetLength()));
// print fourth value from the last
Debug.WriteLine(String.Format("value={0}", args.Next.Next.Next.Value));
args.Next.Next.Next.Value='x';
Debug.WriteLine(String.Format("value={0}", args.Next.Next.Next.Value));
return "test";
};
MyMethod(f);
}
}
Another thing to note is we have two classes named T, the non-nested T:
public class T<P>:C<P> {
is just for the consistency of usage, and I made class C abstract to not directly being newed.
The Code part above needs to expand ther generic argument to calculate about their length, here are two extension methods it used:
Code(extensions)
using System.Diagnostics;
using System;
namespace VariadicGenerics {
[DebuggerStepThrough]
public static class Extensions {
public static readonly Type VariadicType = typeof(C<>.T<>);
public static bool TypeIs(this Type x, Type d) {
if(null==d) {
return false;
}
for(var c = x; null!=c; c=c.BaseType) {
var a = c.GetInterfaces();
for(var i = a.Length; i-->=0;) {
var t = i<0 ? c : a[i];
if(t==d||t.IsGenericType&&t.GetGenericTypeDefinition()==d) {
return true;
}
}
}
return false;
}
public static Type[] GetExpandedGenericArguments(this Type t) {
var expanded = new Type[] { };
for(var skip = 1; t.TypeIs(VariadicType) ? true : skip-->0;) {
var args = skip>0 ? t.GetGenericArguments() : new[] { t };
if(args.Length>0) {
var length = args.Length-skip;
var temp = new Type[length+expanded.Length];
Array.Copy(args, skip, temp, 0, length);
Array.Copy(expanded, 0, temp, length, expanded.Length);
expanded=temp;
t=args[0];
}
}
return expanded;
}
}
}
For this implementation, I choosed not to break the compile-time type checking, so we do not have a constructor or a factory with the signature like params object[] to provide values; instead, use a fluent pattern of method V for mass object instantiation to keep type can be statically type checked as much as possible.
How do I create a Dictionary where I can store functions?
Thanks.
I have about 30+ functions which can be executed from the user. I want to be able to execute the function this way:
private void functionName(arg1, arg2, arg3)
{
// code
}
dictionaryName.add("doSomething", functionName);
private void interceptCommand(string command)
{
foreach ( var cmd in dictionaryName )
{
if ( cmd.Key.Equals(command) )
{
cmd.Value.Invoke();
}
}
}
However, the function signature is not always the same, thus having different amount of arguments.
Like this:
Dictionary<int, Func<string, bool>>
This allows you to store functions that take a string parameter and return boolean.
dico[5] = foo => foo == "Bar";
Or if the function is not anonymous:
dico[5] = Foo;
where Foo is defined like this:
public bool Foo(string bar)
{
...
}
UPDATE:
After seeing your update it seems that you don't know in advance the signature of the function you would like to invoke. In .NET in order to invoke a function you need to pass all the arguments and if you don't know what the arguments are going to be the only way to achieve this is through reflection.
And here's another alternative:
class Program
{
static void Main()
{
// store
var dico = new Dictionary<int, Delegate>();
dico[1] = new Func<int, int, int>(Func1);
dico[2] = new Func<int, int, int, int>(Func2);
// and later invoke
var res = dico[1].DynamicInvoke(1, 2);
Console.WriteLine(res);
var res2 = dico[2].DynamicInvoke(1, 2, 3);
Console.WriteLine(res2);
}
public static int Func1(int arg1, int arg2)
{
return arg1 + arg2;
}
public static int Func2(int arg1, int arg2, int arg3)
{
return arg1 + arg2 + arg3;
}
}
With this approach you still need to know the number and type of parameters that need to be passed to each function at the corresponding index of the dictionary or you will get runtime error. And if your functions doesn't have return values use System.Action<> instead of System.Func<>.
However, the function signature is not
always the same, thus having different
amount of arguments.
Let's start with a few functions defined like this:
private object Function1() { return null; }
private object Function2(object arg1) { return null; }
private object Function3(object arg1, object arg3) { return null; }
You really have 2 viable options at your disposal:
1) Maintain type-safety by having clients call your function directly.
This is probably the best solution, unless you have very good reasons for breaking from this model.
When you talk about wanting to intercept function calls, it sounds to me like you're trying to re-invent virtual functions. There's a boat load of ways to get this sort of functionality out of the box, such as inheriting from a base class an overriding its functions.
It sounds to me like you want a class that's more of a wrapper than a derived instance of a base class, so do something like this:
public interface IMyObject
{
object Function1();
object Function2(object arg1);
object Function3(object arg1, object arg2);
}
class MyObject : IMyObject
{
public object Function1() { return null; }
public object Function2(object arg1) { return null; }
public object Function3(object arg1, object arg2) { return null; }
}
class MyObjectInterceptor : IMyObject
{
readonly IMyObject MyObject;
public MyObjectInterceptor()
: this(new MyObject())
{
}
public MyObjectInterceptor(IMyObject myObject)
{
MyObject = myObject;
}
public object Function1()
{
Console.WriteLine("Intercepted Function1");
return MyObject.Function1();
}
public object Function2(object arg1)
{
Console.WriteLine("Intercepted Function2");
return MyObject.Function2(arg1);
}
public object Function3(object arg1, object arg2)
{
Console.WriteLine("Intercepted Function3");
return MyObject.Function3(arg1, arg2);
}
}
2) OR map the input of your functions to a common interface.
This might work if all of your functions are related. For example, if you're writing a game, and all the functions do something to some part of the player or player's inventory. You'd end up with something like this:
class Interceptor
{
private object function1() { return null; }
private object function2(object arg1) { return null; }
private object function3(object arg1, object arg3) { return null; }
Dictionary<string, Func<State, object>> functions;
public Interceptor()
{
functions = new Dictionary<string, Func<State, object>>();
functions.Add("function1", state => function1());
functions.Add("function2", state => function2(state.arg1, state.arg2));
functions.Add("function3", state => function3(state.arg1, state.are2, state.arg3));
}
public object Invoke(string key, object state)
{
Func<object, object> func = functions[key];
return func(state);
}
}
Define the dictionary and add the function reference as the value, using System.Action as the type:
using System.Collections;
using System.Collections.Generic;
public class Actions {
public Dictionary<string, System.Action> myActions = new Dictionary<string, System.Action>();
public Actions() {
myActions ["myKey"] = TheFunction;
}
public void TheFunction() {
// your logic here
}
}
Then invoke it with:
Actions.myActions["myKey"]();
Hey, I hope this helps. What language are you coming from?
internal class ForExample
{
void DoItLikeThis()
{
var provider = new StringMethodProvider();
provider.Register("doSomethingAndGetGuid", args => DoSomeActionWithStringToGetGuid((string)args[0]));
provider.Register("thenUseItForSomething", args => DoSomeActionWithAGuid((Guid)args[0],(bool)args[1]));
Guid guid = provider.Intercept<Guid>("doSomethingAndGetGuid", "I don't matter except if I am null");
bool isEmpty = guid == default(Guid);
provider.Intercept("thenUseItForSomething", guid, isEmpty);
}
private void DoSomeActionWithAGuid(Guid id, bool isEmpty)
{
// code
}
private Guid DoSomeActionWithStringToGetGuid(string arg1)
{
if(arg1 == null)
{
return default(Guid);
}
return Guid.NewGuid();
}
}
public class StringMethodProvider
{
private readonly Dictionary<string, Func<object[], object>> _dictionary = new Dictionary<string, Func<object[], object>>();
public void Register<T>(string command, Func<object[],T> function)
{
_dictionary.Add(command, args => function(args));
}
public void Register(string command, Action<object[]> function)
{
_dictionary.Add(command, args =>
{
function.Invoke(args);
return null;
} );
}
public T Intercept<T>(string command, params object[] args)
{
return (T)_dictionary[command].Invoke(args);
}
public void Intercept(string command, params object[] args)
{
_dictionary[command].Invoke(args);
}
}
The following scenario would allow you to use a dictionary of elements to send in as input parameters and get the same as the output parameters.
First add the following line at the top:
using TFunc = System.Func<System.Collections.Generic.IDictionary<string, object>, System.Collections.Generic.IDictionary<string, object>>;
Then inside your class, define the dictionary as follows:
private Dictionary<String, TFunc> actions = new Dictionary<String, TFunc>(){
{"getmultipledata", (input) =>
{
//DO WORKING HERE
return null;
}
},
{"runproc", (input) =>
{
//DO WORKING HERE
return null;
}
}
};
This would allow you to run these anonymous functions with a syntax similar to this:
var output = actions["runproc"](inputparam);
Why not use params object[] list for method parameters and do some validation inside either your methods (or calling logic), It will allow for a variable number of parameters.