I have a Dictionary that contains items and prices. The items are unique but slowly get added and updated through the lifetime of the application (that is, I don't know the item strings in advance). I would like to bind this structure to a DataGridView, so I can show updates on my Form, something like:
Dictionary<string, double> _priceData = new Dictionary<string, double>();
BindingSource _bindingSource = new BindingSource();
dataGridView1.DataSource = _bindingSource;
_bindingSource.DataSource = _priceData;
But cannot, since Dictionary does not implement IList (or IListSource, IBindingList, or IBindingListView).
Is there a way to achieve this? I need to keep a unique list of items, but also update the price for an existing item, so a Dictionary is the ideal data structure I think, but I cannot find a way to display the data on my Form.
Update:
Marc's suggestion below works very nicely, but I'm still not sure how to update the DataGridView during execution.
I have a class-level variable:
private DictionaryBindingList<string, decimal> bList;
Then instantiate that in Main():
bList = new DictionaryBindingList<string,decimal>(prices);
dgv.DataSource = bList;
Then during program execution if a new entry is added to the dictionary:
prices.Add("foobar", 234.56M); bList.ResetBindings();
I thought that would refresh the DataGridView. Why not?
Or, in LINQ, it's nice and quick:
var _priceDataArray = from row in _priceData select new { Item = row.Key, Price = row.Value };
That should then be bindable, to the columns 'Item' and 'Price'.
To use it as a data source in a grid view, you just have to follow it with ToArray().
dataGridView1.DataSource = _priceDataArray.ToArray();
There are a couple of issues with Dictionary; the first is (as you've found) it doesn't implement the necessary IList/IListSource. The second is that there is no guaranteed order to the items (and indeed, no indexer), making random access by index (rather than by key) impossible.
However... it is probably doable with some some smoke and mirrors; something like below:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Windows.Forms;
static class Program
{
[STAThread]
static void Main()
{
Dictionary<string, decimal> prices =
new Dictionary<string, decimal>();
prices.Add("foo", 123.45M);
prices.Add("bar", 678.90M);
Application.EnableVisualStyles();
Form form = new Form();
DataGridView dgv = new DataGridView();
dgv.Dock = DockStyle.Fill;
form.Controls.Add(dgv);
var bl = prices.ToBindingList();
dgv.DataSource = bl;
Button btn = new Button();
btn.Dock = DockStyle.Bottom;
btn.Click += delegate
{
prices.Add(new Random().Next().ToString(), 0.1M);
bl.Reset();
};
form.Controls.Add(btn);
Application.Run(form);
}
public static DictionaryBindingList<TKey, TValue>
ToBindingList<TKey, TValue>(this IDictionary<TKey, TValue> data)
{
return new DictionaryBindingList<TKey, TValue>(data);
}
public sealed class Pair<TKey, TValue>
{
private readonly TKey key;
private readonly IDictionary<TKey, TValue> data;
public Pair(TKey key, IDictionary<TKey, TValue> data)
{
this.key = key;
this.data = data;
}
public TKey Key { get { return key; } }
public TValue Value
{
get
{
TValue value;
data.TryGetValue(key, out value);
return value;
}
set { data[key] = value; }
}
}
public class DictionaryBindingList<TKey, TValue>
: BindingList<Pair<TKey, TValue>>
{
private readonly IDictionary<TKey, TValue> data;
public DictionaryBindingList(IDictionary<TKey, TValue> data)
{
this.data = data;
Reset();
}
public void Reset()
{
bool oldRaise = RaiseListChangedEvents;
RaiseListChangedEvents = false;
try
{
Clear();
foreach (TKey key in data.Keys)
{
Add(new Pair<TKey, TValue>(key, data));
}
}
finally
{
RaiseListChangedEvents = oldRaise;
ResetBindings();
}
}
}
}
Note that the use of a custom extension method is entirely optional, and can be removed in C# 2.0, etc. by just using new DictionaryBindingList<string,decimal>(prices) instead.
Probably this is easiest way:
Dictionary<char, double> myList = new Dictionary<char, double>();
dataGridView1.Columns.Add("Key", "KEY");
dataGridView1.Columns.Add("Values", "VALUES");
foreach (KeyValuePair<char,double> item in , myList)
{
dataGridView1.Rows.Add(item.Key, item.Value);
}
If use this you datagridview shall be sortable.
i thing this will resolve your problem which i faced few months ago.
use dictionay as you want to update item prices and just when u finish updation and want to show in datagrid just do this. hope will help you
Grd.DataSource=null;
Grd.DataSource = Dictionary.Values.ToList();
For Dictionary<TKey, TValue> you can use these keywords for binding: Key and Value.
Here is example for ComboBox Binding, but it's possible to bind dictionary to DataGridView (set DataPropertyName for column to Key or Value).
ComboBox1.DataSource =
new BindingSource(Pricelevel.GetPricelevels(), null); // GetPricelevels() returns Dictionary<string, string>
ComboBox1.ValueMember = "Key";
ComboBox1.DisplayMember = "Value";
Make a class like so:
class MyRow
{
public string key;
public double value;
public string Key {get {return key;}}
public string Value {get {return value;}}
}
Then make a list of them:
List<MyRow> rows = new List<MyRow>();
Then insert them into that list, and databind to the list.
As an aside, if you've got LINQ, I think there's a ToArray method that'll simplify all this...
As an extension to Marc's suggestion, I would like to propose the following solution that will also allow run-time manipulation of the dictionary:
public class DictionaryBindingList<TKey, TValue> : BindingList<KeyValuePair<TKey, TValue>>
{
public readonly IDictionary<TKey, TValue> Dictionary;
public DictionaryBindingList()
{
Dictionary = new Dictionary<TKey, TValue>();
}
public void Add(TKey key, TValue value)
{
base.Add(new KeyValuePair<TKey, TValue>(key, value));
}
public void Remove(TKey key)
{
var item = this.First(x => x.Key.Equals(key));
base.Remove(item);
}
protected override void InsertItem(int index, KeyValuePair<TKey, TValue> item)
{
Dictionary.Add(item.Key, item.Value);
base.InsertItem(index, item);
}
protected override void RemoveItem(int index)
{
Dictionary.Remove(this[index].Key);
base.RemoveItem(index);
}
public int IndexOf(TKey key)
{
var item = this.FirstOrDefault(x => x.Key.Equals(key));
return item.Equals(null) ? -1 : base.IndexOf(item);
}
}
As an extension of Bleiers DictionaryBindingList I made a small alteration to allow Add values to overwrite existing values.
I'm using the method with a WAMP websocket so it would allow me to keep values updated just by updating the collection, next I need to tie events onto the values.
public void Add(TKey key, TValue value)
{
if (Dictionary.ContainsKey(key))
{
int position = IndexOf(key);
Dictionary.Remove(key);
Remove(key);
InsertItem(position, new KeyValuePair<TKey, TValue>(key, value));
return;
}
base.Add(new KeyValuePair<TKey, TValue>(key, value));
}
Is there an easy way to add value to a nested dictionary. I am looking for a way to replace the following type of code with an easy one.
if (NestedDictionary.ContainsKey(key1))
{
if (NestedDictionary[key1].ContainsKey(key2))
{
if (NestedDictionary[key1][key2].ContainsKey(key3))
{
//do nothing
}
else
{
NestedDictionary[key1][key2].Add(key3,1);
}
}
else
{
NestedDictionary[key1].Add(key2, new Dictionary<int,int>() { { key3, 1 } });
}
}
else
{
NestedDictionary.Add(key1, new Dictionary<int, Dictionary<int,int>>() { { key2, new Dictionary<int,int>() { { key3, 1} } } });
}
We can write a GetOrAdd method that either gets the value for a particular key if it's there, or assigns a new value if there is none:
public static TValue GetOrAdd<TKey, TValue>(
this Dictionary<TKey, TValue> dictionary,
TKey key,
TValue newValue)
{
TValue oldValue;
if (dictionary.TryGetValue(key, out oldValue))
return oldValue;
else
{
dictionary.Add(key, newValue);
return newValue;
}
}
(Note you can create a second overload that accepts a Func<TValue> instead of a TValue, which is useful if the value is either expensive to create or causes side effects.)
Now this problem becomes very easy:
var dictionary = new Dictionary<int, Dictionary<int, string>>();
dictionary.GetOrAdd(key1, new Dictionary<int, string>())[key2] = value;
We get the inner dictionary for the outer key, or create a new blank one if it doesn't exist, and then we assign the new value to the dictionary returned. Note that the indexer will add an item if it doesn't exist or update the item if it already does.
This of course scales reasonably well as we add dimensions as well:
var dictionary = new Dictionary<int, Dictionary<int, Dictionary<int, string>>>();
dictionary.GetOrAdd(key1, new Dictionary<int, Dictionary<int, string>>())
.GetOrAdd(key2, new Dictionary<int, string>())[key3] = value;
In our case we are actually fine always adding the default value of TValue using our GetOrAdd method, so if we add an overload to support that:
public static TValue GetOrAdd<TKey, TValue>(
this Dictionary<TKey, TValue> dictionary,
TKey key)
where TValue : new()
{
TValue oldValue;
if (dictionary.TryGetValue(key, out oldValue))
return oldValue;
else
{
var newValue = new TValue();
dictionary.Add(key, newValue);
return newValue;
}
}
It simplifies the code even more:
dictionary.GetOrAdd(key1).GetOrAdd(key2)[key3] = value;
And if you really end up doing this particular operation a lot, you can just create a method to do the whole thing:
public static void AddMany<TKey1, TKey2, TKey3, TValue>(
this Dictionary<TKey1, Dictionary<TKey2, Dictionary<TKey3, TValue>>> dictionary,
TKey1 key1,
TKey2 key2,
TKey3 key3,
TValue newValue)
{
dictionary.GetOrAdd(key1).GetOrAdd(key2)[key3] = newValue;
}
Allowing you to write:
dictionary.AddMany(key1, key2, key3, value);
Of course, you need to create a new AddMany overload for each number of keys you want to support, and it has to be a number known at compile time, but that does appear to be the case in your example.
You can simplify the inner part:
if (NestedDictionary.ContainsKey(key1))
{
if (NestedDictionary[key1].ContainsKey(key2))
{
NestedDictionary[key1][key2][key3]=1;
}
else
{
NestedDictionary[key1].Add(key2, new Dictionary<int,int>() { { key3, 1 } });
}
}
else
{
NestedDictionary.Add(key1, new Dictionary<int, Dictionary<int,int>>() { { key2, new Dictionary<int,int>() { { key3, 1} } } });
}
But that's about it.
But what's the point of the structure? You only ever add a constant value (1) to the innermost dictionary, so there's no real "value" there. You might as well use a List<string> at that level.
I want to compare in C# two dictionaries with as keys a string and as value a list of ints. I assume two dictionaries to be equal when they both have the same keys and for each key as value a list with the same integers (both not necessarily in the same order).
I use both the answers from this and this related question, but both fail my test suite for the test functions DoesOrderKeysMatter and DoesOrderValuesMatter.
My test suite:
using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Collections.Generic;
using System.Linq;
namespace UnitTestProject1
{
[TestClass]
public class ProvideReportTests
{
[TestMethod]
public void AreSameDictionariesEqual()
{
// arrange
Dictionary<string, List<int>> dict1 = new Dictionary<string, List<int>>();
List<int> list1 = new List<int>();
list1.Add(1);
list1.Add(2);
dict1.Add("a", list1);
List<int> list2 = new List<int>();
list2.Add(3);
list2.Add(4);
dict1.Add("b", list2);
// act
bool dictsAreEqual = false;
dictsAreEqual = AreDictionariesEqual(dict1, dict1);
// assert
Assert.IsTrue(dictsAreEqual, "Dictionaries are not equal");
}
[TestMethod]
public void AreDifferentDictionariesNotEqual()
{
// arrange
Dictionary<string, List<int>> dict1 = new Dictionary<string, List<int>>();
List<int> list1 = new List<int>();
list1.Add(1);
list1.Add(2);
dict1.Add("a", list1);
List<int> list2 = new List<int>();
list2.Add(3);
list2.Add(4);
dict1.Add("b", list2);
Dictionary<string, List<int>> dict2 = new Dictionary<string, List<int>>();
// act
bool dictsAreEqual = true;
dictsAreEqual = AreDictionariesEqual(dict1, dict2);
// assert
Assert.IsFalse(dictsAreEqual, "Dictionaries are equal");
}
[TestMethod]
public void DoesOrderKeysMatter()
{
// arrange
Dictionary<string, List<int>> dict1 = new Dictionary<string, List<int>>();
List<int> list1 = new List<int>();
list1.Add(1);
list1.Add(2);
dict1.Add("a", list1);
List<int> list2 = new List<int>();
list2.Add(3);
list2.Add(4);
dict1.Add("b", list2);
Dictionary<string, List<int>> dict2 = new Dictionary<string, List<int>>();
List<int> list3 = new List<int>();
list3.Add(3);
list3.Add(4);
dict2.Add("b", list3);
List<int> list4 = new List<int>();
list4.Add(1);
list4.Add(2);
dict2.Add("a", list4);
// act
bool dictsAreEqual = false;
dictsAreEqual = AreDictionariesEqual(dict1, dict2);
// assert
Assert.IsTrue(dictsAreEqual, "Dictionaries are not equal");
}
[TestMethod]
public void DoesOrderValuesMatter()
{
// arrange
Dictionary<string, List<int>> dict1 = new Dictionary<string, List<int>>();
List<int> list1 = new List<int>();
list1.Add(1);
list1.Add(2);
dict1.Add("a", list1);
List<int> list2 = new List<int>();
list2.Add(3);
list2.Add(4);
dict1.Add("b", list2);
Dictionary<string, List<int>> dict2 = new Dictionary<string, List<int>>();
List<int> list3 = new List<int>();
list3.Add(2);
list3.Add(1);
dict2.Add("a", list3);
List<int> list4 = new List<int>();
list4.Add(4);
list4.Add(3);
dict2.Add("b", list4);
// act
bool dictsAreEqual = false;
dictsAreEqual = AreDictionariesEqual(dict1, dict2);
// assert
Assert.IsTrue(dictsAreEqual, "Dictionaries are not equal");
}
private bool AreDictionariesEqual(Dictionary<string, List<int>> dict1, Dictionary<string, List<int>> dict2)
{
return dict1.Keys.Count == dict2.Keys.Count &&
dict1.Keys.All(k => dict2.ContainsKey(k) && object.Equals(dict2[k], dict1[k]));
// also fails:
// return dict1.OrderBy(kvp => kvp.Key).SequenceEqual(dict2.OrderBy(kvp => kvp.Key));
}
}
}
What is the correct way to compare these kind of dictionaries? Or is there an error in my (admittedly clumsily written) TestSuite?
Update
I'm trying to incorporate Servy's answer in my test suite, like below, but I get some errors (underlined with a red wiggly line in Visual Studio):
SetEquals in the `Equals method says: "does not contain a definition for SetEquals accepting a first argument of type Generic.List.
In AreDictionariesEqualit saysDictionaryComparer<List> is a type but is used as a variable.`
namespace UnitTestProject1
{
[TestClass]
public class ProvideReportTests
{
[TestMethod]
// ... same as above
private bool AreDictionariesEqual(Dictionary<string, List<int>> dict1, Dictionary<string, List<int>> dict2)
{
DictionaryComparer<string, List<int>>(new ListComparer<int>() dc = new DictionaryComparer<string, List<int>>(new ListComparer<int>();
return dc.Equals(dict1, dict2);
}
}
public class DictionaryComparer<TKey, TValue> :
IEqualityComparer<Dictionary<TKey, TValue>>
{
private IEqualityComparer<TValue> valueComparer;
public DictionaryComparer(IEqualityComparer<TValue> valueComparer = null)
{
this.valueComparer = valueComparer ?? EqualityComparer<TValue>.Default;
}
public bool Equals(Dictionary<TKey, TValue> x, Dictionary<TKey, TValue> y)
{
if (x.Count != y.Count)
return false;
if (x.Keys.Except(y.Keys).Any())
return false;
if (y.Keys.Except(x.Keys).Any())
return false;
foreach (var pair in x)
if (!valueComparer.Equals(pair.Value, y[pair.Key]))
return false;
return true;
}
public int GetHashCode(Dictionary<TKey, TValue> obj)
{
throw new NotImplementedException();
}
}
public class ListComparer<T> : IEqualityComparer<List<T>>
{
private IEqualityComparer<T> valueComparer;
public ListComparer(IEqualityComparer<T> valueComparer = null)
{
this.valueComparer = valueComparer ?? EqualityComparer<T>.Default;
}
public bool Equals(List<T> x, List<T> y)
{
return x.SetEquals(y, valueComparer);
}
public int GetHashCode(List<T> obj)
{
throw new NotImplementedException();
}
}
public static bool SetEquals<T>(this IEnumerable<T> first, IEnumerable<T> second, IEqualityComparer<T> comparer)
{
return new HashSet<T>(second, comparer ?? EqualityComparer<T>.Default)
.SetEquals(first);
}
}
So first we need an equality comparer for dictionaries. It needs to ensure that they have matching keys and, if they do, compare the values of each key:
public class DictionaryComparer<TKey, TValue> :
IEqualityComparer<Dictionary<TKey, TValue>>
{
private IEqualityComparer<TValue> valueComparer;
public DictionaryComparer(IEqualityComparer<TValue> valueComparer = null)
{
this.valueComparer = valueComparer ?? EqualityComparer<TValue>.Default;
}
public bool Equals(Dictionary<TKey, TValue> x, Dictionary<TKey, TValue> y)
{
if (x.Count != y.Count)
return false;
if (x.Keys.Except(y.Keys).Any())
return false;
if (y.Keys.Except(x.Keys).Any())
return false;
foreach (var pair in x)
if (!valueComparer.Equals(pair.Value, y[pair.Key]))
return false;
return true;
}
public int GetHashCode(Dictionary<TKey, TValue> obj)
{
throw new NotImplementedException();
}
}
but this isn't enough on its own. We need to compare the values of the dictionary using another custom comparer, not the default comparer as the default list comparer won't look at the values of the list:
public class ListComparer<T> : IEqualityComparer<List<T>>
{
private IEqualityComparer<T> valueComparer;
public ListComparer(IEqualityComparer<T> valueComparer = null)
{
this.valueComparer = valueComparer ?? EqualityComparer<T>.Default;
}
public bool Equals(List<T> x, List<T> y)
{
return x.SetEquals(y, valueComparer);
}
public int GetHashCode(List<T> obj)
{
throw new NotImplementedException();
}
}
Which uses the following extension method:
public static bool SetEquals<T>(this IEnumerable<T> first, IEnumerable<T> second,
IEqualityComparer<T> comparer)
{
return new HashSet<T>(second, comparer ?? EqualityComparer<T>.Default)
.SetEquals(first);
}
Now we can simply write:
new DictionaryComparer<string, List<int>>(new ListComparer<int>())
.Equals(dict1, dict2);
I know this question already has an accepted answer, but I'd like to offer an even simpler alternative:
using System.Linq;
using System.Collections.Generic;
namespace Foo
{
public static class DictionaryExtensionMethods
{
public static bool ContentEquals<TKey, TValue>(this Dictionary<TKey, TValue> dictionary, Dictionary<TKey, TValue> otherDictionary)
{
return (otherDictionary ?? new Dictionary<TKey, TValue>())
.OrderBy(kvp => kvp.Key)
.SequenceEqual((dictionary ?? new Dictionary<TKey, TValue>())
.OrderBy(kvp => kvp.Key));
}
}
}
Convert the dictionary to a KeyValuePair list and then compare as collections:
CollectionAssert.AreEqual(
dict1.OrderBy(kv => kv.Key).ToList(),
dict2.OrderBy(kv => kv.Key).ToList()
);
I think that AreDictionariesEqual() just needs another method for List comparison
So if order of entries doesn't matter you can try this:
static bool ListEquals(List<int> L1, List<int> L2)
{
if (L1.Count != L2.Count)
return false;
return L1.Except(L2).Count() == 0;
}
/*
if it is ok to change List content you may try
L1.Sort();
L2.Sort();
return L1.SequenceEqual(L2);
*/
static bool DictEquals(Dictionary<string, List<int>> D1, Dictionary<string, List<int>> D2)
{
if (D1.Count != D2.Count)
return false;
return D1.Keys.All(k => D2.ContainsKey(k) && ListEquals(D1[k],D2[k]));
}
And if order of entries matters, try this:
static bool DictEqualsOrderM(Dictionary<string, List<int>> D1, Dictionary<string, List<int>> D2)
{
if (D1.Count != D2.Count)
return false;
//check keys for equality, than lists.
return (D1.Keys.SequenceEqual(D2.Keys) && D1.Keys.All(k => D1[k].SequenceEqual(D2[k])));
}
The accepted answer above will not always return a correct comparison because
using a HashSet to compare 2 lists will not account for duplicate values in the lists.
For instance if the OP had:
var dict1 = new Dictionary<string, List<int>>() { { "A", new List<int>() { 1, 2, 1 } } };
var dict2 = new Dictionary<string, List<int>>() { { "A", new List<int>() { 2, 2, 1 } } };
Then the result of the dictionary comparison is they are equal, when they are not. The only solution I see is to sort the 2 list and compare the values by index, but I'm sure someone smarter then me can come up with a more efficient way.
Here is a way using Linq, probably sacrificing some efficiency for tidy code. The other Linq example from jfren484 actually fails the DoesOrderValuesMatter() test, because it depends on the default Equals() for List<int>, which is order-dependent.
private bool AreDictionariesEqual(Dictionary<string, List<int>> dict1, Dictionary<string, List<int>> dict2)
{
string dict1string = String.Join(",", dict1.OrderBy(kv => kv.Key).Select(kv => kv.Key + ":" + String.Join("|", kv.Value.OrderBy(v => v))));
string dict2string = String.Join(",", dict2.OrderBy(kv => kv.Key).Select(kv => kv.Key + ":" + String.Join("|", kv.Value.OrderBy(v => v))));
return dict1string.Equals(dict2string);
}
If two dictionaries are known to use equivalent implementations of IEqualityComparer, and one wishes to regard as equivalent all keys which that implementation regardss as equivalent, they contain the same number of items, and one (arbitrarily chosen) maps all of the elements keys found in the other to corresponding values from the other, they will be equivalent unless or until one of them is modified. Testing for those conditions will be faster than any approach which does not not assume that both dictionaries use the same IEqualityComparer.
If two dictionaries do not use the same implementation of IEqualityComparer, they should generally not be considered equivalent regardless of the items they contain. For example, a Dictionary<String,String> with a case-sensitive comparer and one with a case-insensitive comparer, both of which contain the key-value pair ("Fred", "Quimby") are not equivalent, since the latter would map "FRED" to "Quimby", but the former would not.
Only if the dictionaries use the same implementation of IEqualityComparer, but if one is interested in a finer-grained definition of key-equality than the one used by the dictionaries and a copy of the key is not stored with each value, it will it be necessary to build a new dictionary for the purpose of testing the original dictionaries for equality. It may be best to delay this step until the earlier test has suggested that the dictionaries seem to match. Then build a Dictionary<TKey,TKey> which maps each key from one of the dictionaries to itself, and then look up all of the other dictionary's keys in that to make sure that they map to things which match. If both dictionaries used case-insensitive comparers, and one contained ("Fred", "Quimby") and the other ("FRED", "Quimby"), the new temporary dictionary would map "FRED" to "Fred", and comparing those two strings would reveal that the dictionaries don't match.
Most of the answers are iterating the dictionaries multiple times while it should be simple:
static bool AreEqual(IDictionary<string, string> thisItems, IDictionary<string, string> otherItems)
{
if (thisItems.Count != otherItems.Count)
{
return false;
}
var thisKeys = thisItems.Keys;
foreach (var key in thisKeys)
{
if (!(otherItems.TryGetValue(key, out var value) &&
string.Equals(thisItems[key], value, StringComparison.OrdinalIgnoreCase)))
{
return false;
}
}
return true;
}
I like this approach because it gives more details when the test fails
public void AssertSameDictionary<TKey,TValue>(Dictionary<TKey,TValue> expected,Dictionary<TKey,TValue> actual)
{
string d1 = "expected";
string d2 = "actual";
Dictionary<TKey,TValue>.KeyCollection keys1= expected.Keys;
Dictionary<TKey,TValue>.KeyCollection keys2= actual.Keys;
if (actual.Keys.Count > expected.Keys.Count)
{
string tmp = d1;
d1 = d2;
d2 = tmp;
Dictionary<TKey, TValue>.KeyCollection tmpkeys = keys1;
keys1 = keys2;
keys2 = tmpkeys;
}
foreach(TKey key in keys1)
{
Assert.IsTrue(keys2.Contains(key), $"key '{key}' of {d1} dict was not found in {d2}");
}
foreach (TKey key in expected.Keys)
{
//already ensured they both have the same keys
Assert.AreEqual(expected[key], actual[key], $"for key '{key}'");
}
}
public static IDictionary<string, object> ToDictionary(this object source)
{
var fields = source.GetType().GetFields(
BindingFlags.GetField |
BindingFlags.Public |
BindingFlags.Instance).ToDictionary
(
propInfo => propInfo.Name,
propInfo => propInfo.GetValue(source) ?? string.Empty
);
var properties = source.GetType().GetProperties(
BindingFlags.GetField |
BindingFlags.GetProperty |
BindingFlags.Public |
BindingFlags.Instance).ToDictionary
(
propInfo => propInfo.Name,
propInfo => propInfo.GetValue(source, null) ?? string.Empty
);
return fields.Concat(properties).ToDictionary(key => key.Key, value => value.Value); ;
}
public static bool EqualsByValue(this object source, object destination)
{
var firstDic = source.ToFlattenDictionary();
var secondDic = destination.ToFlattenDictionary();
if (firstDic.Count != secondDic.Count)
return false;
if (firstDic.Keys.Except(secondDic.Keys).Any())
return false;
if (secondDic.Keys.Except(firstDic.Keys).Any())
return false;
return firstDic.All(pair =>
pair.Value.ToString().Equals(secondDic[pair.Key].ToString())
);
}
public static bool IsAnonymousType(this object instance)
{
if (instance == null)
return false;
return instance.GetType().Namespace == null;
}
public static IDictionary<string, object> ToFlattenDictionary(this object source, string parentPropertyKey = null, IDictionary<string, object> parentPropertyValue = null)
{
var propsDic = parentPropertyValue ?? new Dictionary<string, object>();
foreach (var item in source.ToDictionary())
{
var key = string.IsNullOrEmpty(parentPropertyKey) ? item.Key : $"{parentPropertyKey}.{item.Key}";
if (item.Value.IsAnonymousType())
return item.Value.ToFlattenDictionary(key, propsDic);
else
propsDic.Add(key, item.Value);
}
return propsDic;
}
Comparing dictionary using string keys is way more complex than what it looks at first glance.
Dictionary<TKey,TValue> uses an IEqualityComparer<TKey> every time you access an entry in the dictionary to compare your input with the actual entries. The comparer is also used for hash calculations, which serves as some kind of index for faster random access to the entries. Trying to compare dictionaries with different comparers may have some side effects on key sorting and equality considerations for the key-value pair. The key point here is you need to compare the comparers too when comparing dictionaries.
Dictionary<TKey,TValue> also provides collections of keys and values, but they are unsorted. The keys and values collections are consistent inside the dictionary (the nth key is the nth value's key), but not across instances. This means we'll have to work with KeyValuePairs<TKey,TValue> and sort them by key on both dictionaries before comparing them.
However, the comparers in the dictionary only check for equality, it's not able to sort the keys. In order to sort pairs, we'll need a new IComparer<TKey> instance, which is another interface than IEqualityComparer<TKey>. But there's a trap here: default implementations of these two interfaces are not consistent. When you create a dictionary using the default contructor, the class will instanciate a GenericEqualityComparer<TKey> if TKey implements IEquatable<TKey>, which require TKey to implement bool Equals(TKey other); (otherwise, it will fallback to an ObjectEqualityComparer). If you create default Comparer, that will instanciate a GenericComparer<TKey> if TKey implements IComparable<TKey>, which will require TKey to implement int CompareTo(TKey other); (otherwise it will default to an ObjectComparer). Not all types implement both interfaces, and those who do sometimes use different implementations. There is a risk that two different keys (according to Equals) are sorted identically (according to CompareTo). In that case, there's a risk on the key sorting consitency.
Fortunately, string implements both interfaces. Unfortunately, its implementations are NOT consistent: CompareTo depends on the current culture to sort items, whereas Equals does not ! The solution to this problem is to inject a custom comparer to the dictionary, which provides consistent implementation of both interface. We can use StringComparer for that rather than relying on the default implementation. Then we'll simply get the dictionary comparer, cast it, and use it for sorting keys. Also, StringComparer allows comparing the comparers, so we can ensure both dictionaries use the same one.
First, we need a way to compare the values of the dictionary. Since you want to compare lists of int without order, we'll implement an generic equality comparer that sorts items and SequenceEqual them.
internal class OrderInsensitiveListComparer<TValue>
: IEqualityComparer<IEnumerable<TValue>>
{
private readonly IComparer<TValue> comparer;
public OrderInsensitiveListComparer(IComparer<TValue> comparer = null)
{
this.comparer = comparer ?? Comparer<TValue>.Default;
}
public bool Equals([AllowNull] IEnumerable<TValue> x, [AllowNull] IEnumerable<TValue> y)
{
return x != null
&& y != null
&& Enumerable.SequenceEqual(
x.OrderBy(value => value, comparer),
y.OrderBy(value => value, comparer));
}
public int GetHashCode([DisallowNull] IEnumerable<TValue> obj)
{
return obj.Aggregate(17, (hash, item) => hash * 23 ^ item.GetHashCode());
}
}
Now, we've got the values covered, but we also need to compare KeyValuePair. It is a simple ref struct, so we don't need to check for nulls. We'll simply delegate the comparison to two comparers : one for the key, another for the value.
internal class KeyValuePairComparer<TKey, TValue> : IEqualityComparer<KeyValuePair<TKey, TValue>>
{
private readonly IEqualityComparer<TKey> key;
private readonly IEqualityComparer<TValue> value;
public KeyValuePairComparer(
IEqualityComparer<TKey> key = null,
IEqualityComparer<TValue> value = null)
{
this.key = key ?? EqualityComparer<TKey>.Default;
this.value = value ?? EqualityComparer<TValue>.Default;
}
public bool Equals([AllowNull] KeyValuePair<TKey, TValue> x, [AllowNull] KeyValuePair<TKey, TValue> y)
{
// KeyValuePair is a struct, you can't null check
return key.Equals(x.Key, y.Key) && value.Equals(x.Value, y.Value);
}
public int GetHashCode([DisallowNull] KeyValuePair<TKey, TValue> obj)
{
return 17 * 23 ^ obj.Key.GetHashCode() * 23 ^ obj.Value.GetHashCode();
}
}
Now, we can implement the dictionary comparer. We do null check and compare the dictionaries comparers. Then we consider the dictionary as a simple enumerable of KeyValuePair and SequenceEqual them after sorting them by key. For that, we cast the dictionary comparer and delegate the comparison to the KeyValueComparer.
internal class DictionaryComparer<TValue> : IEqualityComparer<Dictionary<string, TValue>>
{
private readonly IEqualityComparer<TValue> comparer;
public DictionaryComparer(
IEqualityComparer<TValue> comparer = null)
{
this.comparer = comparer ?? EqualityComparer<TValue>.Default;
}
public bool Equals([AllowNull] Dictionary<string, TValue> x, [AllowNull] Dictionary<string, TValue> y)
{
return x != null
&& y != null
&& Equals(x.Comparer, y.Comparer)
&& x.Comparer is StringComparer sorter
&& Enumerable.SequenceEqual(
x.AsEnumerable().OrderBy(pair => pair.Key, sorter),
y.AsEnumerable().OrderBy(pair => pair.Key, sorter),
new KeyValuePairComparer<string, TValue>(x.Comparer, comparer));
}
public int GetHashCode([DisallowNull] Dictionary<string, TValue> obj)
{
return new OrderInsensitiveListComparer<KeyValuePair<string, TValue>>()
.GetHashCode(obj.AsEnumerable()) * 23 ^ obj.Comparer.GetHashCode();
}
}
Finally, we only need to instanciate comparers and let them do the work.
private bool AreDictionariesEqual(Dictionary<string, List<int>> dict1, Dictionary<string, List<int>> dict2)
{
return new DictionaryComparer<List<int>>(
new OrderInsensitiveListComparer<int>())
.Equals(dict1, dict2);
}
However, for this to work, we need to use a StringComparer in every dictionary.
[TestMethod]
public void DoesOrderValuesMatter()
{
Dictionary<string, List<int>> dict1 = new Dictionary<string, List<int>>(StringComparer.CurrentCulture);
// more stuff
}
The function shown below can be accommodated to perform any generic comparison:
public bool AreDictionaryEquals(Dictionary<ulong?, string> dictionaryList1, Dictionary<ulong?, string> dictionaryList2)
{
if (dictionaryList1.Count != dictionaryList2.Count)
return false;
IDictionary<ulong?, string> orderedList1 = new Dictionary<ulong?, string>();
IDictionary<ulong?, string> orderedList2 = new Dictionary<ulong?, string>();
foreach (var itemDict1 in dictionaryList1.OrderByDescending(key => key.Id))
{
orderedList1.Add(itemDict1.Id, itemDict1.PropertyX);
}
foreach (var itemDict2 in dictionaryList2.OrderByDescending(key => key.Id))
{
orderedList2.Add(itemDict2.Id, itemDict2.PropertyX);
}
//check keys and values for equality
return (orderedList1.Keys.SequenceEqual(orderedList2.Keys) && orderedList1.Keys.All(k => orderedList1[k].SequenceEqual(orderedList2[k])));
}
1- If the length of both dictionaries is not equal we can safely return false.
2- Then, we proceed to sort both dictionaries using the value of the keys. The reason for doing this is you could have situations like this:
Dictionary A: [1,A], [3,B]
Dictionary B: [3,B], [1,A]
Even though the order is not the same, the content of both can be considered equal.
Finally:
3- We compare both sorted sequences and retrieve the result of this comparison.
Does .Net provides generic form of NameValueCollection or an alternative to
Dictionary<string,List<T>> ?
Something like
Person john = new Person();
...
Person vick = new Person();
...
NameValueCollection<Person> stringToPerson = new NameValueCollection<Person>();
stringToPerson.Add("John",john)
stringToPerson.Add("Vick",vick)
Actually in my case am forced to rely on Dictionary<string,List<Peron>>, is there any other alternative?
Regards,
Jeez
There's no such thing built in to the BCL as far as I know. I would just write your own class which wraps a Dictionary<string, List<T>> internally and exposes appropriate methods (e.g., Add could add an element to the List<T> for the given key).
For example:
class NameValueCollection<T>
{
Dictionary<string, List<T>> _dict = new Dictionary<string, List<T>>();
public void Add(string name, T value)
{
List<T> list;
if (!_dict.TryGetValue(name, out list))
{
_dict[name] = list = new List<T>();
}
list.Add(value);
}
// etc.
}
The closest alternative is probably the ILookup<TKey, TElement> interface. At the moment, the only public type that implements it in the BCL is the immutable Lookup<TKey, TElement> class, an instance of which can be created with the Enumerable.ToLookup method. If you want a mutable type that implements the interface, you'll have to write one yourself; you can find an example implementation here.
In your case, you probably want an ILookup<string, Person>.
Oh, I see what you want to do now. You want to be able to add to the Person collection without having to create a new List each time. Extension methods to the rescue!
public static void SafeAdd<TValue>(this IDictionary<TKey, ICollection<TValue>> dict, TKey key, TValue value)
{
HashSet<T> container;
if (!dict.TryGetValue(key, out container))
{
dict[key] = new HashSet<TValue>();
}
dict[key].Add(value);
}
Usage:
var names = new Dictionary<string, ICollection<Person>>();
names.SafeAdd("John", new Person("John"));
Nothing inbuilt; there is Lookup<TKey,TValue> which operates as a multi-map, but that is immutable. I wrote a mutable EditableLookup<TKey,TValue> for MiscUtil which may help.
Generic NameValueCollection
What makes NameValueCollection special unlike Dictionary, is that one key can contain several elements.
The generic NameValueCollection<T> based on NameObjectCollectionBase is in the following code:
using System.Collections.Specialized;
namespace System.Collections.Generic
{
public class NameValueCollection<T> : NameObjectCollectionBase
{
private string[] _keys; // Cached keys.
private T[] _values; // Cached values.
// Resets the caches.
protected void InvalidateCachedArrays()
{
_values = null;
_keys = null;
}
// Converts ArrayLit to Array of T elements.
protected static T[] AsArray(ArrayList list)
{
int count = 0;
if (list == null || (count = list.Count) == 0)
return (T[])null;
T[] array = new T[count];
list.CopyTo(0, array, 0, count);
return array;
}
// Gets all values cache.
protected ArrayList GetAllValues()
{
int count = Count;
ArrayList arrayList = new ArrayList(count);
for (int i = 0; i < count; ++i)
{
arrayList.AddRange(Get(i));
}
return arrayList;
}
// Adds single value to collection.
public void Add(string name, T value)
{
InvalidateCachedArrays();
ArrayList arrayList = (ArrayList)BaseGet(name);
if (arrayList == null)
{
arrayList = new ArrayList(1);
if (value != null) arrayList.Add(value);
BaseAdd(name, arrayList);
}
else
{
if (value == null) return;
arrayList.Add(value);
}
}
// Adds range of values to collection.
public void Add(NameValueCollection<T> collection)
{
InvalidateCachedArrays();
int count = collection.Count;
for (int i = 0; i < count; i++)
{
string key = collection.GetKey(i);
T[] values = collection.Get(i);
foreach (var value in values)
{
Add(key, value);
}
}
}
// Set single value (prevoious values will be removed).
public void Set(string name, T value)
{
InvalidateCachedArrays();
BaseSet(name, new ArrayList(1) { value });
}
// Set range of values (prevoious values will be removed).
public void Set(string name, params T[] values)
{
InvalidateCachedArrays();
BaseSet(name, new ArrayList(values));
}
// Gets all values that paired with specified key.
public T[] Get(string name)
{
return AsArray((ArrayList)BaseGet(name));
}
// Gets all values at the specified index of collection.
public T[] Get(int index)
{
return AsArray((ArrayList)BaseGet(index));
}
// Gets string containing the key at the specified index.
public string GetKey(int index)
{
return BaseGetKey(index);
}
// Removes values from the specified key.
public void Remove(string name)
{
InvalidateCachedArrays();
BaseRemove(name);
}
// Removes all data from the collection.
public void Clear()
{
InvalidateCachedArrays();
BaseClear();
}
// All keys that the current collection contains.
public new string[] Keys
{
get
{
if (_keys == null)
_keys = BaseGetAllKeys();
return _keys;
}
}
// All values that the current collection contains.
public T[] Values
{
get
{
if (_values == null)
_values = AsArray(GetAllValues());
return _values;
}
}
// Values at the specefied index.
public T[] this[int index]
{
get
{
return Get(index);
}
set
{
BaseSet(index, new ArrayList(value));
}
}
// Values at the specefied key.
public T[] this[string name]
{
get
{
return Get(name);
}
set
{
BaseSet(name, new ArrayList(value));
}
}
// Enumerates all entries.
public IEnumerable<KeyValuePair<string, T>> GetAllEntries()
{
foreach (string key in Keys)
{
foreach (T value in Get(key))
{
yield return new KeyValuePair<string, T>(key, value);
}
}
}
}
}
Usage:
NameValueCollection<int> collection = new NameValueCollection<int>();
collection.Add("a", 123);
collection.Add("a", 456); // 123 and 456 will be inserted into the same key.
collection.Add("b", 789); // 789 will be inserted into another key.
int[] a = collection.Get("a"); // contains 123 and 456.
int[] b = collection.Get("b"); // contains 789.
The above code implements the main features.
Here is complete implementation of the NameValueCollection<T> with additional tools.