TCP Client data recieved using event handler - c#

I am working with a TCP client to learn how to use the TCPSocket function in VS2010 C#. I can call the read() function to read the data. That part all works. What I am not understanding is how to set the client up to listen to the stream and post the incoming data to a text box without calling the function manually or using a timer. I would like to have this handled with an event handler, but at this point I have just completely confused myself and now I need some guidance.
I am using a client sample I found on MSDN to help me understand how the function works to do a basic read.
private static void Receive(Socket client) {
try {
// Create the state object.
StateObject state = new StateObject();
state.workSocket = client;
// Begin receiving the data from the remote device.
client.BeginReceive( state.buffer, 0, StateObject.BufferSize, 0,
new AsyncCallback(ReceiveCallback), state);
} catch (Exception e) {
Console.WriteLine(e.ToString());
}
}
On an other stackoverflow post I found Matt Davis provided an example of using a public event
public event EventHandler<DataRecivedEventArgs> DataRecieved;
However when I tried it, the "DataRecivedEventArgs" is not a recognized function of visual studio.
Can someone help explain to me how to use TCPclient to consistently listen for data and call a function when some data is received?

For a given TCP connection, received data is buffered in the Kernel up to its buffer size limit (which is opaque to the application).
When an application wants to receive data it has to explicitly tell the Kernel how much data needs to be copied to the application buffer, because the buffer size is not infinite and that Kernel may be storing incoming payloads faster than your application could handle (don't forget your application is regularly preempted).
The only way for your application to receive data from a TCP socket is through recv(), recvfrom(), recvmsg() system calls.
In your case, in User Space, all you can do is call the functions that correspond to those syscalls so you can receive data. Delivery is on-demand by design. In addition, the application won't know if data has arrived until it calls recv(), recvfrom(), recvmsg(), select(), poll() or epoll().
Note: I am not a C# person. I know C and Kernel internals and that's pretty much it. I just wanted to point out the concept behind socket communcation.

My answer is very likely too late for you. But since I recently had the same requirement, I have now published a nuget package for it. It provides an event that is triggered on incoming data. So you only have to subscribe to it.
PM> install-package Nager.TcpClient
https://github.com/nager/Nager.TcpClient
void OnDataReceived(byte[] receivedData)
{
}
using var cancellationTokenSource = new CancellationTokenSource(1000);
using var tcpClient = new TcpClient();
tcpClient.DataReceived += OnDataReceived;
await tcpClient.ConnectAsync("tcpbin.com", 4242, cancellationTokenSource.Token);
await tcpClient.SendAsync(new byte[] { 0x01, 0x0A });
await Task.Delay(400);
tcpClient.Disconnect();
tcpClient.DataReceived -= OnDataReceived;

Related

UdpClient beginreceive how to detect when server is off

I have an application that is reading data from a Udp server on 32 different ports that I need to process. I'm using the UdpClient.BeginReceive that is calling itself because I want to listen all the time :
private void ProcessEndpointData(IAsyncResult result)
{
UdpClient client = result.AsyncState as UdpClient;
// points towards whoever had sent the message:
IPEndPoint source = new IPEndPoint(0, 0);
// schedule the next receive operation once reading is done:
client.BeginReceive(new AsyncCallback(this.ProcessEndpointData), client);
// get the actual message and fill out the source:
this.DecodeDatagram(new DatagrammeAscb()
{
Datagramme = this.ByteArrayToStructure<Datagram>(client.EndReceive(result, ref source))
});
}
When I stop the server side, the function is waiting for data (that is normal behavior). What I would like to do is to detect when the server is disconnected and then close all my clients.
I'm asking myself if I should use sockets class to have more controls or just maybe I'm missing something here.
Anyway thanks for your help.

Multithreading using AsyncCallback and GUI controls

Multithread programming is a new concept for me. I’ve done a bunch of reading and even with many examples, I just can’t seem to figure it out. I'm new to C# and programming.
I have a winform project with lots of custom controls I’ve imported and will utilize many tcpclients. I’m trying to get each control to be hosted on it’s own separate thread. Right now, I’m trying to get 1 control to behave appropriately with it’s own thread.
I'll show you what I have and then follow up with some questions regarding guidance.
string asyncServerHolder; // gets the server name from a text_changed event
int asyncPortHolder; // gets the port # from a text_changed event
TcpClient wifiClient = new TcpClient();
private void btnStart_Click(object sender, EventArgs e)
{
... // variable initialization, etc.
... // XML setup, http POST setup.
send(postString + XMLString); // Content to send.
}
private void send(string msg)
{
AsyncCallback callBack = new AsyncCallback(ContentDownload);
wifiClient.BeginConnect(asyncServerHolder, asyncPortHolder, callBack, wifiClient);
wifiClient.Client.Send(System.Text.Encoding.ASCII.GetBytes(msg));
}
private void ContentDownload(IAsyncResult result)
{
if (wifiClient.Connected)
{
string response4 = "Connected!!"; //debug msg
byte[] buff = new byte[1024];
int i = wifiClient.Client.Receive(buff);
do
{
response1 = System.Text.Encoding.UTF8.GetString(buff, 0, i);
} while (response1.Length == 0);
response2 = response1.Substring(9, 3); // pick out status code to be displayed after
wifiClient.Client.Dispose();
wifiClient.Close();
}
}
If you're knowledgeable about this, I bet you see lots of problems above. As it stands right now, I always get an exception one my first iteration of running this sequence:
"A request to send or receive data was disallowed because the socket is not connected and (when sending on a datagram socket using a sendto call) no address was supplied"
Why is this? I have confirmed that my asyncServerHolder and my asyncPortHolder are correct. My second iteration of attempting allowed me to see response4 = "Connected!!" but I get a null response on response1.
Eventually I'd like to substitute in my user controls which I have in a List. I'd just like to gracefully connect, send my msg, receive my response and then allow my form to notify me from that particular control which plays host to that tcp client. My next step would be link up many controls.
Some questions:
1) Do I need more TCP clients? Should they be in a list and be the # of controls I have enabled at that time of btnStart_Click?
2) My controls are on my GUI, does that mean I need to invoke if I'm interacting with them?
3) I see many examples using static methods with this context. Why is this?
Thanks in advance. All criticism is welcome, feel free to be harsh!
BeginConnect returns immediately. Probably, no connection has been established yet when Send runs. Make sure that you use the connection only after having connected.
if (wifiClient.Connected) and what if !Connected? You just do nothing. That's not a valid error recovery strategy. Remove this if entirely.
In your read loop you destroy the previously read contents on each iteration. In fact, you can't split up an UTF8 encoded string at all and decode the parts separately. Read all bytes into some buffer and only when you have received everything, decode the bytes to a string.
wifiClient.Client.Dispose();
wifiClient.Close();
Superstitious dispose pattern. wifiClient.Dispose(); is the canonical way to release everything.
I didn't quite understand what "controls" you are talking about. A socket is not a control. UI controls are single-threaded. Only access them on the UI thread.
Do I need more TCP clients?
You need one for each connection.
Probably, you should use await for all blocking operations. There are wrapper libraries that make the socket APIs usable with await.

Can a TCP c# client receive and send continuously/consecutively without sleep?

This is to a degree a "basics of TCP" question, yet at the same time I have yet to find a convincing answer elsewhere and believe i have a ok/good understanding of the basics of TCP. I am not sure if the combination of questions (or the one questions and while i'm at it the request for confirmation of a couple of points) is against the rules. Hope not.
I am trying to write a C# implementation of a TCP client, that communicates with an existing app containing a TCP server (I don't have access to its code, so no WCF). How do I connect to it, send and receive as needed as new info comes in or out, and ultimately disconnect. Using the following MSDN code as an example where they list "Send" and "Receive" asynchronous methods (or just TcpClient), and ignoring the connect and disconnect as trivial, how can I best go about continuously checking for new packets received and at the same time send when needed?
I initially used TCPClient and GetStream(), and the msdn code still seems to require the loop and sleep described in a bit (counter intuitively), where I run the receive method in a loop in a separate thread with a sleep(10) milliseconds, and Send in the main (or third) thread as needed. This allows me to send fine, and the receive method effectively polls at regular intervals to find new packets. The received packets are then added to a queue.
Is this really the best solution? Shouldn't there be a DataAvailable event equivalent (or something i'm missing in the msdn code) that allows us to receive when, and only when, there is new data available?
As an afterthought I noticed that the socket could be cut from the other side without the client becoming aware till the next botched send. To clarify then, the client is obliged to send regular keepalives (and receive isn't sufficient, only send) to determine if the socket is still alive. And the frequency of the keepalive determines how soon I will know that link is down. Is that correct? I tried Poll, socket.connected etc only to discover why each just doesn't help.
Lastly, to confirm (i believe not but good to make sure), in the above scenario of sending on demand and receiving if tcpclient.DataAvailable every ten seconds, can there be data loss if sending and receiving at the same time? If at the same time I am receiving I try and send will one fail, overwrite the other or any other such unwanted behaviour?
There's nothing wrong necessarily with grouping questions together, but it does make answering the question more challenging... :)
The MSDN article you linked shows how to do a one-and-done TCP communication, that is, one send and one receive. You'll also notice it uses the Socket class directly where most people, including myself, will suggest using the TcpClient class instead. You can always get the underlying Socket via the Client property should you need to configure a certain socket for example (e.g., SetSocketOption()).
The other aspect about the example to note is that while it uses threads to execute the AsyncCallback delegates for both BeginSend() and BeginReceive(), it is essentially a single-threaded example because of how the ManualResetEvent objects are used. For repeated exchange between a client and server, this is not what you want.
Alright, so you want to use TcpClient. Connecting to the server (e.g., TcpListener) should be straightforward - use Connect() if you want a blocking operation or BeginConnect() if you want a non-blocking operation. Once the connection is establish, use the GetStream() method to get the NetworkStream object to use for reading and writing. Use the Read()/Write() operations for blocking I/O and the BeginRead()/BeginWrite() operations for non-blocking I/O. Note that the BeginRead() and BeginWrite() use the same AsyncCallback mechanism employed by the BeginReceive() and BeginSend() methods of the Socket class.
One of the key things to note at this point is this little blurb in the MSDN documentation for NetworkStream:
Read and write operations can be performed simultaneously on an
instance of the NetworkStream class without the need for
synchronization. As long as there is one unique thread for the write
operations and one unique thread for the read operations, there will
be no cross-interference between read and write threads and no
synchronization is required.
In short, because you plan to read and write from the same TcpClient instance, you'll need two threads for doing this. Using separate threads will ensure that no data is lost while receiving data at the same time someone is trying to send. The way I've approached this in my projects is to create a top-level object, say Client, that wraps the TcpClient and its underlying NetworkStream. This class also creates and manages two Thread objects, passing the NetworkStream object to each during construction. The first thread is the Sender thread. Anyone wanting to send data does so via a public SendData() method on the Client, which routes the data to the Sender for transmission. The second thread is the Receiver thread. This thread publishes all received data to interested parties via a public event exposed by the Client. It looks something like this:
Client.cs
public sealed partial class Client : IDisposable
{
// Called by producers to send data over the socket.
public void SendData(byte[] data)
{
_sender.SendData(data);
}
// Consumers register to receive data.
public event EventHandler<DataReceivedEventArgs> DataReceived;
public Client()
{
_client = new TcpClient(...);
_stream = _client.GetStream();
_receiver = new Receiver(_stream);
_sender = new Sender(_stream);
_receiver.DataReceived += OnDataReceived;
}
private void OnDataReceived(object sender, DataReceivedEventArgs e)
{
var handler = DataReceived;
if (handler != null) DataReceived(this, e); // re-raise event
}
private TcpClient _client;
private NetworkStream _stream;
private Receiver _receiver;
private Sender _sender;
}
Client.Receiver.cs
private sealed partial class Client
{
private sealed class Receiver
{
internal event EventHandler<DataReceivedEventArgs> DataReceived;
internal Receiver(NetworkStream stream)
{
_stream = stream;
_thread = new Thread(Run);
_thread.Start();
}
private void Run()
{
// main thread loop for receiving data...
}
private NetworkStream _stream;
private Thread _thread;
}
}
Client.Sender.cs
private sealed partial class Client
{
private sealed class Sender
{
internal void SendData(byte[] data)
{
// transition the data to the thread and send it...
}
internal Sender(NetworkStream stream)
{
_stream = stream;
_thread = new Thread(Run);
_thread.Start();
}
private void Run()
{
// main thread loop for sending data...
}
private NetworkStream _stream;
private Thread _thread;
}
}
Notice that these are three separate .cs files but define different aspects of the same Client class. I use the Visual Studio trick described here to nest the respective Receiver and Sender files under the Client file. In a nutshell, that's the way I do it.
Regarding the NetworkStream.DataAvailable/Thread.Sleep() question. I would agree that an event would be nice, but you can effectively achieve this by using the Read() method in combination with an infinite ReadTimeout. This will have no adverse impact on the rest of your application (e.g., UI) since it's running in its own thread. However, this complicates shutting down the thread (e.g., when the application closes), so you'd probably want to use something more reasonable, say 10 milliseconds. But then you're back to polling, which is what we're trying to avoid in the first place. Here's how I do it, with comments for explanation:
private sealed class Receiver
{
private void Run()
{
try
{
// ShutdownEvent is a ManualResetEvent signaled by
// Client when its time to close the socket.
while (!ShutdownEvent.WaitOne(0))
{
try
{
// We could use the ReadTimeout property and let Read()
// block. However, if no data is received prior to the
// timeout period expiring, an IOException occurs.
// While this can be handled, it leads to problems when
// debugging if we are wanting to break when exceptions
// are thrown (unless we explicitly ignore IOException,
// which I always forget to do).
if (!_stream.DataAvailable)
{
// Give up the remaining time slice.
Thread.Sleep(1);
}
else if (_stream.Read(_data, 0, _data.Length) > 0)
{
// Raise the DataReceived event w/ data...
}
else
{
// The connection has closed gracefully, so stop the
// thread.
ShutdownEvent.Set();
}
}
catch (IOException ex)
{
// Handle the exception...
}
}
}
catch (Exception ex)
{
// Handle the exception...
}
finally
{
_stream.Close();
}
}
}
As far as 'keepalives' are concerned, there is unfortunately not a way around the problem of knowing when the other side has exited the connection silently except to try sending some data. In my case, since I control both the sending and receiving sides, I've added a tiny KeepAlive message (8 bytes) to my protocol. This is sent every five seconds from both sides of the TCP connection unless other data is already being sent.
I think I've addressed all the facets that you touched on. I hope you find this helpful.

Want a .Net Socket Event Handler for incoming data

I'm rewriting an ancient VB6 program in C# (.Net Framework 4.0). It communicates with a piece of industrial equipment on the factory floor. VB6 used some old COM-based socket software; I'm using the .Net Socket class.
When I send a message to the equipment I expect a response back so I know to listen for one then. But the equipment can also send messages asynchronously without warning (say, to indicate a failure or problem). So I always have to receive those. So what I'd really like is an event handler that gets called whenever anything comes in from the equipment.
The Socket class seems to use a BeginReceive/EndReceive scheme for receive event handling. Can I just do a BeginReceive once at the start of my program to define an event-handler for all incoming messages, or do I have to constantly be doing BeginReceive/EndReceive's throughout my program?
Thanks in advance for clarifying the correct way to do this.
Are you the server?
If you are the server, you will listen for a socket connection, and then accept the socket connection and store it. You will then call BeginReceive with the stored socket. In the BeginReceive method, you will provide a callback function to receive, and handle the data.
Once you receive data, the callback happens. The callback function will call EndReceive on the stored connection. This is where you get/handle the data. You will also call BeginReceive again to wait for more data.
This way, the BeginReceive and EndReceive will run in a circle: you are always receiving data, and waiting for more data.
Here is an example:
void WaitForData(SocketState state)
{
try
{
state.Socket.BeginReceive(state.DataBuffer, 0, state.DataBuffer.Length, SocketFlags.None, new AsyncCallback(ReadDataCallback), state);
}
catch (SocketException se)
{
//Socket has been closed
//Close/dispose of socket
}
}
public void ReadDataCallback(IAsyncResult ar)
{
SocketState state = (SocketState)ar.AsyncState;
try
{
// Read data from the client socket.
int iRx = state.Socket.EndReceive(ar);
//Handle Data....
WaitForData(state);
}
catch (ObjectDisposedException)
{
//Socket has been closed
//Close/dispose of socket
}
catch (SocketException)
{
//Socket exception
//Close/dispose of socket
}
}
EDIT:
As per your comment, here is an example of a C# asynchronous client: http://msdn.microsoft.com/en-us/library/bbx2eya8.aspx.
The BeginReceive/EndReceive work similar to the server.

C# Socket.Receive message length

I'm currently in the process of developing a C# Socket server that can accept multiple connections from multiple client computers. The objective of the server is to allow clients to "subscribe" and "un-subscribe" from server events.
So far I've taken a jolly good look over here: http://msdn.microsoft.com/en-us/library/5w7b7x5f(v=VS.100).aspx and http://msdn.microsoft.com/en-us/library/fx6588te.aspx for ideas.
All the messages I send are encrypted, so I take the string message that I wish to send, convert it into a byte[] array and then encrypt the data before pre-pending the message length to the data and sending it out over the connection.
One thing that strikes me as an issue is this: on the receiving end it seems possible that Socket.EndReceive() (or the associated callback) could return when only half of the message has been received. Is there an easy way to ensure each message is received "complete" and only one message at a time?
EDIT: For example, I take it .NET / Windows sockets does not "wrap" the messages to ensure that a single message sent with Socket.Send() is received in one Socket.Receive() call? Or does it?
My implementation so far:
private void StartListening()
{
IPHostEntry ipHostInfo = Dns.GetHostEntry(Dns.GetHostName());
IPEndPoint localEP = new IPEndPoint(ipHostInfo.AddressList[0], Constants.PortNumber);
Socket listener = new Socket(localEP.Address.AddressFamily, SocketType.Stream, ProtocolType.Tcp);
listener.Bind(localEP);
listener.Listen(10);
while (true)
{
// Reset the event.
this.listenAllDone.Reset();
// Begin waiting for a connection
listener.BeginAccept(new AsyncCallback(this.AcceptCallback), listener);
// Wait for the event.
this.listenAllDone.WaitOne();
}
}
private void AcceptCallback(IAsyncResult ar)
{
// Get the socket that handles the client request.
Socket listener = (Socket) ar.AsyncState;
Socket handler = listener.EndAccept(ar);
// Signal the main thread to continue.
this.listenAllDone.Set();
// Accept the incoming connection and save a reference to the new Socket in the client data.
CClient client = new CClient();
client.Socket = handler;
lock (this.clientList)
{
this.clientList.Add(client);
}
while (true)
{
this.readAllDone.Reset();
// Begin waiting on data from the client.
handler.BeginReceive(client.DataBuffer, 0, client.DataBuffer.Length, 0, new AsyncCallback(this.ReadCallback), client);
this.readAllDone.WaitOne();
}
}
private void ReadCallback(IAsyncResult asyn)
{
CClient theClient = (CClient)asyn.AsyncState;
// End the receive and get the number of bytes read.
int iRx = theClient.Socket.EndReceive(asyn);
if (iRx != 0)
{
// Data was read from the socket.
// So save the data
byte[] recievedMsg = new byte[iRx];
Array.Copy(theClient.DataBuffer, recievedMsg, iRx);
this.readAllDone.Set();
// Decode the message recieved and act accordingly.
theClient.DecodeAndProcessMessage(recievedMsg);
// Go back to waiting for data.
this.WaitForData(theClient);
}
}
Yes, it is possible you'll have only part of message per one receiving, also it can be even worse during transfer only part of message will be sent. Usually you can see that during bad network conditions or under heavy network load.
To be clear on network level TCP guaranteed to transfer your data in specified order but it not guaranteed that portions of data will be same as you sent. There are many reasons for that software (take a look to Nagle's algorithm for example), hardware (different routers in trace), OS implementation, so in general you should never assume what part of data already transferred or received.
Sorry for long introduction, below some advices:
Try to use relatevely "new" API for high-performance socket server, here samples Networking Samples for .NET v4.0
Do not assume you always send full packet. Socket.EndSend() returns number of bytes actually scheduled to send, it can be even 1-2 bytes under heavy network load. So you have to implement resend rest part of buffer when it required.
There is warning on MSDN:
There is no guarantee that the data
you send will appear on the network
immediately. To increase network
efficiency, the underlying system may
delay transmission until a significant
amount of outgoing data is collected.
A successful completion of the
BeginSend method means that the
underlying system has had room to
buffer your data for a network send.
Do not assume you always receive full packet. Join received data in some kind of buffer and analyze it when it have enough data.
Usually, for binary protocols, I add field to indicate how much data incoming, field with message type (or you can use fixed length per message type (generally not good, e.g. versioning problem)), version field (where applicable) and add CRC-field to end of message.
It not really required to read, a bit old and applies directly to Winsock but maybe worth to study: Winsock Programmer's FAQ
Take a look to ProtocolBuffers, it worth to learn: http://code.google.com/p/protobuf-csharp-port/, http://code.google.com/p/protobuf-net/
Hope it helps.
P.S. Sadly sample on MSDN you refer in question effectively ruin async paradigm as stated in other answers.
Your code is very wrong. Doing loops like that defeats the purpose of asynchronous programming. Async IO is used to not block the thread but let them continue doing other work. By looping like that, you are blocking the thread.
void StartListening()
{
_listener.BeginAccept(OnAccept, null);
}
void OnAccept(IAsyncResult res)
{
var clientSocket = listener.EndAccept(res);
//begin accepting again
_listener.BeginAccept(OnAccept, null);
clientSocket.BeginReceive(xxxxxx, OnRead, clientSocket);
}
void OnReceive(IAsyncResult res)
{
var socket = (Socket)res.Asyncstate;
var bytesRead = socket.EndReceive(res);
socket.BeginReceive(xxxxx, OnReceive, socket);
//handle buffer here.
}
Note that I've removed all error handling to make the code cleaner. That code do not block any thread and is therefore much more effecient. I would break the code up in two classes: the server handling code and the client handling code. It makes it easier to maintain and extend.
Next thing to understand is that TCP is a stream protocol. It do not guarentee that a message arrives in one Receive. Therefore you must know either how large a message is or when it ends.
The first solution is to prefix each message with an header which you parse first and then continue reading until you get the complete body/message.
The second solution is to put some control character at the end of each message and continue reading until the control character is read. Keep in mind that you should encode that character if it can exist in the actual message.
You need to send fixed length messages or include in the header the length of the message. Try to have something that allows you to clearly identify the start of a packet.
I found 2 very useful links:
http://vadmyst.blogspot.com/2008/03/part-2-how-to-transfer-fixed-sized-data.html
C# Async TCP sockets: Handling buffer size and huge transfers

Categories