I have a question about naming multiple classes that share similar functionality. I am working on a scientific API and have the following classes/interfaces:
public interface IRange<T>{
T Minimum {get;}
T Maximum {get;}
// A few other methods that aren't important
}
public class Range<T> : IRange<T> where T: IComparable<T> {
public T Minimum {get; protected set;}
public T Maximum {get; protected set;}
public Range(T minimum, T maximum) {
Minimum = minimum;
Maximum = maximum;
}
}
For my API, I work with double ranges a lot (i.e., Range<double>), so I made an another class called MassRange. This class also has a few new constructors and properties shown below:
public class MassRange : Range<double>, IRange<double> {
public double Width { get { return Maximum - Minimum;} }
public double Mean { get { return (Maximum + Minimum) / 2.0;} }
public MassRange(double mean, MassTolerance width) {
Minimum = mean - width.Value; // pseudo-code
Maximum = mean + width.Value;
}
}
Conceptually, I also have another type of Range<double> called a MzRange, that shares all the same structure and functionality as MassRange but I want to keep separate in the API. They act exactly the same and store the same types of data, but in terms of the science, they are different and distinct.
So I considered renaming the MassRange class to a more generic name of DoubleRange and then have both MassRange : DoubleRange and MzRange : DoubleRange designed like so:
public MzRange : DoubleRange, IRange<double> {}
public MassRange : DoubleRange, IRange<double> {}
But I don't really care for the name DoubleRange, and would rather not expose it publicly through my API. Is exposing two distinct types with the same functionality even appropriate? Should I just come up with a better name for DoubleRange and forgo MzRange and MassRange? Can I make DoubleRange internal or something so that it is not exposed through the API but can still be used?
This seems to be a case for Extension Properties but I know they don't currently exist.
There doesn't seem to be any reason you can't accomplish this with standard extension methods:
public static double GetWidth(this IRange<double> range) {
return range.Maximum - range.Minimum;
}
public static double GetMean(this IRange<double> range) {
return (range.Maximum + range.Minimum) / 2.0;
}
And then you can call it from any implementation of IRange:
var massRange = ...
var mean = massRange.GetMean();
I know it may not have the syntactic appeal of extension properties, but it's a clean solution that gets around having to create that DoubleRange class.
This is absolutely appropriate. Besides the logical distinction, it gives you the possibility to evolve the two classes independently from each other in future.
Even if elephants and birds are animals (both inherit from animals) and both have the same set of properties (they don't add or override members), you might want to add a Fly method to birds in future. I assume that elephants named Dumbo do not exist in real world scenarios :-)
Having two types with the exact same functionality isn't appropriate as any change made to one type will need to be made to the other.
Unless you know that MassRange and MzRange will be differentiated at some point in the future, providing a better name for DoubleRange and forgoing MassRange/MzRange is the way to go. And even then, any shared functionality would need to be put in a parent type.
You can always provide some syntactic sugar to help users. For instance, you could create "dumb" classes called MassRange and MzRange, which simply extend DoubleRange. I'd keep the original, well named class exposed, to encourage users to use it, but if you really want to hide it, just use the protected accessor instead of public.
Related
I have an abstract class called Flight and its implement a interface called IFlight and it has a virtual method, another three classes that inherit from it, the only diffrence between those three classes is the implemantation of this method. Another thing that I want to do is implement a method that accepts as an argument an object of type IFlight (could be one of those three classes) and from them i want to access the members of the abstract class (Flight). Which way there is to implement such thing ?
Flight:
class AbsFlight: IFlight
{
public int ID { get; set; }
public string Start_Point { get; set; }
public virtual float Calculate_Price(float Base_Price)
{
return Base_Price;
}
}
One of the classes (The other two looks similar except the method "Calculate_Price"):
class Charter: AbsFlight
{
public override float Calculate_Price(float Base_Price)
{
return base.Calculate_Price(Base_Price) * 3;
}
}
Main:
private static void Some_Method(IFlight flight)
{
Console.WriteLine(flight.Calculate_Price(2)); //OK
Console.WriteLine(flight.ID); //Error
}
static void Main(string[] args)
{
List<IFlight> flights = new List<IFlight>();
flights.Add(new Regular());
flights.Add(new Charter());
flights.Add(new LowCost());
Main_SomeMethod(flights[0]);
}
Your current solution, in combination with some of the suggestions, will be a case of a mounted riding rider. You don't need an interface and a base class and testing for type.
You can solve your problem the way you're trying, with a base class and an interface. But it's overkill, and you have to kind of duplicate some stuff in the interface and the base class.
You can solve your problem with a simple base class and three derived classes where only Calculate_Price gets overridden. Put the common items in the base class. This is a very simple solution, easy to figure out, especially if C# and OOP is new to you.
You can also solve your problem with an interface and three classes, not derived. This has the disadvantage that you have to implement the interface in three classes. As Peter Csala points out, C# 8 has some language features that can help minimize this work, possibly making this just as simple as using only a base class and no interface. I am not too familiar with those features, so I can't judge whether it makes sense.
Then there is another option entirely. This touches on what zaitsman hinted at - that this is possibly an XY problem. Why do you want to distinguish between Regular, Charter and LowCost using classes derived from Flight/AbsFlight? Is it possible to just have an attribute that tells what price profile is used? Are there other fields and properties of a Flight that has nothing to do with the price, and yet also distinguishes flights? Perhaps just use one class.
About testing for class type. This is what we call code smell. Generally, if you test for class types a lot, then you defy the purpose of using classes and/or interfaces in the first place.
Your method should accept the type that has the properties it needs, in this case the AbsFlight class.
private static void Some_Method(AbsFlight flight)
{
Console.WriteLine(flight.Calculate_Price(2));
Console.WriteLine(flight.ID); //OK
}
But let's says the method must accept any IFlight. In this case, it can't be sure it received an AbsFlight; it has to check. After the check you can just cast.
private static void Some_Method(IFlight flight)
{
Console.WriteLine(flight.Calculate_Price(2));
if (flight is AbsFlight)
{
Console.WriteLine(((AbsFlight)flight).ID); //OK
}
}
With c#7 there is an additional construct you can use, if you think it is clearer:
private static void Some_Method(IFlight flight)
{
Console.WriteLine(flight.Calculate_Price(2));
switch (flight)
{
case AbsFlight absFlight:
Console.WriteLine(absFlight.ID); //OK
break;
}
}
It seems to be that you are doing something wrong that this is your requirement.
When you use an interface and pass it as an argument you want it to be common to all the objects that implement it.
Anyway, if you do want to do it. You might do something like:
if (flight is Flight)
{
Flight yourFlight = (Flight)flight;
// Here you can use anything you need from Flight, e.g: yourFlight.ID
}
I previously posted this, but I guess it was too verbose and irrelevant. My question is also like this. One poster in the second link said the answer (of why you can't do the code below) was a problem of design, specifically "bad use of inheritance". So I'd like to check this issue again with the experts at StackOverflow and see if this is really an issue of "bad inheritance" - but more importantly, how to fix the design.
Like the poster, I'm also confused about the Factory method and how I can apply it. It seems the factory method is for multiple concrete classes that have the exact same implementation as the abstract base class and do not add their own properties. But, as you will see below, my concrete classes build upon the abstract base class and add extra properties.
The Base Class We Build Upon:
public abstract class FlatScreenTV
{
public string Size { get; set; }
public string ScreenType { get; set; }
}
Extension Class Examples:
public class PhillipsFlatScreenTV : FlatScreenTV
{
// Specific to Phillips TVs. Controls the backlight intensity of the LCD screen.
public double BackLightIntensity { get; set; }
}
public class SamsungFlatScreenTV : FlatScreenTV
{
// Specific to Samsung TVs. Controls the time until the TV automatically turns off.
public int AutoShutdownTime { get; set; }
}
Let's say there are more extension classes for more brands of flat screen TVs. And then, let's say we stick them all into a generic List:
public static void Main()
{
List<FlatScreenTV> tvList = new List<FlatScreenTV>();
tvList.Add(new PhillipsFlatScreenTV());
tvList.Add(new SamsungFlatScreenTV());
tvList.Add(new SharpFlatScreenTV());
tvList.Add(new VizioFlatScreenTV());
FlatScreenTV tv = tvList[9]; // Randomly get one TV out of our huge list
}
The Problem:
I want to access the specific properties of whatever 'original' brand TV this variable belongs to. I know the brand because if I call tv.GetType(), it returns the correct 'original' type - not FlatScreenTV. But I need to be able to cast tv from FlatScreenTV back to its original type to be able to access the specific properties of each brand of flat-screen TVs.
Question #1: How can I dynamically cast that, properly - without makeshift hacks and huge if-else chains to brute-guess the 'original' type?
After browsing around similar design issues, most answers are: you can't. Some people say to look at the Factory Pattern, and others say to revise the design using interfaces, but I don't know how to use either to solve this problem.
Question #2: So, how should I design these classes so that I can access the original type's specific properties in the context above?
Question #3: Is this really bad inheritance?
Your design violates the "Liskov Substitution Principle". In other words, the code that deals with items from your list of FlatScreenTV shouldn't know or care what derived type is.
Say your code needs to create a custom remote control GUI. It might be enough to simply know the names and types of the properties of each TV to auto-generate the UI. In which case you could do something like this to expose the custom properties from the base class:
public abstract class FlatScreenTV
{
public FlatScreenTV()
{
CustomProperties = new Dictionary<string,object>();
}
public Dictionary<string,object> CustomProperties { get; private set; }
public string Size { get; set; }
public string ScreenType { get; set; }
}
public class PhillipsFlatScreenTV : FlatScreenTV
{
public PhillipsFlatScreenTV()
{
BackLightIntensity = 0;
}
// Specific to Phillips TVs. Controls the backlight intensity of the LCD screen.
public double BackLightIntensity
{
get { return (double)CustomProperties["BackLightIntensity"]; }
set { CustomProperties["BackLightIntensity"] = value; }
}
}
public class SamsungFlatScreenTV : FlatScreenTV
{
public SamsungFlatScreenTV()
{
AutoShutdownTime = 0;
}
// Specific to Samsung TVs. Controls the time until the TV automatically turns off.
public int AutoShutdownTime
{
get { return (int)CustomProperties["AutoShutdownTime"]; }
set { CustomProperties["AutoShutdownTime"] = value; }
}
}
If you really do need to be working directly with the derived types, then you should instead consider moving to a plugin based architecture. For example, you might have a factory method like this:
IRemoteControlGUI GetRemoteControlGUIFor(FlatScreenTV tv)
which would scan your plugins and find the one that knew how to build the UI for the particular type of FlatScreenTV you passed in. This means that for every new FlatScreenTV you add, you also need to create a plugin that knows how to make its remote control GUI.
Factory Pattern would be the best way to go
I can offer a partial answer:
Firstly read up on Liskov's Substitution Principle.
Secondly you are creating objects that inherit from FlatScreenTV, but apparently for no purpose as you want to refer to them by their SubType (SpecificTVType) and not their SuperType (FlatScreenTV) - This is bad use of Inheritance as it is NOT using inheritance lol.
If your code wants to access properties particular to a given type, then you really want this code encapsulated within that type. Otherwise everytime you add a new TV type, all the code that handles the TV list would need to be updated to reflect that.
So you should include a method on FlatScreenTV that does x, and override this in TV's as required.
So basically in your Main method above, instead of thinking I want to be dealing with TVTypeX, you should always refer to the basetype, and let inheritance and method overriding handle the specific behaviour for the subtype you are actually dealing with.
Code eg.
public abstract class FlatScreenTV
{
public virtual void SetOptimumDisplay()
{
//do nothing - base class has no implementation here
}
}
public class PhilipsWD20TV
{
public int BackLightIntensity {get;set;}
public override void SetOptimumDisplay()
{
//Do Something that uses BackLightIntensity
}
}
"the factory method is for multiple concrete classes that have the exact same implementation as the abstract base class [interface] and do not add their own properties."
No, speaking more practical, than theorical, the factory method can provide you with objects of concrete classes, in which the concrete classes, must have some common methods and interfaces, but, also some additional specific attributes.
Sometimes I use a method that creates the same class object every time I called, and I need to call it several times, and sometimes I use a method that create several different class objects, and that maybe be confusing, maybe another question.
And, your further comment about a switch sentence, with many options, when using the factory pattern, you usually provide an identifier for the concrete class / concrete object. This can be a string, an integer, an special type id, or an enumerated type.
You could use an integer / enum ID instead, and use a collection to lookup for the concrete class.
You can still leverage a factory. The point of a factory IMO is to put all the heavy lifting of constructing your various TVs in one place. To say categorically "a factory is for multiple concrete classes that have the exact same implementation as the abstract base class" is forgetting about polymorphism.
There is no law that says you cannot use a factory pattern because the sub classes declare unique properties and methods. But the more you can make use of polymorphism, the more a factory pattern makes sense. Also as a general guideline, IMHO, the more complexity that must go into constructing from the base the better off you are in the long run using a factory because you are "encapsulating change" - that is, constructing concrete classes is likely to change due to differing requirements and inherent construction complexity (a design analysis decision, to be sure) . And that change is in a single class - the factory.
Try this: Define everything in the abstract class and then for a given TV subclass either write concrete-specific code, and for those that don't apply write some standard "I don't do that" code.
Think about all the things your TVs do in generic terms: turn on, turn off, etc. Write a virtual method shell in the base class for all the generic things a TV does - this is a simple example of the template method pattern by the way. Then override these in the concrete classes as appropriate.
There are other things you can do in the base class to make it more fundgeable (that's a technical term meaning "reference subclasses as the base class, but do sub-classy things").
Define delegate methods (very powerful yet under-utilized)
use params[] for dynamic method parameter lists
Make Property delegates
Static methods
Declare Properties and methods "abstract" - forces sub-class implementation, vis-a-vis "virtual"
Hide inherited stuff in the sub class (generally using "new" keyword to communicate that it's on purpose)
If construction parameters are numerous or complex, create a class specifically designed to pass configuration to the factory's build method.
public class TVFactory {
public TV BuildTV(Brands thisKind) {
TV newSet;
switch (thisKind) {
case Brands.Samsung :
Samsung aSamsungTV = new Samsung();
aSamsungTV.BacklightIntensity = double.MinVal;
aSamsungTV.AutoShutdownTime = 45; //oops! I made a magic number. My bad
aSamsungTV.SetAutoShutDownTime = new delegate (newSet.SetASDT);
newSet = aSamsungTV;
break;
. . .
} // switch
}
//more build methods for setting specific parameters
public TV BuildTV (Brands thisKind, string Size) { ... }
// maybe you can pass in a set of properties to exactly control the construction.
// returning a concrete class reference violates the spirit of object oriented programming
public Sony BuildSonyTV (...) {}
public TV BuildTV (Brands thisKind, Dictionary buildParameters) { ... }
}
public class TV {
public string Size { get; set; }
public string ScreenType { get; set; }
public double BackLightIntensity { get; set; }
public int AutoShutdownTime { get; set; }
//define delegates to get/set properties
public delegate int GetAutoShutDownTime ();
public delegate void SetAutoShutDownTime (object obj);
public virtual TurnOn ();
public virtural TurnOff();
// this method implemented by more than one concrete class, so I use that
// as an excuse to declare it in my base.
public virtual SomeSonyPhillipsOnlything () { throw new NotImplementedException("I don't do SonyPhillips stuff"); }
}
public class Samsung : TV {
public Samsung() {
// set the properties, delegates, etc. in the factory
// that way if we ever get new properties we don't open umpteen TV concrete classes
// to add it. We're only altering the TVFactory.
// This demonstrates how a factory isolates code changes for object construction.
}
public override void TurnOn() { // do stuff }
public override void TurnOn() { // do stuff }
public void SamsungUniqueThing () { // do samsung unique stuff }
internal void SetASDT (int i) {
AutoShutDownTime = i;
}
}
// I like enumerations.
// No worries about string gotchas
// we get intellense in Visual Studio
// has a documentation-y quality
enum Brands {
Sony
,Samsung
,Phillips
}
First thing to note - I KNOW DELEGATION AND DECORATOR PATTERNS!
Second - I am using C# .NET 4.0, so if you come up with a solution that is specific for it, that's fine. But if solution will work for any OOP language and platform, that would be great.
And here the question goes...
I have a partial class (lets name it Class1), which I cannot modify. Thus, I can just extend it or/and inherit from it. This class provides a perfect data model for me, the only thing I need is to add some attributes to its properties (for validation, defining label text value in MVC etc - for now, I do not need answers like 'you can do what you need without attributes', that's not the matter of my question).
It is not a problem to use another class as a data model, so I can, say, create Class2 : Class1 and use Class2 as a model. Properties that need attributes would be defined as public new <type> <propertyname>. This will limit me to rewriting only the properties that need attributes, leaving all other untouched.
The smaller problem is that I do not what to redefine getters and setters for the properties, as all they gonna contain is return base.<propertyname> and base.<propertyname> = value, and if there are lots of such properties, this means lots of "stupid" coding. Is there a way to avoid this?
The bigger problem is that I have to parametrize my Class2 with Class1 instance and make something like class2.<propertyname> = class1.<propertyname> for each single property I have - too much of "stupid" coding. I can avoid it using reflection - find all properties with public getters and setters in Class1 and call prop.SetValue(child, prop.GetValue(parent, null), null); in the loop. This provides a generic function for simple cases, which is quite fine, as I mostly have simple models - lots of properties with public getters and setters without body and another logic. But I want more generic solution, and I do not like reflection. Any ideas?
Here goes the full code of the extension method that creates Class2 basing on Class1
public static Child ToExtendedChild<Parent, Child>(this Parent parent)
where Child : Parent, new()
{
Child child = new Child();
var props = typeof(Parent).GetProperties().Where(p => p.GetAccessors().Count() >= 2);
foreach (var prop in props)
{
prop.SetValue(child, prop.GetValue(parent, null), null);
}
return child;
}
(by the way, this method may not ideally implement my solution, so any corrections would also be appreciated)
Thanks in advance!
The smaller problem doesn't seem to be much of a problem. Maybe I'm misunderstanding the question, but assuming you're simply deriving a subclass, there should be no reason to redefine either the properties or their associated getters/setters.
The bigger problem might be resolved using something a little simpler. Using reflection for a lot of your object initialization seems a little expensive. If you're dealing with a class that is primarily a big bag or properties, maybe you should as if you need access to all of those properties in any given situation. You mention MVC and validation, is the entire model being used in the controller method you're validation is taking place in? If not, why not look at using a viewmodel that only exposes those pieces you need in that method?
Your reflection initializer is interesting, but if you're going to be doing a lot of this then you might consider investing a little time with Automapper. Otherwise maybe consider moving away from a generic solution to something that just tackles the problem at hand, i.e. mapping properties from an instance of an object to another instance of a derived object. Maybe you can create a copy constructor in the parent class and use that in your derived class?
public class Foo {
public string PropOne { get; set; }
public string PropTwo { get; set; }
public Foo(string propOne, string propTwo) {
PropOne = propOne;
PropTwo = propTwo;
}
public Foo(Foo foo) {
PropOne = foo.PropOne;
PropTwo = foo.PropTwo;
}
}
public class Pho : Foo {
// if you have additional properties then handle them here
// and let the base class take care of the rest.
public string PropThree { get; set; }
public Pho(string propOne, string propTwo, string propThree)
: base(propOne, propTwo) {
PropThree = propThree;
}
public Pho(Pho pho) : base(pho) {
PropThree = pho.PropThree;
}
// otherwise you can just rely on a copy constructor
// to handle the initialization.
public Pho(Foo foo) : base(foo) {}
}
I assume the partial class is generated code, it makes the most sense given your scenario.
I know of one way to do this, but depending on how the attribute gets crawled, it may not work.
// Generated Code
public partial Class1
{
public string Foo { get { ... } }
}
// Your Code
public interface IClass1
{
[MyAttribute]
public string Foo { get; }
}
public partial Class1 : IClass1
{
}
If someone were to look at attributes by using GetCustomAttributes with inheritance, then I think they would get this attribute.
As an aside, whenever I see generated code that doesn't have virtual properties it makes me cry a little bit inside.
To address your bigger question, why don't you just make Class2 a wrapper for Class1. Instead of copying all of the properties you can just give Class2 an instance of Class1 in the constructor, store it locally and make all of your properties pass-throughs. It means some hand coding, but if you're building a Class2 by hand anyway and want to decorate it with a bunch of attributes, well, you're hand coding Class2 anyway.
I have a couple of classes that I wish to tag with a particular attribute. I have two approaches in mind. One involves using an Attribute-extending class. The other uses an empty interface:
Attributes
public class FoodAttribute : Attribute { }
[Food]
public class Pizza { /* ... */ }
[Food]
public class Pancake { /* ... */ }
if (obj.IsDefined(typeof(FoodAttribute), false)) { /* ... */ }
Interface
public interface IFoodTag { }
public class Pizza : IFoodTag { /* ... */ }
public class Pancake : IFoodTag { /* ... */ }
if (obj is IFoodTag) { /* ... */ }
I'm hesitant to use the attributes due to its usage of Reflection. At the same time, however, I'm hesitant on creating an empty interface that is only really serving as a tag. I've stress-tested both and the time difference between the two is only about three milliseconds, so performance is not at stake here.
Well, with attributes, you can always create the attribute in such a way that its function doesn't propagate to descendant types automatically.
With interfaces, that's not possible.
I would go with attributes.
I'll have to say otherwise. I think that, for your example, a marker interface makes more sense.
That's because it seems very likely that you might one day add some members to IFood.
Your design starts like this:
interface IFood {}
But then you decide to add something there:
interface IFood {
int Calories { get; }
}
There are also other ways to extend interfaces:
static class FoodExtensions {
public static void Lighten(this IFood self) {
self.Calories /= 2;
}
}
You probably have answered on you question by your own. Attributes is more logical here, reflection is not a BIG MONSTER WITH RED EYES =)
btw, can you show calling code, where you determine marked with interface types? Aren't you using reflection there?
It's an old question, but maybe someone stumbles on it like I did.
Seems in this case:
"If the object is Food, I would return FoodEventArguments. If the object were, say, Beverage, I'd return DrinkEventArguments. Basically, there's a common base class (let's say ConcessionStandItem) that gets passed into the function"
tagging with either interface or attribute and then checking with an if statement is not the only option you have.
Might be a valid scenario for the visitor pattern with implementations for each 'ConcessionStandItem' like FoodEventArguments CreateEventArgs(Pizza pizza).... as well.
Maybe food for thought for someone else in this scenario. (pun intended).
In this case, as you say, you're not using an interface correctly.
What's wrong with using reflection the get you attributes? The usual answer is performance but that is generally not a real issue in nearly all cases.
Why is static virtual impossible? Is C# dependent or just don't have any sense in the OO world?
I know the concept has already been underlined but I did not find a simple answer to the previous question.
virtual means the method called will be chosen at run-time, depending on the dynamic type of the object. static means no object is necessary to call the method.
How do you propose to do both in the same method?
Eric Lippert has a blog post about this, and as usual with his posts, he covers the subject in great depth:
https://learn.microsoft.com/en-us/archive/blogs/ericlippert/calling-static-methods-on-type-parameters-is-illegal-part-one
“virtual” and “static” are opposites! “virtual” means “determine the method to be called based on run time type information”, and “static” means “determine the method to be called solely based on compile time static analysis”
The contradiction between "static" and "virtual" is only a C# problem. If "static" were replaced by "class level", like in many other languages, no one would be blindfolded.
Too bad the choice of words made C# crippled in this respect. It is still possible to call the Type.InvokeMember method to simulate a call to a class level, virtual method. You just have to pass the method name as a string. No compile time check, no strong typing and no control that subclasses implement the method.
Some Delphi beauty:
type
TFormClass = class of TForm;
var
formClass: TFormClass;
myForm: TForm;
begin
...
formClass = GetAnyFormClassYouWouldLike;
myForm = formClass.Create(nil);
myForm.Show;
end
Guys who say that there is no sense in static virtual methods - if you don't understand how this could be possible, it does not mean that it is impossible. There are languages that allow this!! Look at Delphi, for example.
I'm going to be the one who naysays. What you are describing is not technically part of the language. Sorry. But it is possible to simulate it within the language.
Let's consider what you're asking for - you want a collection of methods that aren't attached to any particular object that can all be easily callable and replaceable at run time or compile time.
To me that sounds like what you really want is a singleton object with delegated methods.
Let's put together an example:
public interface ICurrencyWriter {
string Write(int i);
string Write(float f);
}
public class DelegatedCurrencyWriter : ICurrencyWriter {
public DelegatedCurrencyWriter()
{
IntWriter = i => i.ToString();
FloatWriter = f => f.ToString();
}
public string Write(int i) { return IntWriter(i); }
public string Write(float f) { return FloatWriter(f); }
public Func<int, string> IntWriter { get; set; }
public Func<float, string> FloatWriter { get; set; }
}
public class SingletonCurrencyWriter {
public static DelegatedCurrencyWriter Writer {
get {
if (_writer == null)
_writer = new DelegatedCurrencyWriter();
return _writer;
}
}
}
in use:
Console.WriteLine(SingletonCurrencyWriter.Writer.Write(400.0f); // 400.0
SingletonCurrencyWriter.Writer.FloatWriter = f => String.Format("{0} bucks and {1} little pennies.", (int)f, (int)(f * 100));
Console.WriteLine(SingletonCurrencyWriter.Writer.Write(400.0f); // 400 bucks and 0 little pennies
Given all this, we now have a singleton class that writes out currency values and I can change the behavior of it. I've basically defined the behavior convention at compile time and can now change the behavior at either compile time (in the constructor) or run time, which is, I believe the effect you're trying to get. If you want inheritance of behavior, you can do that to by implementing back chaining (ie, have the new method call the previous one).
That said, I don't especially recommend the example code above. For one, it isn't thread safe and there really isn't a lot in place to keep life sane. Global dependence on this kind of structure means global instability. This is one of the many ways that changeable behavior was implemented in the dim dark days of C: structs of function pointers, and in this case a single global struct.
Yes it is possible.
The most wanted use case for that is to have factories which can be "overriden"
In order to do this, you will have to rely on generic type parameters using the F-bounded polymorphism.
Example 1
Let's take a factory example:
class A: { public static A Create(int number) { return ... ;} }
class B: A { /* How to override the static Create method to return B? */}
You also want createB to be accessible and returning B objects in the B class. Or you might like A's static functions to be a library that should be extensible by B. Solution:
class A<T> where T: A<T> { public static T Create(int number) { return ...; } }
class B: A<B> { /* no create function */ }
B theb = B.Create(2); // Perfectly fine.
A thea = A.Create(0); // Here as well
Example 2 (advanced):
Let's define a static function to multiply matrices of values.
public abstract class Value<T> where T : Value<T> {
//This method is static but by subclassing T we can use virtual methods.
public static Matrix<T> MultiplyMatrix(Matrix<T> m1, Matrix<T> m2) {
return // Code to multiply two matrices using add and multiply;
}
public abstract T multiply(T other);
public abstract T add(T other);
public abstract T opposed();
public T minus(T other) {
return this.add(other.opposed());
}
}
// Abstract override
public abstract class Number<T> : Value<T> where T: Number<T> {
protected double real;
/// Note: The use of MultiplyMatrix returns a Matrix of Number here.
public Matrix<T> timesVector(List<T> vector) {
return MultiplyMatrix(new Matrix<T>() {this as T}, new Matrix<T>(vector));
}
}
public class ComplexNumber : Number<ComplexNumber> {
protected double imag;
/// Note: The use of MultiplyMatrix returns a Matrix of ComplexNumber here.
}
Now you can also use the static MultiplyMatrix method to return a matrix of complex numbers directly from ComplexNumber
Matrix<ComplexNumber> result = ComplexNumber.MultiplyMatrix(matrix1, matrix2);
While technically it's not possible to define a static virtual method, for all the reasons already pointed out here, you can functionally accomplish what I think you're trying using C# extension methods.
From Microsoft Docs:
Extension methods enable you to "add" methods to existing types without creating a new derived type, recompiling, or otherwise modifying the original type.
Check out Extension Methods (C# Programming Guide) for more details.
In .NET, virtual method dispatch is (roughly) done by looking at the actual type of an object when the method is called at runtime, and finding the most overriding method from the class's vtable. When calling on a static class, there is no object instance to check, and so no vtable to do the lookup on.
To summarize all the options presented:
This is not a part of C# because in it, static means "not bound to anything at runtime" as it has ever since C (and maybe earlier). static entities are bound to the declaring type (thus are able to access its other static entities), but only at compile time.
This is possible in other languages where a static equivalent (if needed at all) means "bound to a type object at runtime" instead. Examples include Delphi, Python, PHP.
This can be emulated in a number of ways which can be classified as:
Use runtime binding
Static methods with a singleton object or lookalike
Virtual method that returns the same for all instances
Redefined in a derived type to return a different result (constant or derived from static members of the redefining type)
Retrieves the type object from the instance
Use compile-time binding
Use a template that modifies the code for each derived type to access the same-named entities of that type, e.g. with the CRTP
The 2022+ answer, if you are running .Net 7 or above, is that now static virtual members is now supported in interfaces. Technically it's static abstract instead of "static virtual" but the effect is that same. Standard static methods signatures can be defined in an interface and implemented statically.
Here are a few examples on the usage and syntax in .Net 7