Dynamically instantiate class - c#

I am trying to dynamically instantiate classes descendant of an abstract class, but the activator is forcing me to override the constructor to every descendant. Is there a way to avoid this?
P.S: I need to pass the parameters in the constructor, only there it can be Write, otherwise, it will always be read!

Is there a way to avoid this?
Short answer: Yes, when you define no constructor in your derived class, the (abstract) base class constructors are used. When you define one, you have to redefine all constructors.
Not without a workaround pattern.
EDIT: Sorry, I'm wrong that does only work for parameterless constructors.
How you can achive your goal,
is using a protected parameterless constructor and a static Create method:
public abstract class Duck {
private string _DucksParam0;
public string DucksParam0 {
get {
return _DucksParam0;
}
}
// Using protected, this constructor can only be used within the class instance
// or a within a derived class, also in static methods
protected Duck() { }
public static DuckT Create<DuckT>(string param0)
where DuckT : Duck
{
// Use the (implicit) parameterless constructor
DuckT theDuck = (DuckT)Activator.CreateInstance(typeof(DuckT));
// This is now your "real" constructor
theDuck._DucksParam0 = param0;
return theDuck;
}
}
public class Donald : Duck {
}
Usage (dotnetfiddle):
public class Program
{
public void Main()
{
Duck d = Duck.Create<Donald>("Hello World");
Console.WriteLine(d.DucksParam0);
}
}

Constructors are not inherited, so if you must instantiate a child object through a constructor with those parameters, then you need to write a new constructor in the child class that basically does base(p1, p2, ..., pn).
Looking at your code, seems that your constructors only assign/initialize fields, so there is no reason why you can't do that somewhere outside the constructor, as long as you control it appropriately. This might be a long shot, but I feel this is more what you want:
public abstract class Parent
{
protected bool foo
{
get;
private set; // just set the property setter as private
}
protected Parent() {
// protected so all instances are created through createAnotherX
// note that nothing is initialized here!
}
public abstract int Enter(); // To override in child classes
// Option 1: use generics
public static T createAnother1<T>(bool f) where T : Parent, new()
{
T p = new T();
p.foo = f;
return p;
}
// Option 2: use the runtime type
public static Parent createAnother2(Type t, bool f)
{
Parent p = Activator.CreateInstance(t) as Parent;
p.foo = f;
return p;
}
// Examples
public static void Main()
{
Parent p1 = Parent.createAnother1<Child>(true);
Parent p2 = Parent.createAnother2(typeof(Child), true);
}
}
// the child class only has to worry about overriding Enter()
public class Child : Parent
{
public override int Enter()
{
return 1;
}
}
Note that you must instantiate objects through the createAnotherX because the default constructor is protected. In addition, as per your comment, see that the property is defined so that only you can set values, which is what you tried to do in your code when explicitly ignoring the setter.

Related

How can I access a static property of type T in a generic class?

I am trying to accomplish the following scenario that the generic TestClassWrapper will be able to access static properties of classes it is made of (they will all derive from TestClass). Something like:
public class TestClass
{
public static int x = 5;
}
public class TestClassWrapper<T> where T : TestClass
{
public int test()
{
return T.x;
}
}
Gives the error:
'T' is a 'type parameter', which is not valid in the given context.
Any suggestions?
You can't, basically, at least not without reflection.
One option is to put a delegate in your constructor so that whoever creates an instance can specify how to get at it:
var wrapper = new TestClassWrapper<TestClass>(() => TestClass.x);
You could do it with reflection if necessary:
public class TestClassWrapper<T> where T : TestClass
{
private static readonly FieldInfo field = typeof(T).GetField("x");
public int test()
{
return (int) field.GetValue(null);
}
}
(Add appropriate binding flags if necessary.)
This isn't great, but at least you only need to look up the field once...
Surely you can just write this:
public int test()
{
return TestClass.x;
}
Even in a nontrivial example, you can't override a static field so will always call it from your known base class.
Why not just return TestClass.x?
Generics do not support anything related to static members, so that won't work. My advice would be: don't make it static. Assuming the field genuinely relates to the specific T, you could also use reflection:
return (int) typeof(T).GetField("x").GetValue(null);
but I don't recommend it.
Another solution is to simply not make it static, and work with the new() constraint on T to instantiate the object. Then you can work with an interface, and the wrapper can get the property out of any class that implements that interface:
public interface XExposer
{
Int32 X { get; }
}
public class TestClass : XExposer
{
public Int32 X { get { return 5;} }
}
public class XExposerWrapper<T> where T : XExposer, new()
{
public Int32 X
{
get { return new T().X; }
}
}
In fact, you can change that to public static Int32 X on the TestClassWrapper and simply get it out as Int32 fetchedX = XExposerWrapper<TestClass>.X;
Though since whatever code calls this will have to give the parameter T those same constraints, the wrapper class is pretty unnecessary at this point, since that calling code itself could also just execute new T().X and not bother with the wrapper.
Still, there are some interesting inheritance models where this kind of structure is useful. For example, an abstract class SuperClass<T> where T : SuperClass<T>, new() can both instantiate and return type T in its static functions, effectively allowing you to make inheritable static functions that adapt to the child classes (which would then need to be defined as class ChildClass : SuperClass<ChildClass>). By defining protected abstract functions / properties on the superclass, you can make functions that apply the same logic on any inherited object, but customized to that subclass according to its implementations of these abstracts. I use this for database classes where the table name and fetch query are implemented by the child class. Since the properties are protected, they are never exposed, either.
For example, on database classes, where the actual fetching logic is put in one central abstract class:
public abstract class DbClass<T> where T : DbClass<T>, new()
{
protected abstract String FetchQuery { get; }
protected abstract void Initialize(DatabaseRecord row);
public static T FetchObject(DatabaseSession dbSession, Int32 key)
{
T obj = new T();
DatabaseRecord record = dbSession.RetrieveRecord(obj.FetchQuery, key);
obj.Initialize(record);
return obj;
}
}
And the implementation:
public class User : DbClass<User>
{
public Int32 Key { get; private set;}
public String FirstName { get; set;}
public String LastName { get; set;}
protected override String FetchQuery
{ get { return "SELECT * FROM USER WHERE KEY = {0}";} }
protected override void Initialize(DatabaseRecord row)
{
this.Key = DbTools.SafeGetInt(row.GetField("KEY"));
this.FirstName = DbTools.SafeGetString(row.GetField("FIRST_NAME"));
this.LastName = DbTools.SafeGetString(row.GetField("LAST_NAME"));
}
}
This can be used as:
User usr = User.FetchObject(dbSession, userKey);
This is a rather simplified example, but as you see, this system allows a static function from the parent class to be called on the child class, to return an object of the child class.
T is a type, not parameter or variable so you cannot pick any value from any members. Here is a sample code.
public class UrlRecordService
{
public virtual void SaveSlug<T>(T entity) where T : ISlugSupport
{
if (entity == null)
throw new ArgumentNullException("entity");
int entityId = entity.Id;
string entityName = typeof(T).Name;
}
}
public interface ISlugSupport
{
int Id { get; set; }
}
cjk and Haris Hasan have the most-correct answers to the question as asked. However in this comment the OP implies that he is after something else not quite possible in C#: a way to define a contract for a static member in a derived class.
There isn't a way to strictly define this, but it is possible to set up a pattern that may be implied by a base class (or interface); e.g.:
public class TestClass
{
private static int x;
public virtual int StaticX => x;
}
or if not intended to be used directly
public abstract class AbstractTestClass
{
public abstract int StaticX {get;}
}
or (my preference in this contrived example)
public interface ITest
{
int StaticX {get;}
}
Elsewhere, this pattern of a StaticXxx member may be (loosely) associated with implementations that should back the member with static fields (as in TestClass above).
What's kind of fun is that this can be (re)exposed as static by the generic wrapper, because generic statics are isolated to each type used.
public class TestClassWrapper<T> where T : ITest, new()
{
private readonly static T testInstance = new T();
public static int test() => testInstance.x;
}
This uses a new() condition, but an associated static, generic factory pattern for creating ITest (or TestClass or AbstractTestClass) instances may also be used.
However this may not be feasible if you can't have long-lived instances of the class.
In this situation you assume that T is a subclass of TestClass. Subclasses of TestClass will not have the static int x.

Overriding a nested class functions or use delegates?**

I have a base class which has a nested type, inside. There's a function in the outer (base) type which would be overridden by it's children later. In fact this function belongs to the inner type from the OO prespective but still I need it, to be overridden by subtypes of the base class.
Should I use this function as a callback from the inner type or just move it inside the inner type and let's the subtypes to override it from there?
EDIT: Sample code added
class A
{
protected void func() { /* do something */ }
class B { /**/ }
}
// OR
class A
{
class B
{
protected void func() { /* do something */ }
}
}
// Then
class C : A
{
override func() { /**/ }
}
My suggestion is to crate a delegate for the inner type function which is initiated by the constructor of the base class:
internal class BaseClass
{
public BaseClass(Action myAction)
{
this.innerType = new InnerType(myAction);
}
public BaseClass()
{
// When no function delegate is supplied, InnerType should default to
// using its own implementation of the specific function
this.innerType = new InnerType();
}
}
As you see, deriving types can call the base constructor with :base (overridenAction) where they can provide their own implementation of the function right to the innermost type. Of course, you are not obligated to use Action but any delegate you want.
IMO what you are describing looks like The Strategy design pattern. Consider using this pattern. Your code would be much more maintainable as it contains well recognizable pattern. You also can take a look at state design pattern, usually you have to choose between these two, they are closely connected.
In this scenario:
class A
{
class B
{
protected void func() { // do something }
}
}
You cannot derive from class A and override func() in class B.
From your description it seems that A-derived classes should be able to override some function (or functionality) in the inner class B which indicates that you maybe should rethink your design. Either extract B and don't make it an inner class or make the functionality you want to override an explicit dependency via an interface like this:
class A
{
private B _MyB;
public A(ISomeBehaviour behaviour)
{
_MyB = new B(behaviour);
}
}
In anyway if you want to stick with your design then I would not recommend the delegate approach and rather choose the override because with the delegates it makes it harder to add decoration if that is all you need in your child classes.
This is how the outer class can serve as a strategy to the inner service class.
Note that using pattern names such as TemplateMethod and Strategy as real class names is not recommended, use whatever is meaningful in the domain. Same applies to Outer and Inner.
public class Consumer
{
public void Foo()
{
IOuterFoo fooService = new Derived();
fooService.OuterFoo();
}
}
// ...
public interface IOuterFoo
{
void OuterFoo();
}
abstract class Base : Base.IStrategy, IOuterFoo
{
public void OuterFoo() { _service.Foo(); }
private readonly InnerService _service;
protected Base() { _service = new InnerService(this); }
private interface IStrategy { void Foo(); }
private class InnerService
{
private readonly IStrategy _strategy;
public InnerService(IStrategy strategy) { _strategy = strategy; }
public void Foo() { _strategy.Foo(); }
}
void IStrategy.Foo() { TemplateMethodFoo(); }
protected abstract void TemplateMethodFoo();
}
class Derived : Base
{
protected override void TemplateMethodFoo()
{
throw new NotImplementedException();
}
}

Can I force a subclass to declare a constant?

I want to force subclasses to define a constant value.
Like
const string SomeConstantEverySubclassMustDefine = "abc";
I need that because I need to have it tied to the Type, rather than to the instance and you can't override static Methods/Properties iirc.
I'd really like to have a compile-time check for those constants.
Let me explain in more detail:
Some classes in our Domain-Model are special, you can take certain actions for them, depending on the type. Thus the logic is tied to the type. The action to be taken requires a string tied to the type. I sure could create an instance everytime as a workaround and declare an abstract property, but that's not what I want. I want to enforce the declaration of the string at compile-time, just to be sure.
No, you can't. I would suggest you make your base class abstract, with an abstract property which you can fetch when you want. Each child class can then implement the property just by returning a constant if it wants. The downside is that you can't use this within static methods in the base class - but those aren't associated with the child classes anyway.
(It also allows child classes to customise the property per instance as well, if necessary... but that's rarely an actual problem.)
If this doesn't do enough for you, you might want to consider a parallel type hierarchy. Basically polymorphism simply doesn't happen in a type-specific way in .NET; only in an instance-specific way.
If you still want to do this and fetch it with reflection, I suggest you just write unit tests to ensure that the relevant constants are defined. When you get beyond what the type system can describe, that's often the best you can do.
Make an abstract property with only a get. That's what I think you could do to enforce a class has a value. Then you can just return a constant in the property.
Example:
Base class:
public abstract string MyConst { get; }
Derived class:
public override string MyConst {
get { return "constant"; }
}
Here is how I made mine work. I used Attribute as others have suggested.
public class ObjectAttribute : Attribute
{
public int ObjectSize { get; set; }
public ObjectAttribute(int objectSize)
{
this.ObjectSize = objectSize;
}
}
public abstract class BaseObject
{
public static int GetObjectSize<T>() where T : IPacket
{
ObjectAttribute[] attributes = (ObjectAttribute[])typeof(T).GetCustomAttributes(typeof(ObjectAttribute), false);
return attributes.Length > 0 ? attributes[0].ObjectSize : 0;
}
}
[ObjectAttribute(15)]
public class AObject : BaseObject
{
public string Code { get; set; }
public int Height { get; set; }
}
[ObjectAttribute(25)]
public class BObject : BaseObject
{
public string Code { get; set; }
public int Weight { get; set; }
}
If you would like instance access to the attribute just add it to the base abstract class.
public abstract class BaseObject
{
public static int GetObjectSize<T>() where T : IPacket
{
ObjectAttribute[] attributes = (ObjectAttribute[])typeof(T).GetCustomAttributes(typeof(ObjectAttribute), false);
return attributes.Length > 0 ? attributes[0].ObjectSize : 0;
}
public int ObjectSize
{
get
{
ObjectAttribute[] attributes = (ObjectAttribute[])GetType().GetCustomAttributes(typeof(ObjectAttribute), false);
return attributes.Length > 0 ? attributes[0].ObjectSize : 0;
}
}
}
Usage of the constants
int constantValueA = AObject.GetObjectSize<AObject>();
int constantValueB = BObject.GetObjectSize<BObject>();
AObject aInstance = new AObject();
int instanceValueA = aInstance.ObjectSize;
New idea
Here's a sort of weird idea: instead of using inheritance directly, you create a separate class to provide a constant value for every type deriving from some type T. The constructor for this type uses reflection to verify that every derived type has indeed been supplied a value.
public abstract class Constant<T, TConstant>
{
private Dictionary<Type, TConstant> _constants;
protected Constant()
{
_constants = new Dictionary<Type, TConstant>();
// Here any class deriving from Constant<T, TConstant>
// should put a value in the dictionary for every type
// deriving from T, using the DefineConstant method below.
DefineConstants();
EnsureConstantsDefinedForAllTypes();
}
protected abstract void DefineConstants();
protected void DefineConstant<U>(TConstant constant) where U : T
{
_constants[typeof(U)] = constant;
}
private void EnsureConstantsDefinedForAllTypes()
{
Type baseType = typeof(T);
// Here we discover all types deriving from T
// and verify that each has a key present in the
// dictionary.
var appDomain = AppDomain.CurrentDomain;
var assemblies = appDomain.GetAssemblies();
var types = assemblies
.SelectMany(a => a.GetTypes())
.Where(t => baseType.IsAssignableFrom(t));
foreach (Type t in types)
{
if (!_constants.ContainsKey(t))
{
throw new Exception(
string.Format("No constant defined for type '{0}'.", t)
);
}
}
}
public TConstant GetValue<U>() where U : T
{
return _constants[typeof(U)];
}
}
Basic example:
public class BaseType
{
public static Constant<BaseType, string> Description { get; private set; }
static BaseType()
{
Description = new BaseTypeDescription();
}
}
public class DerivedType : BaseType
{ }
internal sealed class BaseTypeDescription : Constant<BaseType, string>
{
public BaseTypeDescription() : base()
{ }
protected override DefineConstants()
{
DefineConstant<BaseType>("A base type");
DefineConstant<DerivedType>("A derived type");
}
}
Now I have code that allows me to do this:
var description = BaseType.Description;
// returns "A base type"
string baseTypeDescription = description.GetValue<BaseType>();
// returns "A derived type"
string derivedTypeDescription = description.GetValue<DerivedType>();
Original answer
You may not like it, but the closest way to accomplish this is by declaring an abstract read-only (no set) property.
If you've got an instance of your subclass, then this can work just as well as a constant, even though it is technically instance-level (it will just be the same for all instances of the given class).
Consider, for instance, IList.IsReadOnly. In most cases this is actually a property that tells you about the underlying class implementation, as opposed to any state specific to a particular instance. (It may be an interface member as opposed to an abstract class member, but it's the same idea.)
If you are trying to access it statically, well... then you're out of luck. But in this case I fail to see how you'd obtain the value without using reflection anyway. Maybe that's your intention; I don't know.
You could have a static method in the base class called, for instance "Register", that is passed a Type and a constant value, with the intention being that it is called by the class constructors of the subtypes. Then, add a check in all of your base class constructors that the object being constructed is of a registered type.
abstract class Base
{
private static Dictionary<Type, string> _registry = new Dictionary<Type, string>();
protected static void Register(Type t, string constVal)
{
_registry.Add(t, constVal);
}
protected Base()
{
if(!_registry.ContainsKey(this.GetType()))
throw new NotSupportedException("Type must have a registered constant");
}
public string TypeConstant
{
get
{
return _registry[this.GetType()];
}
}
}
class GoodSubtype : Base
{
static GoodSubtype()
{
Base.Register(typeof(GoodSubtype), "Good");
}
public GoodSubtype()
: base()
{
}
}
class Badsubtype : Base
{
public Badsubtype()
: base()
{
}
}
And then elsewhere, you can construct GoodSubtype instances, but trying to construct a Badsubtype gets an exception. I think a runtime error at construction is the soonest you can get an error with this type of scheme.
(You'd want to use ConcurrentDictionary for your registry if threading is involved)
There's one other method that hasn't been covered and it uses the new modifier to hide consts values in the base class. In a way, it's similar to Nap's solution, but doesn't allow per-instance access and therefore doesn't allow for polymorphic access within the base class. This solution is only useful if you want to have constant value defined but wish to have the option of changing it to different values in different subclasses.
static void Main(string[] args)
{
Console.WriteLine("BaseClass.MyConst = {0}, ClassA.MyConst = {1}, ClassB.MyConst = {2}", BaseClass.MyConst, ClassA.MyConst, ClassB.MyConst);
Console.ReadKey();
}
class BaseClass
{
public const int MyConst = 1;
}
class ClassA : BaseClass
{
public new const int MyConst = 2;
}
class ClassB : BaseClass
{
}

C# possible to have a constructor in an abstract class?

I have 1 abstract class that is calling a static method which up until now didn't require any parameters. This has recently changed. In reality the static method exists in another class and sets the value of BaseMessageDirectory, but in this example below I have simplified things...
So now I want to create my derived classes in such a way that they can initialize some required properties in the parent class during the inheritance, is this possible?
For example....
public abstract class ParentClass
{
protected string BaseMessageDirectory;
protected ParentClass(EnumOperationType operationType)
{
if(operationtype == 1)
{
BaseMessageDirectory = "one";
}
else
{
BaseMessageDirectory = "two";
}
}
}
Yes, you can define a constructor, and all child classes will have to call it:
public class Child : ParentClass
{
public Child() : base(EnumOperationType.One) { ... }
}

Interface defining a constructor signature?

It's weird that this is the first time I've bumped into this problem, but:
How do you define a constructor in a C# interface?
Edit
Some people wanted an example (it's a free time project, so yes, it's a game)
IDrawable
+Update
+Draw
To be able to Update (check for edge of screen etc) and draw itself it will always need a GraphicsDeviceManager. So I want to make sure the object has a reference to it. This would belong in the constructor.
Now that I wrote this down I think what I'm implementing here is IObservable and the GraphicsDeviceManager should take the IDrawable...
It seems either I don't get the XNA framework, or the framework is not thought out very well.
Edit
There seems to be some confusion about my definition of constructor in the context of an interface. An interface can indeed not be instantiated so doesn't need a constructor. What I wanted to define was a signature to a constructor. Exactly like an interface can define a signature of a certain method, the interface could define the signature of a constructor.
You can't. It's occasionally a pain, but you wouldn't be able to call it using normal techniques anyway.
In a blog post I've suggested static interfaces which would only be usable in generic type constraints - but could be really handy, IMO.
One point about if you could define a constructor within an interface, you'd have trouble deriving classes:
public class Foo : IParameterlessConstructor
{
public Foo() // As per the interface
{
}
}
public class Bar : Foo
{
// Yikes! We now don't have a parameterless constructor...
public Bar(int x)
{
}
}
As already well noted, you can't have constructors on an Interface. But since this is such a highly ranked result in Google some 7 years later, I thought I would chip in here - specifically to show how you could use an abstract base class in tandem with your existing Interface and maybe cut down on the amount of refactoring needed in the future for similar situations. This concept has already been hinted at in some of the comments but I thought it would be worth showing how to actually do it.
So you have your main interface that looks like this so far:
public interface IDrawable
{
void Update();
void Draw();
}
Now create an abstract class with the constructor you want to enforce. Actually, since it's now available since the time you wrote your original question, we can get a little fancy here and use generics in this situation so that we can adapt this to other interfaces that might need the same functionality but have different constructor requirements:
public abstract class MustInitialize<T>
{
public MustInitialize(T parameters)
{
}
}
Now you'll need to create a new class that inherits from both the IDrawable interface and the MustInitialize abstract class:
public class Drawable : MustInitialize<GraphicsDeviceManager>, IDrawable
{
GraphicsDeviceManager _graphicsDeviceManager;
public Drawable(GraphicsDeviceManager graphicsDeviceManager)
: base (graphicsDeviceManager)
{
_graphicsDeviceManager = graphicsDeviceManager;
}
public void Update()
{
//use _graphicsDeviceManager here to do whatever
}
public void Draw()
{
//use _graphicsDeviceManager here to do whatever
}
}
Then just create an instance of Drawable and you're good to go:
IDrawable drawableService = new Drawable(myGraphicsDeviceManager);
The cool thing here is that the new Drawable class we created still behaves just like what we would expect from an IDrawable.
If you need to pass more than one parameter to the MustInitialize constructor, you can create a class that defines properties for all of the fields you'll need to pass in.
A very late contribution demonstrating another problem with interfaced constructors. (I choose this question because it has the clearest articulation of the problem). Suppose we could have:
interface IPerson
{
IPerson(string name);
}
interface ICustomer
{
ICustomer(DateTime registrationDate);
}
class Person : IPerson, ICustomer
{
Person(string name) { }
Person(DateTime registrationDate) { }
}
Where by convention the implementation of the "interface constructor" is replaced by the type name.
Now make an instance:
ICustomer a = new Person("Ernie");
Would we say that the contract ICustomer is obeyed?
And what about this:
interface ICustomer
{
ICustomer(string address);
}
You can't.
Interfaces define contracts that other objects implement and therefore have no state that needs to be initialized.
If you have some state that needs to be initialized, you should consider using an abstract base class instead.
I was looking back at this question and I thought to myself, maybe we are aproaching this problem the wrong way. Interfaces might not be the way to go when it concerns defining a constructor with certain parameters... but an (abstract) base class is.
If you create a base class with a constructor on there that accepts the parameters you need, every class that derrives from it needs to supply them.
public abstract class Foo
{
protected Foo(SomeParameter x)
{
this.X = x;
}
public SomeParameter X { get; private set }
}
public class Bar : Foo // Bar inherits from Foo
{
public Bar()
: base(new SomeParameter("etc...")) // Bar will need to supply the constructor param
{
}
}
It is not possible to create an interface that defines constructors, but it is possible to define an interface that forces a type to have a paramerterless constructor, though be it a very ugly syntax that uses generics... I am actually not so sure that it is really a good coding pattern.
public interface IFoo<T> where T : new()
{
void SomeMethod();
}
public class Foo : IFoo<Foo>
{
// This will not compile
public Foo(int x)
{
}
#region ITest<Test> Members
public void SomeMethod()
{
throw new NotImplementedException();
}
#endregion
}
On the other hand, if you want to test if a type has a paramerterless constructor, you can do that using reflection:
public static class TypeHelper
{
public static bool HasParameterlessConstructor(Object o)
{
return HasParameterlessConstructor(o.GetType());
}
public static bool HasParameterlessConstructor(Type t)
{
// Usage: HasParameterlessConstructor(typeof(SomeType))
return t.GetConstructor(new Type[0]) != null;
}
}
Hope this helps.
One way to solve this problem i found is to seperate out the construction into a seperate factory. For example I have an abstract class called IQueueItem, and I need a way to translate that object to and from another object (CloudQueueMessage). So on the interface IQueueItem i have -
public interface IQueueItem
{
CloudQueueMessage ToMessage();
}
Now, I also need a way for my actual queue class to translate a CloudQueueMessage back to a IQueueItem - ie the need for a static construction like IQueueItem objMessage = ItemType.FromMessage. Instead I defined another interface IQueueFactory -
public interface IQueueItemFactory<T> where T : IQueueItem
{
T FromMessage(CloudQueueMessage objMessage);
}
Now I can finally write my generic queue class without the new() constraint which in my case was the main issue.
public class AzureQueue<T> where T : IQueueItem
{
private IQueueItemFactory<T> _objFactory;
public AzureQueue(IQueueItemFactory<T> objItemFactory)
{
_objFactory = objItemFactory;
}
public T GetNextItem(TimeSpan tsLease)
{
CloudQueueMessage objQueueMessage = _objQueue.GetMessage(tsLease);
T objItem = _objFactory.FromMessage(objQueueMessage);
return objItem;
}
}
now I can create an instance that satisfies the criteria for me
AzureQueue<Job> objJobQueue = new JobQueue(new JobItemFactory())
hopefully this helps someone else out someday, obviously a lot of internal code removed to try to show the problem and solution
One way to solve this problem is to leverage generics and the new() constraint.
Instead of expressing your constructor as a method/function, you can express it as a factory class/interface. If you specify the new() generic constraint on every call site that needs to create an object of your class, you will be able to pass constructor arguments accordingly.
For your IDrawable example:
public interface IDrawable
{
void Update();
void Draw();
}
public interface IDrawableConstructor<T> where T : IDrawable
{
T Construct(GraphicsDeviceManager manager);
}
public class Triangle : IDrawable
{
public GraphicsDeviceManager Manager { get; set; }
public void Draw() { ... }
public void Update() { ... }
public Triangle(GraphicsDeviceManager manager)
{
Manager = manager;
}
}
public TriangleConstructor : IDrawableConstructor<Triangle>
{
public Triangle Construct(GraphicsDeviceManager manager)
{
return new Triangle(manager);
}
}
Now when you use it:
public void SomeMethod<TBuilder>(GraphicsDeviceManager manager)
where TBuilder: IDrawableConstructor<Triangle>, new()
{
// If we need to create a triangle
Triangle triangle = new TBuilder().Construct(manager);
// Do whatever with triangle
}
You can even concentrate all creation methods in a single class using explicit interface implementation:
public DrawableConstructor : IDrawableConstructor<Triangle>,
IDrawableConstructor<Square>,
IDrawableConstructor<Circle>
{
Triangle IDrawableConstructor<Triangle>.Construct(GraphicsDeviceManager manager)
{
return new Triangle(manager);
}
Square IDrawableConstructor<Square>.Construct(GraphicsDeviceManager manager)
{
return new Square(manager);
}
Circle IDrawableConstructor<Circle>.Construct(GraphicsDeviceManager manager)
{
return new Circle(manager);
}
}
To use it:
public void SomeMethod<TBuilder, TShape>(GraphicsDeviceManager manager)
where TBuilder: IDrawableConstructor<TShape>, new()
{
// If we need to create an arbitrary shape
TShape shape = new TBuilder().Construct(manager);
// Do whatever with the shape
}
Another way is by using lambda expressions as initializers. At some point early in the call hierarchy, you will know which objects you will need to instantiate (i.e. when you are creating or getting a reference to your GraphicsDeviceManager object). As soon as you have it, pass the lambda
() => new Triangle(manager)
to subsequent methods so they will know how to create a Triangle from then on. If you can't determine all possible methods that you will need, you can always create a dictionary of types that implement IDrawable using reflection and register the lambda expression shown above in a dictionary that you can either store in a shared location or pass along to further function calls.
The generic factory approach still seems ideal. You would know that the factory requires a parameter, and it would just so happen that those parameters are passed along to the constructor of the object being instantiated.
Note, this is just syntax verified pseudo code, there may be a run-time caveat I'm missing here:
public interface IDrawableFactory
{
TDrawable GetDrawingObject<TDrawable>(GraphicsDeviceManager graphicsDeviceManager)
where TDrawable: class, IDrawable, new();
}
public class DrawableFactory : IDrawableFactory
{
public TDrawable GetDrawingObject<TDrawable>(GraphicsDeviceManager graphicsDeviceManager)
where TDrawable : class, IDrawable, new()
{
return (TDrawable) Activator
.CreateInstance(typeof(TDrawable),
graphicsDeviceManager);
}
}
public class Draw : IDrawable
{
//stub
}
public class Update : IDrawable {
private readonly GraphicsDeviceManager _graphicsDeviceManager;
public Update() { throw new NotImplementedException(); }
public Update(GraphicsDeviceManager graphicsDeviceManager)
{
_graphicsDeviceManager = graphicsDeviceManager;
}
}
public interface IDrawable
{
//stub
}
public class GraphicsDeviceManager
{
//stub
}
An example of possible usage:
public void DoSomething()
{
var myUpdateObject = GetDrawingObject<Update>(new GraphicsDeviceManager());
var myDrawObject = GetDrawingObject<Draw>(null);
}
Granted, you'd only want the create instances via the factory to guarantee you always have an appropriately initialized object. Perhaps using a dependency injection framework like AutoFac would make sense; Update() could "ask" the IoC container for a new GraphicsDeviceManager object.
You could do this with generics trick, but it still is vulnerable to what Jon Skeet wrote:
public interface IHasDefaultConstructor<T> where T : IHasDefaultConstructor<T>, new()
{
}
Class that implements this interface must have parameterless constructor:
public class A : IHasDefaultConstructor<A> //Notice A as generic parameter
{
public A(int a) { } //compile time error
}
The purpose of an interface is to enforce a certain object signature. It should explicitly not be concerned with how an object works internally. Therefore, a constructor in an interface does not really make sense from a conceptual point of view.
There are some alternatives though:
Create an abstract class that acts as a minimal default implementation.
That class should have the constructors you expect implementing classes
to have.
If you don't mind the overkill, use the AbstractFactory pattern and
declare a method in the factory class interface that has the required
signatures.
Pass the GraphicsDeviceManager as a parameter to the Update and Draw methods.
Use a Compositional Object Oriented Programming framework to pass the GraphicsDeviceManager into the part of the object that requires it. This is a pretty experimental solution in my opinion.
The situation you describe is not easy to handle in general. A similar case would be entities in a business application that require access to the database.
you don't.
the constructor is part of the class that can implement an interface. The interface is just a contract of methods the class must implement.
It would be very useful if it were possible to define constructors in interfaces.
Given that an interface is a contract that must be used in the specified way. The following approach might be a viable alternative for some scenarios:
public interface IFoo {
/// <summary>
/// Initialize foo.
/// </summary>
/// <remarks>
/// Classes that implement this interface must invoke this method from
/// each of their constructors.
/// </remarks>
/// <exception cref="InvalidOperationException">
/// Thrown when instance has already been initialized.
/// </exception>
void Initialize(int a);
}
public class ConcreteFoo : IFoo {
private bool _init = false;
public int b;
// Obviously in this case a default value could be used for the
// constructor argument; using overloads for purpose of example
public ConcreteFoo() {
Initialize(42);
}
public ConcreteFoo(int a) {
Initialize(a);
}
public void Initialize(int a) {
if (_init)
throw new InvalidOperationException();
_init = true;
b = a;
}
}
One way to force some sort of constructor is to declare only Getters in interface, which could then mean that the implementing class must have a method, ideally a constructor, to have the value set (privately) for it.
While you can't define a constructor signature in an interface, I feel it's worth mentioning that this may be a spot to consider an abstract class. Abstract classes can define unimplemented (abstract) method signatures in the same way as an interface, but can also have implemented (concrete) methods and constructors.
The downside is that, because it is a type of class, it cannot be used for any of the multiple inheritance type scenarios that an interface can.
I use the following pattern to make it bulletproof.
A developer who derives his class from the base can't accidentally create a public accessible constructor
The final class developer are forced to go through the common create method
Everything is type-safe, no castings are required
It's 100% flexible and can be reused everywhere, where you can define your own base
class.
Try it out you can't break it without making modifications to the base classes (except
if you define an obsolete flag without error flag set to true, but even then you end up with a warning)
public abstract class Base<TSelf, TParameter>
where TSelf : Base<TSelf, TParameter>, new()
{
protected const string FactoryMessage = "Use YourClass.Create(...) instead";
public static TSelf Create(TParameter parameter)
{
var me = new TSelf();
me.Initialize(parameter);
return me;
}
[Obsolete(FactoryMessage, true)]
protected Base()
{
}
protected virtual void Initialize(TParameter parameter)
{
}
}
public abstract class BaseWithConfig<TSelf, TConfig>: Base<TSelf, TConfig>
where TSelf : BaseWithConfig<TSelf, TConfig>, new()
{
public TConfig Config { get; private set; }
[Obsolete(FactoryMessage, true)]
protected BaseWithConfig()
{
}
protected override void Initialize(TConfig parameter)
{
this.Config = parameter;
}
}
public class MyService : BaseWithConfig<MyService, (string UserName, string Password)>
{
[Obsolete(FactoryMessage, true)]
public MyService()
{
}
}
public class Person : Base<Person, (string FirstName, string LastName)>
{
[Obsolete(FactoryMessage,true)]
public Person()
{
}
protected override void Initialize((string FirstName, string LastName) parameter)
{
this.FirstName = parameter.FirstName;
this.LastName = parameter.LastName;
}
public string LastName { get; private set; }
public string FirstName { get; private set; }
}
[Test]
public void FactoryTest()
{
var notInitilaizedPerson = new Person(); // doesn't compile because of the obsolete attribute.
Person max = Person.Create(("Max", "Mustermann"));
Assert.AreEqual("Max",max.FirstName);
var service = MyService.Create(("MyUser", "MyPassword"));
Assert.AreEqual("MyUser", service.Config.UserName);
}
EDIT:
And here is an example based on your drawing example that even enforces interface abstraction
public abstract class BaseWithAbstraction<TSelf, TInterface, TParameter>
where TSelf : BaseWithAbstraction<TSelf, TInterface, TParameter>, TInterface, new()
{
[Obsolete(FactoryMessage, true)]
protected BaseWithAbstraction()
{
}
protected const string FactoryMessage = "Use YourClass.Create(...) instead";
public static TInterface Create(TParameter parameter)
{
var me = new TSelf();
me.Initialize(parameter);
return me;
}
protected virtual void Initialize(TParameter parameter)
{
}
}
public abstract class BaseWithParameter<TSelf, TInterface, TParameter> : BaseWithAbstraction<TSelf, TInterface, TParameter>
where TSelf : BaseWithParameter<TSelf, TInterface, TParameter>, TInterface, new()
{
protected TParameter Parameter { get; private set; }
[Obsolete(FactoryMessage, true)]
protected BaseWithParameter()
{
}
protected sealed override void Initialize(TParameter parameter)
{
this.Parameter = parameter;
this.OnAfterInitialize(parameter);
}
protected virtual void OnAfterInitialize(TParameter parameter)
{
}
}
public class GraphicsDeviceManager
{
}
public interface IDrawable
{
void Update();
void Draw();
}
internal abstract class Drawable<TSelf> : BaseWithParameter<TSelf, IDrawable, GraphicsDeviceManager>, IDrawable
where TSelf : Drawable<TSelf>, IDrawable, new()
{
[Obsolete(FactoryMessage, true)]
protected Drawable()
{
}
public abstract void Update();
public abstract void Draw();
}
internal class Rectangle : Drawable<Rectangle>
{
[Obsolete(FactoryMessage, true)]
public Rectangle()
{
}
public override void Update()
{
GraphicsDeviceManager manager = this.Parameter;
// TODo manager
}
public override void Draw()
{
GraphicsDeviceManager manager = this.Parameter;
// TODo manager
}
}
internal class Circle : Drawable<Circle>
{
[Obsolete(FactoryMessage, true)]
public Circle()
{
}
public override void Update()
{
GraphicsDeviceManager manager = this.Parameter;
// TODo manager
}
public override void Draw()
{
GraphicsDeviceManager manager = this.Parameter;
// TODo manager
}
}
[Test]
public void FactoryTest()
{
// doesn't compile because interface abstraction is enforced.
Rectangle rectangle = Rectangle.Create(new GraphicsDeviceManager());
// you get only the IDrawable returned.
IDrawable service = Circle.Create(new GraphicsDeviceManager());
}

Categories