Calling Method (with any parameter) from parameter - c#

I am trying to write a game with OpenTK.
I want to check the error everytime I call something from GL class.
so, let say, I have this class:
public static class GLCheck
{
public static void Call(function f)
{
// Call f function
CheckError();
}
public static void CheckError()
{
ErrorCode errorCode = GL.GetError();
if (errorCode != ErrorCode.NoError)
Console.WriteLine("Error!");
}
}
so I can call function like this:
GLCheck.Call(GL.ClearColor(Color.White));
GLCheck.Call(GL.MatrixMode(MatrixMode.Modelview));
GLCheck.Call(GL.PushMatrix());
how can I do this?
thanks
----------------- Answer: -----------------
thanks for the answer!
I just realize all answers are using Delegate (Action or Func<>)
On .NET 2.0, this is not available, so you must create your own, here my GLCheck Class:
public static class GLCheck
{
public delegate void Action();
public delegate void Action<T1, T2>(T1 arg1, T2 arg2);
public delegate void Action<T1, T2, T3>(T1 arg1, T2 arg2, T3 arg3);
public delegate void Action<T1, T2, T3, T4>(T1 arg1, T2 arg2, T3 arg3, T4 arg4);
public delegate TResult Func<TResult>();
public delegate TResult Func<T, TResult>(T arg);
public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2);
public delegate TResult Func<T1, T2, T3, TResult>(T1 arg1, T2 arg2, T3 arg3);
public delegate TResult Func<T1, T2, T3, T4, TResult>(T1 arg1, T2 arg2, T3 arg3, T4 arg4);
public static void Call(Action callback)
{
callback();
CheckError();
}
public static void Call<T>(Action<T> func, T parameter)
{
func(parameter);
CheckError();
}
}
Once again, thanks for the answer!

It won't be quite as tidy, but you can do this pretty easily with Lambda functions:
GLCheck.Call(() => GL.ClearColor(Color.White));
GLCheck.Call(() => GL.MatrixMode(MatrixMode.Modelview));
GLCheck.Call(() => GL.PushMatrix());
And Call would be defined like this:
public static void Call(Action a)
{
a();
CheckError();
}
In the case of methods GL methods without parameters, you can pass them in a bit more cleanly:
GLCheck.Call(GL.PushMatrix);
(note that there are no () after PushMatrix.)

You can use generics to create something like this:
private void Call<T> (Action<T> func, T parameter)
{
func(parameter);
CheckError();
}
where T would be a parameter. Or you can use exceptions as suggested.

Maybe you should just write your own API on top of the GL, thus resulting in much cleaner code. ie
public class MyGL
{
private TypeHere GL = new TypeHere();
public void ClearColor(Color color)
{
GL.ClearColor(color);
CheckError();
}
private void CheckError()
{
ErrorCode errorCode = GL.GetError();
if (errorCode != ErrorCode.NoError)
Console.WriteLine("Error!");
}
}
And thus you can call it with much more clear and readable code
MyGL.ClearColor(Color.White);

Related

Flat map discriminated unions

I'm using a lib off Github called OneOf.
Basically you have one type that can be one of many types, but in a statically safe way.
Below is an example of what I'm trying to achieve.
I have type A<T1, T2, T3, T4>, and type B<T1, T2, T3>, I'd like to "flapmap" type B into type A. Since type A can accept any single T from B, it should be possible.
The compiler forces me to extract each T from B before assigning it to A, as you can see by the silly x => x lambdas below.
I don't want to end up with some like A<B<T1, T2, T3>, T4> either.
So can anyone think of basically a SelectMany for these OneOf types?
using OneOf;
using System;
using System.IO;
namespace ScratchPad
{
class Program
{
struct BadRequest { }
struct Error { }
struct NotFound { }
static void Main(string[] arg)
{
string result = GetFile(#"c:\data\foo.txt").Match(
text => text,
badRequest => "filepath cannot be null",
notFound => "filepath does not exist",
error => "an error occurred"
);
Console.WriteLine(result);
}
static OneOf<string, BadRequest, NotFound, Error> GetFile(string filepath)
{
OneOf<string, BadRequest, NotFound, Error> response = new BadRequest();
if (filepath != null)
{
// How can I make the type from ReadText() automatically convert to the type of the response local variable, without having to write these silly lambda?
response = ReadText(filepath).Match<OneOf<string, BadRequest, NotFound, Error>>(x => x, x => x, x => x);
}
return response;
}
static OneOf<string, NotFound, Error> ReadText(string filepath)
{
OneOf<string, NotFound, Error> response = new NotFound();
try
{
if (File.Exists(filepath))
{
response = File.ReadAllText(filepath);
}
}
catch
{
response = new Error();
}
return response;
}
}
}
Extension methods could be a way.
An example, just out of my head, converting 3 to 4 types:
public static class OneOfExtensions
{
public static OneOf<T1, T2, T3, T4> ConvertOneOf<T1, T2, T3, T4>(this OneOf<T1, T2, T3> oneOf)
{
return oneOf.Match<OneOf<T1, T2, T3, T4>>(x => x, x => x, x=> x);
}
public static OneOf<T1, T2, T3, T4> ConvertOneOf<T1, T2, T3, T4>(this OneOf<T1, T2, T4> oneOf)
{
return oneOf.Match<OneOf<T1, T2, T3, T4>>(x => x, x => x, x=> x);
}
public static OneOf<T1, T2, T3, T4> ConvertOneOf<T1, T2, T3, T4>(this OneOf<T1, T3, T4> oneOf)
{
return oneOf.Match<OneOf<T1, T2, T3, T4>>(x => x, x => x, x=> x);
}
public static OneOf<T1, T2, T3, T4> ConvertOneOf<T1, T2, T3, T4>(this OneOf<T2, T3, T4> oneOf)
{
return oneOf.Match<OneOf<T1, T2, T3, T4>>(x => x, x => x, x=> x);
}
}
It's not particularly pretty, but it should keep your code relatively clean.

Func<> with unknown number of parameters

Consider the following pseudo code:
TResult Foo<TResult>(Func<T1, T2,...,Tn, TResult> f, params object[] args)
{
TResult result = f(args);
return result;
}
The function accepts Func<> with unknown number of generic parameters and a list of the corresponding arguments. Is it possible to write it in C#? How to define and call Foo? How do I pass args to f?
You can use Delegate with DynamicInvoke.
With that, you don't need to handle with object[] in f.
TResult Foo<TResult>(Delegate f, params object[] args)
{
var result = f.DynamicInvoke(args);
return (TResult)Convert.ChangeType(result, typeof(TResult));
}
Usage:
Func<string, int, bool, bool> f = (name, age, active) =>
{
if (name == "Jon" && age == 40 && active)
{
return true;
}
return false;
};
Foo<bool>(f,"Jon", 40, true);
I created a fiddle showing some examples: https://dotnetfiddle.net/LdmOqo
Note:
If you want to use a method group, you need to use an explict casting to Func:
public static bool Method(string name, int age)
{
...
}
var method = (Func<string, int, bool>)Method;
Foo<bool>(method, "Jon", 40);
Fiddle: https://dotnetfiddle.net/3ZPLsY
That's not possible. At best, you could have a delegate that also takes a variable number of arguments, and then have the delegate parse the arguments
TResult Foo<TResult>(Func<object[], TResult> f, params object[] args)
{
TResult result = f(args);
return result;
}
Foo<int>(args =>
{
var name = args[0] as string;
var age = (int) args[1];
//...
return age;
}, arg1, arg2, arg3);
This could become easy with lambda expressions:
TResult Foo<TResult>(Func<TResult> f)
{
return f();
}
Then usage could be like:
var result = Foo<int>(() => method(arg1, arg2, arg3));
Where method can be arbitrary method returning int.
This way you can pass any number of any erguments directly through lambda.
To support asynchoronous code we can define:
Task<TResult> Foo<TResult>(Func<Task<TResult>> f)
{
return f();
}
// or with cancellation token
Task<TResult> Foo<TResult>(Func<CancellationToken, Task<TResult>> f, CancellationToken cancellationToken)
{
return f(cancellationToken);
}
and use it like:
var asyncResult = await Foo(async () => await asyncMethod(arg1, arg2, arg3));
// With cancellation token
var asyncResult = await Foo(
async (ct) => await asyncMethod(arg1, arg2, arg3, ct),
cancellationToken);
You could try something similar to what I posted here: https://stackoverflow.com/a/47556051/4681344
It will allow for any number of arguments, and enforces their types.
public delegate T ParamsAction<T>(params object[] args);
TResult Foo<TResult>(ParamsAction<TResult> f)
{
TResult result = f();
return result;
}
to call it, simply......
Foo(args => MethodToCallback("Bar", 123));
In some cases you may be able to get away with a trick like this:
public static class MyClass
{
private static T CommonWorkMethod<T>(Func<T> wishMultipleArgsFunc)
{
// ... do common preparation
T returnValue = wishMultipleArgsFunc();
// ... do common cleanup
return returnValue;
}
public static int DoCommonWorkNoParams() => CommonWorkMethod<int>(ProduceIntWithNoParams);
public static long DoCommonWorkWithLong(long p1) => CommonWorkMethod<long>(() => ProcessOneLong(p1));
public static string DoCommonWorkWith2Params(int p1, long p2) => CommonWorkMethod<string>(() => ConvertToCollatedString(p1, p2));
private static int ProduceIntWithNoParams() { return 5; }
}
Although it is not really what asked, a simple workaround would be to define several Foo method with different number of type arguments.
It is uncommon to have function with more than 6 parameters, so one could define the following method and get away with almost every use case, while staying type safe. Renan's solution could then be used for the remaining cases.
public TResult Foo<TResult> (Func<TResult> f)
{
return f();
}
public TResult Foo<T1, TResult>(Func<T1, TResult> f, T1 t1)
{
return f(t1);
}
public TResult Foo<T1, T2, TResult>(Func<T1, T2, TResult> f, T1 t1, T2 t2)
{
return f(t1, t2);
}
...

is it possible to convert Func<T1,T2,TResult> to Func<T2,T1,TResult>

First, foo is a Func<T1,T2,TResult> object.
Is is possible do something like
Func<T2,T1,TResult> bar = ConvertFunction(foo);
thus convert Func<T1,T2,TResult> to Func<T2,T1,TResult>.
Yes, that's possible:
Func<T2, T1, TResult> bar = (t2, t1) => foo(t1, t2);
That basically creates another delegate with switched parameters that internally simply calls the original delegate.
This is the only way to perform this kind of "conversion" if you only have a Func<T1, T2, TResult> and not a Expression<Func<T1, T2, TResult>>.
Here's the function:
class MyFuncConverter<T1, T2, TResult>
{
static Func<T1, T2, TResult> _foo;
public static Func<T2, T1, TResult> ConvertFunction(Func<T1, T2, TResult> foo)
{
_foo = foo;
return new Func<T2, T1, TResult>(MyFunc);
}
private static TResult MyFunc(T2 arg2, T1 arg1)
{
return _foo(arg1, arg2);
}
}
Sample usage:
static void Main(string[] args)
{
var arg1 = 10;
var arg2 = "abc";
// create a Func with parameters in reversed order
Func<string, int, string> testStringInt =
MyFuncConverter<int, string, string>.ConvertFunction(TestIntString);
var result1 = TestIntString(arg1, arg2);
var result2 = testStringInt(arg2, arg1);
// testing results
Console.WriteLine(result1 == result2);
}
/// <summary>
/// Sample method
/// </summary>
private static string TestIntString(int arg1, string arg2)
{
byte[] toEncodeAsBytes = System.Text.ASCIIEncoding.ASCII
.GetBytes(arg2.ToString() + arg1);
string returnValue = System.Convert.ToBase64String(toEncodeAsBytes);
return returnValue;
}

Pass a method with N params as parameter in C#

I have several methods all returning void with different signature (parameters) and different names. I need to pass those methods as a parameter in a generic method that will invoke it latter. Also that need to be as transparent as possible.
Following what I got so far:
private void button1_Click(object sender, EventArgs e)
{
Action<string,int> TestHandler = Test;
InvokeMyMethod(TestHandler);
Action<string, int,object > TestHandlerN = TestN;
InvokeMyMethod(TestHandlerN);
}
public void InvokeMyMethod(Delegate Method)
{
object[] args = new object[X];
Method.DynamicInvoke();
}
public void Test(string t1, int t2)
{
MessageBox.Show(t1 + t2);
}
public void TestN(string t1, int t2, object t3)
{
MessageBox.Show(t1 + t2);
}
That is what I need:
private void button1_Click(object sender, EventArgs e)
{
InvokeMyMethod(Test);
InvokeMyMethod(TestN);
}
public void InvokeMyMethod(XXX_Type Method)
{
object[] args = new object[X];
Method.DynamicInvoke(args);
}
public void Test(string t1, int t2)
{
MessageBox.Show(t1 + t2);
}
public void TestN(string t1, int t2, object t3)
{
MessageBox.Show(t1 + t2);
}
This doesn't answer your question directly, but here is how I solve a similar problem:
public static partial class Lambda
{
public static Action Pin<T0>
(
this Action<T0> action,
T0 arg0
)
{
return () => action(arg0);
}
public static Func<TResult> Pin<T0, TResult>
(
this Func<T0, TResult> func,
T0 arg0
)
{
return () => func(arg0);
}
public static Action Pin<T0, T1>
(
this Action<T0, T1> action,
T0 arg0,
T1 arg1
)
{
return () => action(arg0, arg1);
}
public static Func<TResult> Pin<T0, T1, TResult>
(
this Func<T0, T1, TResult> func,
T0 arg0,
T1 arg1
)
{
return () => func(arg0, arg1);
}
// More signatures omitted for brevity...
// I would love it if C# supported variadic template parameters :-)
}
The idea is that if you have an Action which requires arguments, you can say:
Action<int, string> foo;
Action a = foo.Pin(5, "bleh");
Have the code generator.
Likewise, you might want to have a way to curry to some other delegate type (like Action<string, int>). The difference between my method and yours is that mine is not late-bound, but you do not appear to be using late-binding anyway, so early-binding gives you some compile-time type safety.
I'm not sure you can do what I think you are asking. You call method.DynamicInvoke with some object[], but how did you get values for those parameters?
And to answer the question before anybody asks it, I created the Lambda.Pin functions because I was tired of making this mistake:
Action<int> foo;
foreach (int i in someList)
AddAction(() => foo(i));
public void InvokeMyMethod(Delegate method) {
Method.DynamicInvoke(new object[] {"Test", 1});
}
But you need to invoke it like
InvokeMyMethod((Action<string, int>)Test);

Refactor and Remove Duplication From this Memoization Code

I'm trying to remove some duplication from this code, and have it easily support functions with more parameters.
How would you improve this code and allow for more complex functions?
Also, I'm worried about my key generation, some objects won't serialize to a string distinctly, and just return their typename, not a unique value. Suggestions?
Edit: I've used ChaosPandion's answer, and got it down to this
using System;
using System.Web.Caching;
public static class Memoize
{
public static Cache LocalCache = System.Web.HttpRuntime.Cache ?? System.Web.HttpContext.Current.Cache;
public static TResult ResultOf<TArg1, TResult>(Func<TArg1, TResult> func, long durationInSeconds, TArg1 arg1)
{
var key = HashArguments(func.Method.Name, arg1);
return ResultOf(key, durationInSeconds, () => func(arg1));
}
public static TResult ResultOf<TArg1, TArg2, TResult>(Func<TArg1, TArg2, TResult> func, long durationInSeconds, TArg1 arg1, TArg2 arg2)
{
var key = HashArguments(func.Method.Name, arg1, arg2);
return ResultOf(key, durationInSeconds, () => func(arg1, arg2));
}
public static TResult ResultOf<TArg1, TArg2, TArg3, TResult>(Func<TArg1, TArg2, TArg3, TResult> func, long durationInSeconds, TArg1 arg1, TArg2 arg2, TArg3 arg3)
{
var key = HashArguments(func.Method.Name, arg1, arg2, arg3);
return ResultOf(key, durationInSeconds, () => func(arg1, arg2, arg3));
}
public static TResult ResultOf<TArg1, TArg2, TArg3, TArg4, TResult>(Func<TArg1, TArg2, TArg3, TArg4, TResult> func, long durationInSeconds, TArg1 arg1, TArg2 arg2, TArg3 arg3, TArg4 arg4)
{
var key = HashArguments(func.Method.Name, arg1, arg2, arg3, arg4);
return ResultOf(key, durationInSeconds, () => func(arg1, arg2, arg3, arg4));
}
private static TResult ResultOf<TResult>(string key, long durationInSeconds, Func<TResult> func)
{
return LocalCache.Get(key) != null
? (TResult)LocalCache.Get(key)
: CacheResult(key, durationInSeconds, func());
}
public static void Reset()
{
var enumerator = LocalCache.GetEnumerator();
while (enumerator.MoveNext())
LocalCache.Remove(enumerator.Key.ToString());
}
private static T CacheResult<T>(string key, long durationInSeconds, T value)
{
LocalCache.Insert(key, value, null, DateTime.Now.AddSeconds(durationInSeconds), new TimeSpan());
return value;
}
private static string HashArguments(params object[] args)
{
if (args == null)
return "noargs";
var result = 23;
for (var i = 0; i < args.Length; i++)
{
var arg = args[i];
if (arg == null)
{
result *= (31 * i + 1);
continue;
}
result *= (31 * arg.GetHashCode());
}
return result.ToString();
}
}
Here is my version which removes quite a bit of duplication and should produce a much more reliable range of keys.
EDIT
My latest version produces a pretty reliable distribution. Take a look at the example I placed in the Main method.
class Program
{
public static class Memoize
{
public static Cache LocalCache =
System.Web.HttpRuntime.Cache ?? System.Web.HttpContext.Current.Cache;
public static TResult ResultOf<TArg1, TResult>(
Func<TArg1, TResult> func,
TArg1 arg1,
long durationInSeconds)
{
var key = HashArguments(
func.Method.DeclaringType.GUID,
typeof(TArg1).GUID,
(object)arg1);
return Complete(key, durationInSeconds, () => func(arg1));
}
public static TResult ResultOf<TArg1, TArg2, TResult>(
Func<TArg1, TArg2, TResult> func,
TArg1 arg1,
TArg2 arg2,
long durationInSeconds)
{
var key = HashArguments(
func.Method.DeclaringType.GUID,
typeof(TArg1).GUID,
(object)arg1,
typeof(TArg2).GUID,
(object)arg2);
return Complete(key, durationInSeconds, () => func(arg1, arg2));
}
public static TResult ResultOf<TArg1, TArg2, TArg3, TResult>(
Func<TArg1, TArg2, TArg3, TResult> func,
TArg1 arg1,
TArg2 arg2,
TArg3 arg3,
long durationInSeconds)
{
var key = HashArguments(
func.Method.DeclaringType.GUID,
typeof(TArg1).GUID,
(object)arg1,
typeof(TArg2).GUID,
(object)arg2,
typeof(TArg3).GUID,
(object)arg3);
return Complete(key, durationInSeconds, () => func(arg1, arg2, arg3));
}
public static void Reset()
{
var enumerator = LocalCache.GetEnumerator();
while (enumerator.MoveNext())
LocalCache.Remove(enumerator.Key.ToString());
}
private static T CacheResult<T>(string key, long durationInSeconds, T value)
{
LocalCache.Insert(
key,
value,
null,
DateTime.Now.AddSeconds(durationInSeconds),
new TimeSpan());
return value;
}
static T Complete<T>(string key, long durationInSeconds, Func<T> valueFunc)
{
return LocalCache.Get(key) != null
? (T)LocalCache.Get(key)
: CacheResult(key, durationInSeconds, valueFunc());
}
static string HashArguments(params object[] args)
{
if (args == null)
return "null args";
int result = 23;
for (int i = 0; i < args.Length; i++)
{
var arg = args[i];
if (arg == null)
{
result = 31 * result + (i + 1);
continue;
}
result = 31 * result + arg.GetHashCode();
}
return result.ToString();
}
}
static int test(int a, int b)
{
return a + b;
}
private static class Inner
{
public static int test(int a, int b)
{
return a + b;
}
}
static int test(int a, object b)
{
return a + (int)b;
}
static void Main(string[] args)
{
Memoize.ResultOf<int, int, int>(test, 1, 2, 100000);
Memoize.ResultOf<int, int, int>(test, 2, 1, 100000);
Memoize.ResultOf<int, int, int>(Inner.test, 1, 2, 100000);
Memoize.ResultOf<int, int, int>(Inner.test, 2, 1, 100000);
Memoize.ResultOf<int, object, int>(test, 1, 2, 100000);
Memoize.ResultOf<int, object, int>(test, 2, 1, 100000);
}
}
The basic idea in ChaosPandion's code is correct, but there are some fatal flaws that must be fixed in order for this to work reliably.
1) Rather than using a hash of hashes, you need to make a genuinely unique key. One way would be to concatenate the string representations of each element in the parameter array, with a delimiter. This way, once a result has been memoized, it will consistently be retrieved, without false positives.
Chaos' trick with the GUID of the method is useful here, but this avoids the problem of depending on GetHashCode being truly unique as well as counting on a fairly simple hash of hashes to remain unique. Instead, the full string will get hashed, but there will be a full character-by-character comparison to rule out mismatches.
Admittedly, concatenating a big string is not particularly elegant and might even impact performance. Moreover, this still leaves you with the issue of classes whose ToString does not give instance-specific information. However, there are solutions for this based on reflection.
2) A very simple optimization would be to call LocalCache.Get just once in Complete. This is a potentially expensive operation, so there's really no excuse for doubling the cost.
Other than that, go with what ChaosPandion suggested.

Categories