I have a base class and a class inheriting base. The base class has several virtual functions that the inherited class may override. However, the virtual functions in the base class has code that MUST to run before the inherited class overrides get called. Is there some way that I can call the base classes virtual functions first then the inherited class overrides. Without making a call to base.function().
I know I can simply make two functions, one that gets called, the other virtual. But is there a way I can keep the same names as well? I know I may need to change some things around.
class myBase
{
public virtual myFunction()
{ /* must-run code, Called first */ }
}
class myInherited : myBase
{
public override myFunction()
{ /* don't use base.myFunction();,
called from base.myFunction(); */ }
}
Similar question here.
C# doesn't have support for automatically enforcing this, but
you can enforce it by using the template method pattern. For example, imagine you had this code:
abstract class Animal
{
public virtual void Speak()
{
Console.WriteLine("I'm an animal.");
}
}
class Dog : Animal
{
public override void Speak()
{
base.Speak();
Console.WriteLine("I'm a dog.");
}
}
The trouble here is that any class inheriting from Animal needs to call base.Speak(); to ensure the base behavior is executed. You can automatically enforce this by taking the following (slightly different) approach:
abstract class Animal
{
public void Speak()
{
Console.WriteLine("I'm an animal.");
DoSpeak();
}
protected abstract void DoSpeak();
}
class Dog : Animal
{
protected override void DoSpeak()
{
Console.WriteLine("I'm a dog.");
}
}
In this case, clients still only see the polymorphic Speak method, but the Animal.Speak behavior is guaranteed to execute. The problem is that if you have further inheritance (e.g. class Dachshund : Dog), you have to create yet another abstract method if you want Dog.Speak to be guaranteed to execute.
A common solution that can be found in the .NET Framework is to split a method in a public method XXX and a protected, virtual method OnXXX that is called by the public method. For your example, it would look like this:
class MyBase
{
public void MyMethod()
{
// do something
OnMyMethod();
// do something
}
protected virtual void OnMyMethod()
{
}
}
and
class MyInherited : MyBase
{
protected override void OnMyMethod()
{
// do something
}
}
public abstract class BaseTemp
{
public void printBase() {
Console.WriteLine("base");
print();
}
public abstract void print();
}
public class TempA: BaseTemp
{
public override void print()
{
Console.WriteLine("TempA");
}
}
public class TempB: BaseTemp
{
public override void print()
{
Console.WriteLine("TempB");
}
}
There is no way to do what you're seeking other than the 2 ways you already named.
Either you make 2 functions in the base class, one that gets called and the other virtual.
Or you call base.functionName in the sub-class.
Not exactly. But I've done something similar using abstract methods.
Abstract methods must be overriden by derived classes. Abstract procs are virtual so you can be sure that when the base class calls them the derived class's version is called. Then have your base class's "Must Run Code" call the abstract proc after running. voila, your base class's code always runs first (make sure the base class proc is no longer virtual) followed by your derived class's code.
class myBase
{
public /* virtual */ myFunction() // remove virtual as we always want base class's function called here
{ /* must-run code, Called first */
// call derived object's code
myDerivedMustcallFunction();
}
public abstract myDerivedMustCallFunction() { /* abstract functions are blank */ }
}
class myInherited : myBase
{
public override myDerivedMustCallFunction()
{ /* code to be run in derived class here */ }
}
What do you think of this?
class myBase
{
public void myFunctionWrapper()
{
// do stuff that must happen first
// then call overridden function
this.myFunction();
}
public virtual void myFunction(){
// default implementation that can be overriden
}
}
class myInherited : myBase
{
public override void myFunction()
{
}
}
We have the following code:
public class A
{
protected virtual void Method()
{
Console.Write("A");
}
}
public class B : A
{
protected override void Method()
{
Console.Write("B");
}
}
public class C : B
{
public void Some()
{
//How to call Method() from class A?
}
}
How to call Method() from class A in Some() method from class C?
We will assume that A and B are classes from the library and we can not change them.
Solution: https://stackoverflow.com/a/438952/8081796
B overrides Method() and A its marked as virtual and protected, the only way to call it (in its current format) is if B calls it somehow
public class B : A
{
protected override void Method()
{
base.Method();
Console.Write("B");
}
}
Or derived from A directly
public class C : A
{
public void Some()
{
Method();
}
}
virtual (C# Reference) | Microsoft Docs
The virtual keyword is used to modify a method, property, indexer, or
event declaration and allow for it to be overridden in a derived
class. For example, this method can be overridden by any class that
inherits it:
Furthermore
When a virtual method is invoked, the run-time type of the object is
checked for an overriding member. The overriding member in the most
derived class is called, which might be the original member, if no
derived class has overridden the member.
protected (C# Reference)
A protected member is accessible within its class and by derived class
instances.
If you really want Method of A to be called here (without changing implementation of A or B's Method), you have to make below changes.
Change access specifier of Method of B class to new from override.
override will override the base class method. Making it new won't do it.
Change access specifier of A and B class Methods to public instead of protected
protected members of A won't be accessible inside your C class.
With this changes, check out below code. You will see that Method from class A is getting called.
static void Main()
{
var c = new C();
c.Some();
Console.ReadKey();
}
public class A
{
public virtual void Method()
{
Console.Write("A");
}
}
public class B : A
{
public new void Method()
{
Console.Write("B");
}
}
public class C : B
{
public void Some()
{
//How to call Method() from class A?
((A)this).Method();
}
}
If you cannot make the changes described as above, then I'm afraid you can't call A's Method :O .
This is impossible, because
The implementation of a virtual member can be changed by an overriding
member in a derived class.
B change implementation of A, therefore C have only B implementation as base and have not implementation of A.
Solution: https://stackoverflow.com/a/438952/8081796
In C# it's possible to mark a virtual method abstract to force inherited class to implement it.
class A
{
public virtual void Method()
{
Console.WriteLine("A method call");
}
}
abstract class B : A
{
// Class inherited from B are forced to implement Method.
public abstract override void Method();
}
I would like to call the A implementation of Method from a class inherited from B.
class C : B
{
public override void Method()
{
// I would like to call A implementation of Method like this:
// base.base.Method();
}
}
The best way I find to do this is to add a protected method "MethodCore" in A implementation and call it when needed.
class A
{
public virtual void Method()
{
MethodCore();
}
protected void MethodCore()
{
Console.WriteLine("A method call");
}
}
abstract class B : A
{
public abstract override void Method();
}
class C : B
{
public override void Method()
{
MethodCore();
}
}
Is there any other way to do this ?
The best way I find to do this is to add a protected method "MethodCore" in A implementation and call it when needed.
Yes. Since you can't call an abstract method using base, all possible solutions are going to require you to eventually call Method in A using an A instance.
That said, it looks like you are looking for a way to provide a default implementation of Method in B such that any subclass of B that does not implement the method should simply use the implementation present in A. A better solution would be to not mark Method as abstract in B. Instead, make Method in B redirect to Method in A using base.Method()
abstract class B : A {
// Class inherited from B are forced to implement Method.
public virtual void Method() {
base.Method()//calls Method in A
}
}
This way, any subclass of B that wants to call Method from A can simply say base.Method().
// Cannot change source code
class Base
{
public virtual void Say()
{
Console.WriteLine("Called from Base.");
}
}
// Cannot change source code
class Derived : Base
{
public override void Say()
{
Console.WriteLine("Called from Derived.");
base.Say();
}
}
class SpecialDerived : Derived
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.Say();
}
}
class Program
{
static void Main(string[] args)
{
SpecialDerived sd = new SpecialDerived();
sd.Say();
}
}
The result is:
Called from Special Derived.
Called from Derived. /* this is not expected */
Called from Base.
How can I rewrite SpecialDerived class so that middle class "Derived"'s method is not called?
UPDATE:
The reason why I want to inherit from Derived instead of Base is Derived class contains a lot of other implementations. Since I can't do base.base.method() here, I guess the best way is to do the following?
// Cannot change source code
class Derived : Base
{
public override void Say()
{
CustomSay();
base.Say();
}
protected virtual void CustomSay()
{
Console.WriteLine("Called from Derived.");
}
}
class SpecialDerived : Derived
{
/*
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.Say();
}
*/
protected override void CustomSay()
{
Console.WriteLine("Called from Special Derived.");
}
}
Just want to add this here, since people still return to this question even after many time. Of course it's bad practice, but it's still possible (in principle) to do what author wants with:
class SpecialDerived : Derived
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
var ptr = typeof(Base).GetMethod("Say").MethodHandle.GetFunctionPointer();
var baseSay = (Action)Activator.CreateInstance(typeof(Action), this, ptr);
baseSay();
}
}
This is a bad programming practice, and not allowed in C#. It's a bad programming practice because
The details of the grandbase are implementation details of the base; you shouldn't be relying on them. The base class is providing an abstraction overtop of the grandbase; you should be using that abstraction, not building a bypass to avoid it.
To illustrate a specific example of the previous point: if allowed, this pattern would be yet another way of making code susceptible to brittle-base-class failures. Suppose C derives from B which derives from A. Code in C uses base.base to call a method of A. Then the author of B realizes that they have put too much gear in class B, and a better approach is to make intermediate class B2 that derives from A, and B derives from B2. After that change, code in C is calling a method in B2, not in A, because C's author made an assumption that the implementation details of B, namely, that its direct base class is A, would never change. Many design decisions in C# are to mitigate the likelihood of various kinds of brittle base failures; the decision to make base.base illegal entirely prevents this particular flavour of that failure pattern.
You derived from your base because you like what it does and want to reuse and extend it. If you don't like what it does and want to work around it rather than work with it, then why did you derive from it in the first place? Derive from the grandbase yourself if that's the functionality you want to use and extend.
The base might require certain invariants for security or semantic consistency purposes that are maintained by the details of how the base uses the methods of the grandbase. Allowing a derived class of the base to skip the code that maintains those invariants could put the base into an inconsistent, corrupted state.
You can't from C#. From IL, this is actually supported. You can do a non-virt call to any of your parent classes... but please don't. :)
The answer (which I know is not what you're looking for) is:
class SpecialDerived : Base
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.Say();
}
}
The truth is, you only have direct interaction with the class you inherit from. Think of that class as a layer - providing as much or as little of it or its parent's functionality as it desires to its derived classes.
EDIT:
Your edit works, but I think I would use something like this:
class Derived : Base
{
protected bool _useBaseSay = false;
public override void Say()
{
if(this._useBaseSay)
base.Say();
else
Console.WriteLine("Called from Derived");
}
}
Of course, in a real implementation, you might do something more like this for extensibility and maintainability:
class Derived : Base
{
protected enum Mode
{
Standard,
BaseFunctionality,
Verbose
//etc
}
protected Mode Mode
{
get; set;
}
public override void Say()
{
if(this.Mode == Mode.BaseFunctionality)
base.Say();
else
Console.WriteLine("Called from Derived");
}
}
Then, derived classes can control their parents' state appropriately.
Why not simply cast the child class to a specific parent class and invoke the specific implementation then? This is a special case situation and a special case solution should be used. You will have to use the new keyword in the children methods though.
public class SuperBase
{
public string Speak() { return "Blah in SuperBase"; }
}
public class Base : SuperBase
{
public new string Speak() { return "Blah in Base"; }
}
public class Child : Base
{
public new string Speak() { return "Blah in Child"; }
}
public partial class MainWindow : Window
{
public MainWindow()
{
InitializeComponent();
Child childObj = new Child();
Console.WriteLine(childObj.Speak());
// casting the child to parent first and then calling Speak()
Console.WriteLine((childObj as Base).Speak());
Console.WriteLine((childObj as SuperBase).Speak());
}
}
public class A
{
public int i = 0;
internal virtual void test()
{
Console.WriteLine("A test");
}
}
public class B : A
{
public new int i = 1;
public new void test()
{
Console.WriteLine("B test");
}
}
public class C : B
{
public new int i = 2;
public new void test()
{
Console.WriteLine("C test - ");
(this as A).test();
}
}
You can also make a simple function in first level derived class, to call grand base function
My 2c for this is to implement the functionality you require to be called in a toolkit class and call that from wherever you need:
// Util.cs
static class Util
{
static void DoSomething( FooBase foo ) {}
}
// FooBase.cs
class FooBase
{
virtual void Do() { Util.DoSomething( this ); }
}
// FooDerived.cs
class FooDerived : FooBase
{
override void Do() { ... }
}
// FooDerived2.cs
class FooDerived2 : FooDerived
{
override void Do() { Util.DoSomething( this ); }
}
This does require some thought as to access privilege, you may need to add some internal accessor methods to facilitate the functionality.
In cases where you do not have access to the derived class source, but need all the source of the derived class besides the current method, then I would recommended you should also do a derived class and call the implementation of the derived class.
Here is an example:
//No access to the source of the following classes
public class Base
{
public virtual void method1(){ Console.WriteLine("In Base");}
}
public class Derived : Base
{
public override void method1(){ Console.WriteLine("In Derived");}
public void method2(){ Console.WriteLine("Some important method in Derived");}
}
//Here should go your classes
//First do your own derived class
public class MyDerived : Base
{
}
//Then derive from the derived class
//and call the bass class implementation via your derived class
public class specialDerived : Derived
{
public override void method1()
{
MyDerived md = new MyDerived();
//This is actually the base.base class implementation
MyDerived.method1();
}
}
As can be seen from previous posts, one can argue that if class functionality needs to be circumvented then something is wrong in the class architecture. That might be true, but one cannot always restructure or refactor the class structure on a large mature project. The various levels of change management might be one problem, but to keep existing functionality operating the same after refactoring is not always a trivial task, especially if time constraints apply. On a mature project it can be quite an undertaking to keep various regression tests from passing after a code restructure; there are often obscure "oddities" that show up.
We had a similar problem in some cases inherited functionality should not execute (or should perform something else). The approach we followed below, was to put the base code that need to be excluded in a separate virtual function. This function can then be overridden in the derived class and the functionality excluded or altered. In this example "Text 2" can be prevented from output in the derived class.
public class Base
{
public virtual void Foo()
{
Console.WriteLine("Hello from Base");
}
}
public class Derived : Base
{
public override void Foo()
{
base.Foo();
Console.WriteLine("Text 1");
WriteText2Func();
Console.WriteLine("Text 3");
}
protected virtual void WriteText2Func()
{
Console.WriteLine("Text 2");
}
}
public class Special : Derived
{
public override void WriteText2Func()
{
//WriteText2Func will write nothing when
//method Foo is called from class Special.
//Also it can be modified to do something else.
}
}
There seems to be a lot of these questions surrounding inheriting a member method from a Grandparent Class, overriding it in a second Class, then calling its method again from a Grandchild Class. Why not just inherit the grandparent's members down to the grandchildren?
class A
{
private string mystring = "A";
public string Method1()
{
return mystring;
}
}
class B : A
{
// this inherits Method1() naturally
}
class C : B
{
// this inherits Method1() naturally
}
string newstring = "";
A a = new A();
B b = new B();
C c = new C();
newstring = a.Method1();// returns "A"
newstring = b.Method1();// returns "A"
newstring = c.Method1();// returns "A"
Seems simple....the grandchild inherits the grandparents method here. Think about it.....that's how "Object" and its members like ToString() are inherited down to all classes in C#. I'm thinking Microsoft has not done a good job of explaining basic inheritance. There is too much focus on polymorphism and implementation. When I dig through their documentation there are no examples of this very basic idea. :(
I had the same problem as the OP, where I only wanted to override a single method in the middle Class, leaving all other methods alone. My scenario was:
Class A - base class, DB access, uneditable.
Class B : A - "record type" specific functionality (editable, but only if backward compatible).
Class C : B - one particular field for one particular client.
I did very similar to the second part of the OP posting, except I put the base call into it's own method, which I called from from Say() method.
class Derived : Base
{
public override void Say()
{
Console.WriteLine("Called from Derived.");
BaseSay();
}
protected virtual void BaseSay()
{
base.Say();
}
}
class SpecialDerived : Derived
{
public override void Say()
{
Console.WriteLine("Called from Special Derived.");
base.BaseSay();
}
}
You could repeat this ad infinitum, giving, for example SpecialDerived a BaseBaseSay() method if you needed an ExtraSpecialDerived override to the SpecialDerived.
The best part of this is that if the Derived changes its inheritance from Base to Base2, all other overrides follow suit without needing changes.
If you want to access to base class data you must use "this" keyword or you use this keyword as reference for class.
namespace thiskeyword
{
class Program
{
static void Main(string[] args)
{
I i = new I();
int res = i.m1();
Console.WriteLine(res);
Console.ReadLine();
}
}
public class E
{
new public int x = 3;
}
public class F:E
{
new public int x = 5;
}
public class G:F
{
new public int x = 50;
}
public class H:G
{
new public int x = 20;
}
public class I:H
{
new public int x = 30;
public int m1()
{
// (this as <classname >) will use for accessing data to base class
int z = (this as I).x + base.x + (this as G).x + (this as F).x + (this as E).x; // base.x refer to H
return z;
}
}
}
I would like to explain main problem with example.
public class BaseClass
{
public virtual void Add()
{
Console.WriteLine("Add call from BaseClass");
}
public virtual void Edit()
{
Console.WriteLine(" Edit call from BaseClass");
this.Get();
}
public virtual void Get()
{
Console.WriteLine(" Get call from BaseClass");
}
}
public class DerivedClass:BaseClass
{
public override void Add()
{
Console.WriteLine(" Add call from DerivedClass");
base.Edit();
}
public override void Edit()
{
Console.WriteLine(" Edit call from DerivedClass");
}
public override void Get()
{
Console.WriteLine(" Get call from DerivedClass");
}
}
And called like
DerivedClass d = new DerivedClass();
d.Add();
The result :
Add call from DerivedClass
Edit call from BaseClass
Get call from DerivedClass
But I want to get the result as :
Add call from DerivedClass
Edit call from BaseClass
Get call from BaseClass
When derived class calls its own Add method, Add method calls base class EDit method. When base class edit method called from derived class it calls get method of the derived class. but I want to call base class's get method.
How can I achieve this?
How can I achieve this?
If you don't want virtual dispatch then don't dispatch a virtual method. Dispatch a non-virtual method. That implies that a non-virtual method must exist, so let's write one. Then it becomes obvious how it must be called:
public class BaseClass
{
public virtual void Add() { ... }
public virtual void Edit() { this.BaseGet(); }
public virtual void Get() { this.BaseGet(); }
private void BaseGet() { ... }
}
That's how do to what you want, but the more important question here is why do you want to do this thing? There is probably a better way to design your class hierarchy, but without knowing more about what you are really trying to do, it is hard to advise you.