I have a class that does some length calculations based on a height on a ticket. It's been in place for years and working quite well... Until we got a unique ticket size.
They are entered by sales people in inches and are normally nice numbers like 3, 4 or 3.5 and store in a database - This one is however 3.66666 recurring (or 11/3) But it is being entered as 3.666 and causing the calculation to fail due to lost precision.
I have thought of a bit of a hack to restore precision for certain numbers, but thought maybe someone knows of a better way of getting a 3.666 or a 93.1333 back to it's number + two thirds status?
Thanks,
Mick.
As you explained in comments I see your point now. I've checked the numbers:
168000 / 3.666 = 45826.5139
168000 / 3.666666 = 45818.1901488
168000 * 3 / 11 = 45818.1818182
It makes a difference of 8 tickets. I have a feeling that your issue can be solved in many ways. On the side of user input for example. Or on the side of database. But back to your question:
How do I convert 3.666 or a 93.1333 back to it's number + two thirds
status?
You are looking for converting decimal (or double) to fraction.
There is already a question on SO: Algorithm for simplifying decimal to fractions which has many answeres. I've tested some of them, and none of them were satisfying. Some of them don't even hanlde recurrence. Perhaps I've missed the correct one, you can look by yourself.
Anyway, I believe you don't need to fully implement a conversion from 1.666 to 3/2, since it's not easy and you have a real-world sizes. You've said, that most of the time numbers are aroung 3, 3.5, 4 etc. So I suggest you to take a look at a question I've linked above and search for an algorythm of detecting the recurrence number. It was also discussed here How to know the repeating decimal in a fraction?
After what just convert 1.666 to 1.666666, since 1/1000000 of inch won't mess your calculations, as numbers above show.
It would be difficult to get the accurate value of double as double is floating point.
The MSDN says:
Remember that a floating-point number
can only approximate a decimal number,
and that the precision of a
floating-point number determines how
accurately that number approximates a
decimal number. By default, a Double
value contains 15 decimal digits of
precision, although a maximum of 17
digits is maintained internally. The
precision of a floating-point number
has several consequences:
Two floating-point numbers that appear equal for a particular
precision might not compare equal
because their least significant digits
are different.
A mathematical or comparison operation that uses a floating-point
number might not yield the same result
if a decimal number is used because
the floating-point number might not
exactly approximate the decimal
number.
I looked at decimal in C# but I wasnt 100% sure what it did.
Is it lossy? in C# writing 1.0000000000001f+1.0000000000001f results in 2 when using float (double gets you 2.0000000000002 which is correct) is it possible to add two things with decimal and not get the correct answer?
How many decimal places can I use? I see the MaxValue is 79228162514264337593543950335 but if i subtract 1 how many decimal places can I use?
Are there quirks I should know of? In C# its 128bits, in other language how many bits is it and will it work the same way as C# decimal does? (when adding, dividing, multiplication)
What you're showing isn't decimal - it's float. They're very different types. f is the suffix for float, aka System.Single. m is the suffix for decimal, aka System.Decimal. It's not clear from your question whether you thought this was actually using decimal, or whether you were just using float to demonstrate your fears.
If you use 1.0000000000001m + 1.0000000000001m you'll get exactly the right value. Note that the double version wasn't able to express either of the individual values exactly, by the way.
I have articles on both kinds of floating point in .NET, and you should read them thoroughly, along other resources:
Binary floating point (float/double)
Decimal floating point (decimal)
All floating point types have their limits of course, but in particular you should not expect binary floating point to accurately represent decimal values such as 0.1. It still can't represent anything that isn't exactly representable in 28/29 decimal digits though - so if you divide 1 by 3, you won't get the exact answer of course.
You should also note that the range of decimal is considerably smaller than that of double. So while it can have 28-29 decimal digits of precision, you can't represent truly huge numbers (e.g. 10200) or miniscule numbers (e.g. 10-200).
Decimals in programming are (almost) never 100% accurate. Sometimes it's even better to multiply the decimal value with a very high number and then calculate, but that's only if you're for example sure that the value is always between 0 and 100(so it won't get out of range of the maxvalue)
Floting point is inherently imprecise. Some numbers can't be represented faithfully. Decimal is a large floating point with high precision. If you look on the page at msdn you can see there are "28-29 significant digits." The .net framework classes are language agnostic. they will work the same in every language that uses .net.
edit (in response to Jon Skeet): If you initialize the Decimal class with the numbers above, which are less than 28 digits each after the decimal point, the number will be stored faithfully as long as the binary representation is exact. Since it works in 64-bit format, I assume the 128-bit will handle it perfectly fine. Some numbers, such as 0.1, will never be exactly representable because they are a repeating sequence in binary.
We are storing financial data in a SQL Server database using the decimal data type and we need 6-8 digits of precision in the decimal. When we get this value back through our data access layer into our C# server, it is coming back as the decimal data type.
Due to some design constraints that are beyond my control, this needs to be converted. Converting to a string isn't a problem. Converting to a double is as the MS documentation says "[converting from decimal to double] can produce round-off errors because a double-precision floating-point number has fewer significant digits than a decimal."
As the double (or string) we can round to 2 decimal places after any calculations are done, so what is the "right" way to do the decimal conversion to ensure that we don't lose any precision before the rounding?
The conversion won't produce errors within the first 8 digits. double has 15-16 digits of precision - less than the 28-29 of decimal, but enough for your purposes by the sounds of it.
You should definitely put in place some sort of plan to avoid using double in the future, however - it's an unsuitable datatype for financial calculations.
If you round to 2dp, IMO the "right" way would be store an integer that is the multiple - i.e. for 12.34 you store the integer 1234. No more double rounding woe.
If you must use double, this still works; all integers are guaranteed to be stored exactly in double - so still use the same trick.
This question already has answers here:
Closed 13 years ago.
Possible Duplicate:
Why is floating point arithmetic in C# imprecise?
I have been dealing with some numbers and C#, and the following line of code results in a different number than one would expect:
double num = (3600.2 - 3600.0);
I expected num to be 0.2, however, it turned out to be 0.1999999999998181. Is there any reason why it is producing a close, but still different decimal?
This is because double is a floating point datatype.
If you want greater accuracy you could switch to using decimal instead.
The literal suffix for decimal is m, so to use decimal arithmetic (and produce a decimal result) you could write your code as
var num = (3600.2m - 3600.0m);
Note that there are disadvantages to using a decimal. It is a 128 bit datatype as opposed to 64 bit which is the size of a double. This makes it more expensive both in terms of memory and processing. It also has a much smaller range than double.
There is a reason.
The reason is, that the way the number is stored in memory, in case of the double data type, doesn't allow for an exact representation of the number 3600.2. It also doesn't allow for an exact representation of the number 0.2.
0.2 has an infinite representation in binary. If You want to store it in memory or processor registers, to perform some calculations, some number close to 0.2 with finite representation is stored instead. It may not be apparent if You run code like this.
double num = (0.2 - 0.0);
This is because in this case, all binary digits available for representing numbers in double data type are used to represent the fractional part of the number (there is only the fractional part) and the precision is higher. If You store the number 3600.2 in an object of type double, some digits are used to represent the integer part - 3600 and there is less digits representing fractional part. The precision is lower and fractional part that is in fact stored in memory differs from 0.2 enough, that it becomes apparent after conversion from double to string
Change your type to decimal:
decimal num = (3600.2m - 3600.0m);
You should also read this.
See Wikipedia
Can't explain it better. I can also suggest reading What Every Computer Scientist Should Know About Floating-Point Arithmetic. Or see related questions on StackOverflow.
I can name three advantages to using double (or float) instead of decimal:
Uses less memory.
Faster because floating point math operations are natively supported by processors.
Can represent a larger range of numbers.
But these advantages seem to apply only to calculation intensive operations, such as those found in modeling software. Of course, doubles should not be used when precision is required, such as financial calculations. So are there any practical reasons to ever choose double (or float) instead of decimal in "normal" applications?
Edited to add:
Thanks for all the great responses, I learned from them.
One further question: A few people made the point that doubles can more precisely represent real numbers. When declared I would think that they usually more accurately represent them as well. But is it a true statement that the accuracy may decrease (sometimes significantly) when floating point operations are performed?
I think you've summarised the advantages quite well. You are however missing one point. The decimal type is only more accurate at representing base 10 numbers (e.g. those used in currency/financial calculations). In general, the double type is going to offer at least as great precision (someone correct me if I'm wrong) and definitely greater speed for arbitrary real numbers. The simple conclusion is: when considering which to use, always use double unless you need the base 10 accuracy that decimal offers.
Edit:
Regarding your additional question about the decrease in accuracy of floating-point numbers after operations, this is a slightly more subtle issue. Indeed, precision (I use the term interchangeably for accuracy here) will steadily decrease after each operation is performed. This is due to two reasons:
the fact that certain numbers (most obviously decimals) can't be truly represented in floating point form
rounding errors occur, just as if you were doing the calculation by hand. It depends greatly on the context (how many operations you're performing) whether these errors are significant enough to warrant much thought however.
In all cases, if you want to compare two floating-point numbers that should in theory be equivalent (but were arrived at using different calculations), you need to allow a certain degree of tolerance (how much varies, but is typically very small).
For a more detailed overview of the particular cases where errors in accuracies can be introduced, see the Accuracy section of the Wikipedia article. Finally, if you want a seriously in-depth (and mathematical) discussion of floating-point numbers/operations at machine level, try reading the oft-quoted article What Every Computer Scientist Should Know About Floating-Point Arithmetic.
You seem spot on with the benefits of using a floating point type. I tend to design for decimals in all cases, and rely on a profiler to let me know if operations on decimal is causing bottlenecks or slow-downs. In those cases, I will "down cast" to double or float, but only do it internally, and carefully try to manage precision loss by limiting the number of significant digits in the mathematical operation being performed.
In general, if your value is transient (not reused), you're safe to use a floating point type. The real problem with floating point types is the following three scenarios.
You are aggregating floating point values (in which case the precision errors compound)
You build values based on the floating point value (for example in a recursive algorithm)
You are doing math with a very wide number of significant digits (for example, 123456789.1 * .000000000000000987654321)
EDIT
According to the reference documentation on C# decimals:
The decimal keyword denotes a
128-bit data type. Compared to
floating-point types, the decimal type
has a greater precision and a smaller
range, which makes it suitable for
financial and monetary calculations.
So to clarify my above statement:
I tend to design for decimals in all
cases, and rely on a profiler to let
me know if operations on decimal is
causing bottlenecks or slow-downs.
I have only ever worked in industries where decimals are favorable. If you're working on phsyics or graphics engines, it's probably much more beneficial to design for a floating point type (float or double).
Decimal is not infinitely precise (it is impossible to represent infinite precision for non-integral in a primitive data type), but it is far more precise than double:
decimal = 28-29 significant digits
double = 15-16 significant digits
float = 7 significant digits
EDIT 2
In response to Konrad Rudolph's comment, item # 1 (above) is definitely correct. Aggregation of imprecision does indeed compound. See the below code for an example:
private const float THREE_FIFTHS = 3f / 5f;
private const int ONE_MILLION = 1000000;
public static void Main(string[] args)
{
Console.WriteLine("Three Fifths: {0}", THREE_FIFTHS.ToString("F10"));
float asSingle = 0f;
double asDouble = 0d;
decimal asDecimal = 0M;
for (int i = 0; i < ONE_MILLION; i++)
{
asSingle += THREE_FIFTHS;
asDouble += THREE_FIFTHS;
asDecimal += (decimal) THREE_FIFTHS;
}
Console.WriteLine("Six Hundred Thousand: {0:F10}", THREE_FIFTHS * ONE_MILLION);
Console.WriteLine("Single: {0}", asSingle.ToString("F10"));
Console.WriteLine("Double: {0}", asDouble.ToString("F10"));
Console.WriteLine("Decimal: {0}", asDecimal.ToString("F10"));
Console.ReadLine();
}
This outputs the following:
Three Fifths: 0.6000000000
Six Hundred Thousand: 600000.0000000000
Single: 599093.4000000000
Double: 599999.9999886850
Decimal: 600000.0000000000
As you can see, even though we are adding from the same source constant, the results of the double is less precise (although probably will round correctly), and the float is far less precise, to the point where it has been reduced to only two significant digits.
Use decimal for base 10 values, e.g. financial calculations, as others have suggested.
But double is generally more accurate for arbitrary calculated values.
For example if you want to calculate the weight of each line in a portfolio, use double as the result will more nearly add up to 100%.
In the following example, doubleResult is closer to 1 than decimalResult:
// Add one third + one third + one third with decimal
decimal decimalValue = 1M / 3M;
decimal decimalResult = decimalValue + decimalValue + decimalValue;
// Add one third + one third + one third with double
double doubleValue = 1D / 3D;
double doubleResult = doubleValue + doubleValue + doubleValue;
So again taking the example of a portfolio:
The market value of each line in the portfolio is a monetary value and would probably be best represented as decimal.
The weight of each line in the portfolio (= Market Value / SUM(Market Value)) is usually better represented as double.
Use a double or a float when you don't need precision, for example, in a platformer game I wrote, I used a float to store the player velocities. Obviously I don't need super precision here because I eventually round to an Int for drawing on the screen.
In some Accounting, consider the possibility of using integral types instead or in conjunction. For example, let say that the rules you operate under require every calculation result carry forward with at least 6 decimal places and the final result will be rounded to the nearest penny.
A calculation of 1/6th of $100 yields $16.66666666666666..., so the value carried forth in a worksheet will be $16.666667. Both double and decimal should yield that result accurately to 6 decimal places. However, we can avoid any cumulative error by carrying the result forward as an integer 16666667. Each subsequent calculation can be made with the same precision and carried forward similarly. Continuing the example, I calculate Texas sales tax on that amount (16666667 * .0825 = 1375000). Adding the two (it's a short worksheet) 1666667 + 1375000 = 18041667. Moving the decimal point back in gives us 18.041667, or $18.04.
While this short example wouldn't yield a cumulative error using double or decimal, it's fairly easy to show cases where simply calculating the double or decimal and carrying forward would accumulate significant error. If the rules you operate under require a limited number of decimal places, storing each value as an integer by multiplying by 10^(required # of decimal place), and then dividing by 10^(required # of decimal places) to get the actual value will avoid any cumulative error.
In situations where fractions of pennies do not occur (for example, a vending machine), there is no reason to use non-integral types at all. Simply think of it as counting pennies, not dollars. I have seen code where every calculation involved only whole pennies, yet use of double led to errors! Integer only math removed the issue. So my unconventional answer is, when possible, forgo both double and decimal.
If you need to binary interrop with other languages or platforms, then you might need to use float or double, which are standardized.
Depends on what you need it for.
Because float and double are binary data types you have some diifculties and errrors in the way in rounds numbers, so for instance double would round 0.1 to 0.100000001490116, double would also round 1 / 3 to 0.33333334326441. Simply put not all real numbers have accurate representation in double types
Luckily C# also supports the so-called decimal floating-point arithmetic, where numbers are represented via the decimal numeric system rather than the binary system. Thus, the decimal floating point-arithmetic does not lose accuracy when storing and processing floating-point numbers. This makes it immensely suited to calculations where a high level of accuracy is needed.
Note: this post is based on information of the decimal type's capabilities from http://csharpindepth.com/Articles/General/Decimal.aspx and my own interpretation of what that means. I will assume Double is normal IEEE double precision.
Note2: smallest and largest in this post reffer to the magnitude of the number.
Pros of "decimal".
"decimal" can represent exactly numbers that can be written as (sufficiently short) decimal fractions, double cannot. This is important in financial ledgers and similar where it is important that the results exactly match what a human doing the calculations would give.
"decimal" has a much larger mantissa than "double". That means that for values within it's normalised range "decimal" will have a much higher precision than double.
Cons of decimal
It will be Much slower (I don't have benchmarks but I would guess at least an order of magnitude maybe more), decimal will not benefit from any hardware acceleration and arithmetic on it will require relatively expensive multiplication/division by powers of 10 (which is far more expensive than multiplication and dividion by powers of 2) to match the exponent before addition/subtraction and to bring the exponent back into range after multiplication/division.
decimal will overflow earlier tha double will. decimal can only represent numbers up to ±296-1 . By comparision double can represent numbers up to nearly ±21024
decimal will underflow earlier. The smallest numbers representable in decimal are ±10-28 . By comparision double can represent values down to 2-149 (approx 10-45) if subnromal numbers are supported and 2-126 (approx 10-38) if they are not.
decimal takes up twice as much memory as double.
My opinion is that you should default to using "decimal" for money work and other cases where matching human calculation exactly is important and that you should use use double as your default choice the rest of the time.
Use floating points if you value performance over correctness.
Choose the type in function of your application. If you need precision like in financial analysis, you have answered your question. But if your application can settle with an estimate your ok with double.
Is your application in need of a fast calculation or will he have all the time in the world to give you an answer? It really depends on the type of application.
Graphic hungry? float or double is enough. Financial data analysis, meteor striking a planet kind of precision ? Those would need a bit of precision :)
Decimal has wider bytes, double is natively supported by CPU. Decimal is base-10, so a decimal-to-double conversion is happening while a decimal is computed.
For accounting - decimal
For finance - double
For heavy computation - double
Keep in mind .NET CLR only supports Math.Pow(double,double). Decimal is not supported.
.NET Framework 4
[SecuritySafeCritical]
public static extern double Pow(double x, double y);
A double values will serialize to scientific notation by default if that notation is shorter than the decimal display. (e.g. .00000003 will be 3e-8) Decimal values will never serialize to scientific notation. When serializing for consumption by an external party, this may be a consideration.