Generic constraint based on non-implementation of interface - c#

I have an application with a factory service to allow construction of instances while resolving the necessary dependency injection. For instance, I use this to construct dialog view models. I have a service interface that looks like this:
public interface IAsyncFactory
{
Task<T> Build<T>() where T: class, IAsyncInitialize;
}
Ideally, what I'd like to have is something like this (pseudo-syntax, as this isn't directly achievable)
public interface IFactory
{
Task<T> Build<T>() where T: class, IAsyncInitialize;
T Build<T>() where T: class, !IAsyncInitialize;
}
The idea here is that if a class supports IAsyncInitialize, I'd like the compiler to resolve to the method that returns Task<T> so that it's obvious from the consuming code that it needs to wait for initialization. If the class does not support IAsyncInitialize, I'd like to return the class directly. The C# syntax doesn't allow this, but is there a different way to achieve what I'm after? The main goal here is to help remind the consumer of the class of the correct way to instantiate it, so that for classes with an asynchronous initialization component, I don't try to use it before it has been initialized.
The closest I can think of is to create separate Build and BuildAsync methods, with a runtime error if you call Build for an IAsyncInitialize type, but this doesn't have the benefit of catching errors at compile time.

In general Microsoft suggests to add async suffix when naming asynchronous methods. Thus, your assumption of creating two methods named as Build and BuildAsync makes sense.
I think there is no way to enforce something like "all types that do not implement IAsyncInitialize shall use Build method instead of BuildAsync" unless you force the developers to mark synchronous methods with another interface like ISynchronousInitialize.
You may try the following;
instead of having to separate methods, just implement one BuildAsync method which has the following signature:
Task<T> BuildAsync<T>() where T: class
In the BuildAsync method check whether T implements IAsyncInitialize. If this is the case, just call related initialization code after creating the object of type T. Otherwise, just create a TaskCompletionSource object and run the synchronous initialization code as if it is asynchronous.

The following approach might not be the best, but I find it very convenient. When both asynchronous and synchronous initializers are available (or possibly can be available), I wrap the synchronous one as asynchronous with Task.FromResult, and only expose the asynchronous method to the client:
public interface IAsyncInitialize
{
Task InitAsync();
int Data { get; }
}
// sync version
class SyncClass : IAsyncInitialize
{
readonly int _data = 1;
public Task InitAsync()
{
return Task.FromResult(true);
}
public int Data { get { return _data; } }
}
// async version
class AsyncClass: IAsyncInitialize
{
int? _data;
public async Task InitAsync()
{
await Task.Delay(1000);
_data = 1;
}
public int Data
{
get
{
if (!_data.HasValue)
throw new ApplicationException("Data uninitalized.");
return _data.Value;
}
}
}
This leaves only the asynchronous version of the factory:
public interface IAsyncFactory
{
// Build can create either SyncClass or AsyncClass
Task<T> Build<T>() where T: class, IAsyncInitialize;
}
Furthermore, I prefer to avoid dedicated initializer methods like InitAsync, and rather expose asynchronous properties directly as tasks:
public interface IAsyncData
{
Task<int> AsyncData { get; }
}
// sync version
class SyncClass : IAsyncData
{
readonly Task<int> _data = Task.FromResult(1);
public Task<int> AsyncData
{
get { return _data; }
}
}
// async versions
class AsyncClass : IAsyncData
{
readonly Task<int> _data = GetDataAsync();
public Task<int> AsyncData
{
get { return _data; }
}
private static async Task<int> GetDataAsync()
{
await Task.Delay(1000);
return 1;
}
}
In either case, it always imposes asynchrony on the client code, i.e.:
var sum = await provider1.AsyncData + await provider2.AsyncData;
However, I don't think it's an issue as the overhead of Task.FromResult and await Task.FromResult for the synchronous version is quite low. I'm going to post some benchmarks.
The approach using asynchronous properties can be further improved with Lazy<T>, e.g. like this:
public class AsyncData<T>
{
readonly Lazy<Task<T>> _data;
// expose async initializer
public AsyncData(Func<Task<T>> asyncInit, bool makeThreadSafe = true)
{
_data = new Lazy<Task<T>>(asyncInit, makeThreadSafe);
}
// expose sync initializer as async
public AsyncData(Func<T> syncInit, bool makeThreadSafe = true)
{
_data = new Lazy<Task<T>>(() =>
Task.FromResult(syncInit()), makeThreadSafe);
}
public Task<T> AsyncValue
{
get { return _data.Value; }
}
}

Related

Do I need Task.Run to call an async method from a constructor? [duplicate]

I have a project where I'm trying to populate some data in a constructor:
public class ViewModel
{
public ObservableCollection<TData> Data { get; set; }
async public ViewModel()
{
Data = await GetDataTask();
}
public Task<ObservableCollection<TData>> GetDataTask()
{
Task<ObservableCollection<TData>> task;
//Create a task which represents getting the data
return task;
}
}
Unfortunately, I'm getting an error:
The modifier async is not valid for this item
Of course, if I wrap in a standard method and call that from the constructor:
public async void Foo()
{
Data = await GetDataTask();
}
it works fine. Likewise, if I use the old inside-out way
GetData().ContinueWith(t => Data = t.Result);
That works too. I was just wondering why we can't call await from within a constructor directly. There are probably lots of (even obvious) edge cases and reasons against it, I just can't think of any. I've also search around for an explanation, but can't seem to find any.
Since it is not possible to make an async constructor, I use a static async method that returns a class instance created by a private constructor. This is not elegant but it works ok.
public class ViewModel
{
public ObservableCollection<TData> Data { get; set; }
//static async method that behave like a constructor
async public static Task<ViewModel> BuildViewModelAsync()
{
ObservableCollection<TData> tmpData = await GetDataTask();
return new ViewModel(tmpData);
}
// private constructor called by the async method
private ViewModel(ObservableCollection<TData> Data)
{
this.Data = Data;
}
}
Constructor acts very similarly to a method returning the constructed type. And async method can't return just any type, it has to be either “fire and forget” void, or Task.
If the constructor of type T actually returned Task<T>, that would be very confusing, I think.
If the async constructor behaved the same way as an async void method, that kind of breaks what constructor is meant to be. After constructor returns, you should get a fully initialized object. Not an object that will be actually properly initialized at some undefined point in the future. That is, if you're lucky and the async initialization doesn't fail.
All this is just a guess. But it seems to me that having the possibility of an async constructor brings more trouble than it's worth.
If you actually want the “fire and forget” semantics of async void methods (which should be avoided, if possible), you can easily encapsulate all the code in an async void method and call that from your constructor, as you mentioned in the question.
Your problem is comparable to the creation of a file object and opening the file. In fact there are a lot of classes where you have to perform two steps before you can actually use the object: create + Initialize (often called something similar to Open).
The advantage of this is that the constructor can be lightweight. If desired, you can change some properties before actually initializing the object. When all properties are set, the Initialize/Open function is called to prepare the object to be used. This Initialize function can be async.
The disadvantage is that you have to trust the user of your class that he will call Initialize() before he uses any other function of your class. In fact if you want to make your class full proof (fool proof?) you have to check in every function that the Initialize() has been called.
The pattern to make this easier is to declare the constructor private and make a public static function that will construct the object and call Initialize() before returning the constructed object. This way you'll know that everyone who has access to the object has used the Initialize function.
The example shows a class that mimics your desired async constructor
public MyClass
{
public static async Task<MyClass> CreateAsync(...)
{
MyClass x = new MyClass();
await x.InitializeAsync(...)
return x;
}
// make sure no one but the Create function can call the constructor:
private MyClass(){}
private async Task InitializeAsync(...)
{
// do the async things you wanted to do in your async constructor
}
public async Task<int> OtherFunctionAsync(int a, int b)
{
return await ... // return something useful
}
Usage will be as follows:
public async Task<int> SomethingAsync()
{
// Create and initialize a MyClass object
MyClass myObject = await MyClass.CreateAsync(...);
// use the created object:
return await myObject.OtherFunctionAsync(4, 7);
}
if you make constructor asynchronous, after creating an object, you may fall into problems like null values instead of instance objects. For instance;
MyClass instance = new MyClass();
instance.Foo(); // null exception here
That's why they don't allow this i guess.
In this particular case, a viewModel is required to launch the task and notify the view upon its completion. An "async property", not an "async constructor", is in order.
I just released AsyncMVVM, which solves exactly this problem (among others). Should you use it, your ViewModel would become:
public class ViewModel : AsyncBindableBase
{
public ObservableCollection<TData> Data
{
get { return Property.Get(GetDataAsync); }
}
private Task<ObservableCollection<TData>> GetDataAsync()
{
//Get the data asynchronously
}
}
Strangely enough, Silverlight is supported. :)
I was just wondering why we can't call await from within a constructor directly.
I believe the short answer is simply: Because the .Net team has not programmed this feature.
I believe with the right syntax this could be implemented and shouldn't be too confusing or error prone. I think Stephen Cleary's blog post and several other answers here have implicitly pointed out that there is no fundamental reason against it, and more than that - solved that lack with workarounds. The existence of these relatively simple workarounds is probably one of the reasons why this feature has not (yet) been implemented.
calling async in constructor maybe cause deadlock, please refer to
http://social.msdn.microsoft.com/Forums/en/winappswithcsharp/thread/0d24419e-36ad-4157-abb5-3d9e6c5dacf1
http://blogs.msdn.com/b/pfxteam/archive/2011/01/13/10115163.aspx
Some of the answers involve creating a new public method. Without doing this, use the Lazy<T> class:
public class ViewModel
{
private Lazy<ObservableCollection<TData>> Data;
async public ViewModel()
{
Data = new Lazy<ObservableCollection<TData>>(GetDataTask);
}
public ObservableCollection<TData> GetDataTask()
{
Task<ObservableCollection<TData>> task;
//Create a task which represents getting the data
return task.GetAwaiter().GetResult();
}
}
To use Data, use Data.Value.
C# doesn't allow async constructors. Constructors are meant to return fast after some brief initialization. You don't expect and you don't want to wait for an instance i.e. the constructor to return. Therefore, even if async constructors were possible, a constructor is not a place for long-running operations or starting background threads. The only purpose of a constructor is initialization of instance or class members to a default value or the captured constructor parameters. You always create the instance and then call DoSomething() on this instance. Async operations are no exception. You always defer expensive initialization of members.
There are a few solutions to avoid the requirement of async constructors.
A simple alternative solution using Lazy<T> or AsyncLazy<T> (requires to install the Microsoft.VisualStudio.Threading package via the NuGet Package Manager). Lazy<T> allows to defer the instantiation or allocation of expensive resources.
public class OrderService
{
public List<object> Orders => this.OrdersInitializer.GetValue();
private AsyncLazy<List<object>> OrdersInitializer { get; }
public OrderService()
=> this.OrdersInitializer = new AsyncLazy<List<object>>(InitializeOrdersAsync, new JoinableTaskFactory(new JoinableTaskContext()));
private async Task<List<object>> InitializeOrdersAsync()
{
await Task.Delay(TimeSpan.FromSeconds(5));
return new List<object> { 1, 2, 3 };
}
}
public static void Main()
{
var orderService = new OrderService();
// Trigger async initialization
orderService.Orders.Add(4);
}
You can expose the data using a method instead of a property
public class OrderService
{
private List<object> Orders { get; set; }
public async Task<List<object>> GetOrdersAsync()
{
if (this.Orders == null)
{
await Task.Delay(TimeSpan.FromSeconds(5));
this.Orders = new List<object> { 1, 2, 3 };
}
return this.Orders;
}
}
public static async Task Main()
{
var orderService = new OrderService();
// Trigger async initialization
List<object> orders = await orderService.GetOrdersAsync();
}
Use an InitializeAsync method that must be called before using the instance
public class OrderService
{
private List<object> orders;
public List<object> Orders
{
get
{
if (!this.IsInitialized)
{
throw new InvalidOperationException();
}
return this.orders;
}
private set
{
this.orders = value;
}
}
public bool IsInitialized { get; private set; }
public async Task<List<object>> InitializeAsync()
{
if (this.IsInitialized)
{
return;
}
await Task.Delay(TimeSpan.FromSeconds(5));
this.Orders = new List<object> { 1, 2, 3 };
this.IsInitialized = true;
}
}
public static async Task Main()
{
var orderService = new OrderService();
// Trigger async initialization
await orderService.InitializeAsync();
}
Instantiate the instance by passing the expensive arguments to the constructor
public class OrderService
{
public List<object> Orders { get; }
public async Task<List<object>> OrderService(List<object> orders)
=> this.Orders = orders;
}
public static async Task Main()
{
List<object> orders = await GetOrdersAsync();
// Instantiate with the result of the async operation
var orderService = new OrderService(orders);
}
private static async Task<List<object>> GetOrdersAsync()
{
await Task.Delay(TimeSpan.FromSeconds(5));
return new List<object> { 1, 2, 3 };
}
Use a factory method and a private constructor
public class OrderService
{
public List<object> Orders { get; set; }
private OrderServiceBase()
=> this.Orders = new List<object>();
public static async Task<OrderService> CreateInstanceAsync()
{
var instance = new OrderService();
await Task.Delay(TimeSpan.FromSeconds(5));
instance.Orders = new List<object> { 1, 2, 3 };
return instance;
}
}
public static async Task Main()
{
// Trigger async initialization
OrderService orderService = await OrderService.CreateInstanceAsync();
}
you can use Action inside Constructor
public class ViewModel
{
public ObservableCollection<TData> Data { get; set; }
public ViewModel()
{
new Action(async () =>
{
Data = await GetDataTask();
}).Invoke();
}
public Task<ObservableCollection<TData>> GetDataTask()
{
Task<ObservableCollection<TData>> task;
//Create a task which represents getting the data
return task;
}
}
you can create a wrapper and inject a functor representing the constructor:
class AsyncConstruct<T>
where T: class
{
private readonly Task<T> m_construction;
private T m_constructed;
public AsyncConstruct(Func<T> createFunc)
{
m_constructed = null;
m_construction = Task.Run(()=>createFunc());
}
public T Get()
{
if(m_constructed == null)
{
m_constructed = m_construction.Result;
}
return m_constructed;
}
}
Please bump this language request:
https://github.com/dotnet/csharplang/discussions/419
The amount of boilerplate code everyone needs to write to have a fully initialized async object is crazy and completely opposite of the trend in C# (less boilerplate).
I would use something like this.
public class MyViewModel
{
public MyDataTable Data { get; set; }
public MyViewModel()
{
loadData(() => GetData());
}
private async void loadData(Func<DataTable> load)
{
try
{
MyDataTable = await Task.Run(load);
}
catch (Exception ex)
{
//log
}
}
private DataTable GetData()
{
DataTable data;
// get data and return
return data;
}
}
This is as close to I can get for constructors.
I use this easy trick.
public sealed partial class NamePage
{
private readonly Task _initializingTask;
public NamePage()
{
_initializingTask = Init();
}
private async Task Init()
{
/*
Initialization that you need with await/async stuff allowed
*/
}
}
I'm not familiar with the async keyword (is this specific to Silverlight or a new feature in the beta version of Visual Studio?), but I think I can give you an idea of why you can't do this.
If I do:
var o = new MyObject();
MessageBox(o.SomeProperty.ToString());
o may not be done initializing before the next line of code runs. An instantiation of your object cannot be assigned until your constructor is completed, and making the constructor asynchronous wouldn't change that so what would be the point? However, you could call an asynchronous method from your constructor and then your constructor could complete and you would get your instantiation while the async method is still doing whatever it needs to do to setup your object.

Force C# async tasks to be lazy?

I have a situation where I have an object tree created by a special factory. This is somewhat similar to a DI container, but not quite.
Creation of objects always happens via constructor, and the objects are immutable.
Some parts of the object tree may not be needed in a given execution and should be created lazily. So the constructor argument should be something that is just a factory for on-demand creation. This looks like a job for Lazy.
However, object creation may need to access slow resources and is thus always async. (The object factory's creation function returns a Task.) This means that the creation function for the Lazy would need to be async, and thus the injected type needs to be Lazy<Task<Foo>>.
But I'd rather not have the double wrapping. I wonder if it is possible to force a Task to be lazy, i.e. to create a Task that is guaranteed to not execute until it is awaited. As I understand it, a Task.Run or Task.Factory.StartNew may start executing at any time (e.g. if a thread from the pool is idle), even if nothing is waiting for it.
public class SomePart
{
// Factory should create OtherPart immediately, but SlowPart
// creation should not run until and unless someone actually
// awaits the task.
public SomePart(OtherPart eagerPart, Task<SlowPart> lazyPart)
{
EagerPart = eagerPart;
LazyPart = lazyPart;
}
public OtherPart EagerPart {get;}
public Task<SlowPart> LazyPart {get;}
}
I'm not sure exactly why you want to avoid using Lazy<Task<>>,, but if it's just for keeping the API easier to use, as this is a property, you could do it with a backing field:
public class SomePart
{
private readonly Lazy<Task<SlowPart>> _lazyPart;
public SomePart(OtherPart eagerPart, Func<Task<SlowPart>> lazyPartFactory)
{
_lazyPart = new Lazy<Task<SlowPart>>(lazyPartFactory);
EagerPart = eagerPart;
}
OtherPart EagerPart { get; }
Task<SlowPart> LazyPart => _lazyPart.Value;
}
That way, the usage is as if it were just a task, but the initialisation is lazy and will only incur the work if needed.
#Max' answer is good but I'd like to add the version which is built on top of Stephen Toub' article mentioned in comments:
public class SomePart: Lazy<Task<SlowPart>>
{
public SomePart(OtherPart eagerPart, Func<Task<SlowPart>> lazyPartFactory)
: base(() => Task.Run(lazyPartFactory))
{
EagerPart = eagerPart;
}
public OtherPart EagerPart { get; }
public TaskAwaiter<SlowPart> GetAwaiter() => Value.GetAwaiter();
}
SomePart's explicitly inherited from Lazy<Task<>> so it's clear that it's lazy and asyncronous.
Calling base constructor wraps lazyPartFactory to Task.Run to avoid long block if that factory needs some cpu-heavy work before real async part. If it's not your case, just change it to base(lazyPartFactory)
SlowPart is accessible through TaskAwaiter. So SomePart' public interface is:
var eagerValue = somePart.EagerPart;
var slowValue = await somePart;
Declaration:
private Lazy<Task<ServerResult>> _lazyServerResult;`
ctor()
{
_lazyServerResult = new Lazy<Task<ServerResult>>(async () => await
GetServerResultAsync())
}
Usage:
ServerResult result = await _lazyServerResult.Value;
Using the constructor for Task make the task lazy a.k.a not running until you say it to run, so you could do something like this:
public class TestLazyTask
{
private Task<int> lazyPart;
public TestLazyTask(Task<int> lazyPart)
{
this.lazyPart = lazyPart;
}
public Task<int> LazyPart
{
get
{
// You have to start it manually at some point, this is the naive way to do it
this.lazyPart.Start();
return this.lazyPart;
}
}
}
public static async void Test()
{
Trace.TraceInformation("Creating task");
var lazyTask = new Task<int>(() =>
{
Trace.TraceInformation("Task run");
return 0;
});
var taskWrapper = new TestLazyTask(lazyTask);
Trace.TraceInformation("Calling await on task");
await taskWrapper.LazyPart;
}
Result:
SandBox.exe Information: 0 : Creating task
SandBox.exe Information: 0 : Calling await on task
SandBox.exe Information: 0 : Task run
However I strongly recommend you to use Rx.NET and IObservable as in your case you will get way less troubles for handling less naive cases to start your task at the right moment.
Also it makes the code a bit cleaner in my opinion
public class TestLazyObservable
{
public TestLazyObservable(IObservable<int> lazyPart)
{
this.LazyPart = lazyPart;
}
public IObservable<int> LazyPart { get; }
}
public static async void TestObservable()
{
Trace.TraceInformation("Creating observable");
// From async to demonstrate the Task compatibility of observables
var lazyTask = Observable.FromAsync(() => Task.Run(() =>
{
Trace.TraceInformation("Observable run");
return 0;
}));
var taskWrapper = new TestLazyObservable(lazyTask);
Trace.TraceInformation("Calling await on observable");
await taskWrapper.LazyPart;
}
Result:
SandBox.exe Information: 0 : Creating observable
SandBox.exe Information: 0 : Calling await on observable
SandBox.exe Information: 0 : Observable run
To be more clear: The Observable here handle when to start the task, it is Lazy by default and will run the task everytime it is subscribed (here subscribe is used by the awaiter that enable the use of the await keyword).
You could, if you need to, make the task run only once every minute (or ever) and having its result published across all subscribers to save performance for instance, like in a real world app, all of this and many more is handled by observables.

How to use a async task method in a constructor? [duplicate]

I have a project where I'm trying to populate some data in a constructor:
public class ViewModel
{
public ObservableCollection<TData> Data { get; set; }
async public ViewModel()
{
Data = await GetDataTask();
}
public Task<ObservableCollection<TData>> GetDataTask()
{
Task<ObservableCollection<TData>> task;
//Create a task which represents getting the data
return task;
}
}
Unfortunately, I'm getting an error:
The modifier async is not valid for this item
Of course, if I wrap in a standard method and call that from the constructor:
public async void Foo()
{
Data = await GetDataTask();
}
it works fine. Likewise, if I use the old inside-out way
GetData().ContinueWith(t => Data = t.Result);
That works too. I was just wondering why we can't call await from within a constructor directly. There are probably lots of (even obvious) edge cases and reasons against it, I just can't think of any. I've also search around for an explanation, but can't seem to find any.
Since it is not possible to make an async constructor, I use a static async method that returns a class instance created by a private constructor. This is not elegant but it works ok.
public class ViewModel
{
public ObservableCollection<TData> Data { get; set; }
//static async method that behave like a constructor
async public static Task<ViewModel> BuildViewModelAsync()
{
ObservableCollection<TData> tmpData = await GetDataTask();
return new ViewModel(tmpData);
}
// private constructor called by the async method
private ViewModel(ObservableCollection<TData> Data)
{
this.Data = Data;
}
}
Constructor acts very similarly to a method returning the constructed type. And async method can't return just any type, it has to be either “fire and forget” void, or Task.
If the constructor of type T actually returned Task<T>, that would be very confusing, I think.
If the async constructor behaved the same way as an async void method, that kind of breaks what constructor is meant to be. After constructor returns, you should get a fully initialized object. Not an object that will be actually properly initialized at some undefined point in the future. That is, if you're lucky and the async initialization doesn't fail.
All this is just a guess. But it seems to me that having the possibility of an async constructor brings more trouble than it's worth.
If you actually want the “fire and forget” semantics of async void methods (which should be avoided, if possible), you can easily encapsulate all the code in an async void method and call that from your constructor, as you mentioned in the question.
Your problem is comparable to the creation of a file object and opening the file. In fact there are a lot of classes where you have to perform two steps before you can actually use the object: create + Initialize (often called something similar to Open).
The advantage of this is that the constructor can be lightweight. If desired, you can change some properties before actually initializing the object. When all properties are set, the Initialize/Open function is called to prepare the object to be used. This Initialize function can be async.
The disadvantage is that you have to trust the user of your class that he will call Initialize() before he uses any other function of your class. In fact if you want to make your class full proof (fool proof?) you have to check in every function that the Initialize() has been called.
The pattern to make this easier is to declare the constructor private and make a public static function that will construct the object and call Initialize() before returning the constructed object. This way you'll know that everyone who has access to the object has used the Initialize function.
The example shows a class that mimics your desired async constructor
public MyClass
{
public static async Task<MyClass> CreateAsync(...)
{
MyClass x = new MyClass();
await x.InitializeAsync(...)
return x;
}
// make sure no one but the Create function can call the constructor:
private MyClass(){}
private async Task InitializeAsync(...)
{
// do the async things you wanted to do in your async constructor
}
public async Task<int> OtherFunctionAsync(int a, int b)
{
return await ... // return something useful
}
Usage will be as follows:
public async Task<int> SomethingAsync()
{
// Create and initialize a MyClass object
MyClass myObject = await MyClass.CreateAsync(...);
// use the created object:
return await myObject.OtherFunctionAsync(4, 7);
}
if you make constructor asynchronous, after creating an object, you may fall into problems like null values instead of instance objects. For instance;
MyClass instance = new MyClass();
instance.Foo(); // null exception here
That's why they don't allow this i guess.
In this particular case, a viewModel is required to launch the task and notify the view upon its completion. An "async property", not an "async constructor", is in order.
I just released AsyncMVVM, which solves exactly this problem (among others). Should you use it, your ViewModel would become:
public class ViewModel : AsyncBindableBase
{
public ObservableCollection<TData> Data
{
get { return Property.Get(GetDataAsync); }
}
private Task<ObservableCollection<TData>> GetDataAsync()
{
//Get the data asynchronously
}
}
Strangely enough, Silverlight is supported. :)
I was just wondering why we can't call await from within a constructor directly.
I believe the short answer is simply: Because the .Net team has not programmed this feature.
I believe with the right syntax this could be implemented and shouldn't be too confusing or error prone. I think Stephen Cleary's blog post and several other answers here have implicitly pointed out that there is no fundamental reason against it, and more than that - solved that lack with workarounds. The existence of these relatively simple workarounds is probably one of the reasons why this feature has not (yet) been implemented.
calling async in constructor maybe cause deadlock, please refer to
http://social.msdn.microsoft.com/Forums/en/winappswithcsharp/thread/0d24419e-36ad-4157-abb5-3d9e6c5dacf1
http://blogs.msdn.com/b/pfxteam/archive/2011/01/13/10115163.aspx
Some of the answers involve creating a new public method. Without doing this, use the Lazy<T> class:
public class ViewModel
{
private Lazy<ObservableCollection<TData>> Data;
async public ViewModel()
{
Data = new Lazy<ObservableCollection<TData>>(GetDataTask);
}
public ObservableCollection<TData> GetDataTask()
{
Task<ObservableCollection<TData>> task;
//Create a task which represents getting the data
return task.GetAwaiter().GetResult();
}
}
To use Data, use Data.Value.
C# doesn't allow async constructors. Constructors are meant to return fast after some brief initialization. You don't expect and you don't want to wait for an instance i.e. the constructor to return. Therefore, even if async constructors were possible, a constructor is not a place for long-running operations or starting background threads. The only purpose of a constructor is initialization of instance or class members to a default value or the captured constructor parameters. You always create the instance and then call DoSomething() on this instance. Async operations are no exception. You always defer expensive initialization of members.
There are a few solutions to avoid the requirement of async constructors.
A simple alternative solution using Lazy<T> or AsyncLazy<T> (requires to install the Microsoft.VisualStudio.Threading package via the NuGet Package Manager). Lazy<T> allows to defer the instantiation or allocation of expensive resources.
public class OrderService
{
public List<object> Orders => this.OrdersInitializer.GetValue();
private AsyncLazy<List<object>> OrdersInitializer { get; }
public OrderService()
=> this.OrdersInitializer = new AsyncLazy<List<object>>(InitializeOrdersAsync, new JoinableTaskFactory(new JoinableTaskContext()));
private async Task<List<object>> InitializeOrdersAsync()
{
await Task.Delay(TimeSpan.FromSeconds(5));
return new List<object> { 1, 2, 3 };
}
}
public static void Main()
{
var orderService = new OrderService();
// Trigger async initialization
orderService.Orders.Add(4);
}
You can expose the data using a method instead of a property
public class OrderService
{
private List<object> Orders { get; set; }
public async Task<List<object>> GetOrdersAsync()
{
if (this.Orders == null)
{
await Task.Delay(TimeSpan.FromSeconds(5));
this.Orders = new List<object> { 1, 2, 3 };
}
return this.Orders;
}
}
public static async Task Main()
{
var orderService = new OrderService();
// Trigger async initialization
List<object> orders = await orderService.GetOrdersAsync();
}
Use an InitializeAsync method that must be called before using the instance
public class OrderService
{
private List<object> orders;
public List<object> Orders
{
get
{
if (!this.IsInitialized)
{
throw new InvalidOperationException();
}
return this.orders;
}
private set
{
this.orders = value;
}
}
public bool IsInitialized { get; private set; }
public async Task<List<object>> InitializeAsync()
{
if (this.IsInitialized)
{
return;
}
await Task.Delay(TimeSpan.FromSeconds(5));
this.Orders = new List<object> { 1, 2, 3 };
this.IsInitialized = true;
}
}
public static async Task Main()
{
var orderService = new OrderService();
// Trigger async initialization
await orderService.InitializeAsync();
}
Instantiate the instance by passing the expensive arguments to the constructor
public class OrderService
{
public List<object> Orders { get; }
public async Task<List<object>> OrderService(List<object> orders)
=> this.Orders = orders;
}
public static async Task Main()
{
List<object> orders = await GetOrdersAsync();
// Instantiate with the result of the async operation
var orderService = new OrderService(orders);
}
private static async Task<List<object>> GetOrdersAsync()
{
await Task.Delay(TimeSpan.FromSeconds(5));
return new List<object> { 1, 2, 3 };
}
Use a factory method and a private constructor
public class OrderService
{
public List<object> Orders { get; set; }
private OrderServiceBase()
=> this.Orders = new List<object>();
public static async Task<OrderService> CreateInstanceAsync()
{
var instance = new OrderService();
await Task.Delay(TimeSpan.FromSeconds(5));
instance.Orders = new List<object> { 1, 2, 3 };
return instance;
}
}
public static async Task Main()
{
// Trigger async initialization
OrderService orderService = await OrderService.CreateInstanceAsync();
}
you can use Action inside Constructor
public class ViewModel
{
public ObservableCollection<TData> Data { get; set; }
public ViewModel()
{
new Action(async () =>
{
Data = await GetDataTask();
}).Invoke();
}
public Task<ObservableCollection<TData>> GetDataTask()
{
Task<ObservableCollection<TData>> task;
//Create a task which represents getting the data
return task;
}
}
you can create a wrapper and inject a functor representing the constructor:
class AsyncConstruct<T>
where T: class
{
private readonly Task<T> m_construction;
private T m_constructed;
public AsyncConstruct(Func<T> createFunc)
{
m_constructed = null;
m_construction = Task.Run(()=>createFunc());
}
public T Get()
{
if(m_constructed == null)
{
m_constructed = m_construction.Result;
}
return m_constructed;
}
}
Please bump this language request:
https://github.com/dotnet/csharplang/discussions/419
The amount of boilerplate code everyone needs to write to have a fully initialized async object is crazy and completely opposite of the trend in C# (less boilerplate).
I would use something like this.
public class MyViewModel
{
public MyDataTable Data { get; set; }
public MyViewModel()
{
loadData(() => GetData());
}
private async void loadData(Func<DataTable> load)
{
try
{
MyDataTable = await Task.Run(load);
}
catch (Exception ex)
{
//log
}
}
private DataTable GetData()
{
DataTable data;
// get data and return
return data;
}
}
This is as close to I can get for constructors.
I use this easy trick.
public sealed partial class NamePage
{
private readonly Task _initializingTask;
public NamePage()
{
_initializingTask = Init();
}
private async Task Init()
{
/*
Initialization that you need with await/async stuff allowed
*/
}
}
I'm not familiar with the async keyword (is this specific to Silverlight or a new feature in the beta version of Visual Studio?), but I think I can give you an idea of why you can't do this.
If I do:
var o = new MyObject();
MessageBox(o.SomeProperty.ToString());
o may not be done initializing before the next line of code runs. An instantiation of your object cannot be assigned until your constructor is completed, and making the constructor asynchronous wouldn't change that so what would be the point? However, you could call an asynchronous method from your constructor and then your constructor could complete and you would get your instantiation while the async method is still doing whatever it needs to do to setup your object.

Overhead of wrapping synchronous methods in Task.Result

Please consider the following interface example:
public interface ISomeAsyncService<T>
{
Task<T> GetSomeObjectAsync(string id);
}
Now let's assume that some of the implementations of this interface do indeed retrieve objects asynchronously from a data store.
However, other implementations of this service might store objects in memory, for example:
public class SomeService : ISomeAsyncService<MyObject>
{
private static Dictionary<string, MyObject> _dictionary = new Dictionary<string, MyObject>();
public Task<MyObject> GetSomeObjectAsync(string id)
{
var obj = _dictionary[id];
return Task.FromResult(obj);
}
}
I'm doing this to be able to use the same interface for both synchronous and asynchronous services. It is not yet clear which service implementations will use static memory objects, and which will retrieve from a data store.
From what I understand, Task.FromResult will return immediately on the same thread.
Is there no overhead for using this approach as opposed to using synchronous methods (and a different interface) whenever possible? Even when most service calls will end up being to a synchronous implementation?
I've replaced my Task<T> methods with the new C# 7 ValueTask<T> type:
public interface ISomeAsyncService<T>
{
ValueTask<T> GetSomeObjectAsync(string id);
}
This reduces the overhead in case a Task is returning a synchronous result.
Instead of doing Task.FromResult(obj) I would suggest making the method async and just returning obj. That way there is no need to invoke the TaskScheduler in any way.
Here is the complete method.
public class SomeService : ISomeAsyncService<MyObject>
{
private static Dictionary<string, MyObject> _dictionary = new Dictionary<string, MyObject>();
public async Task<MyObject> GetSomeObjectAsync(string id)
{
var obj = _dictionary["id"];
return obj;
}
}

Interface where one of the implementations needs to be async

I have an interface, which delivers me a certain path. In one of my implementations I need to use async, but I haven't figured out how to get the result of an async method into a synchronous method. Here is the code sample:
Interface:
public interface IFilePath
{
string GetAsset();
}
Problematic implementation:
public class FilePath : IFilePath
{
public string GetAsset()
{
return GetAssetAssync();
}
private async Task<string> GetAssetAssync()
{
StorageFolder assetsFolder = await Windows.ApplicationModel.Package.Current.InstalledLocation.GetFolderAsync(#"Assets").AsTask().ConfigureAwait(false);
return assetsFolder.Path;
}
}
Only for this implementation I need the async call. All others do not need it. So I can't use public Task<string> GetAsset() or can I somehow?
A Task-returning method indicates that the implementation may be asynchronous. So, the best approach is to update your interface to allow asynchronous implementations:
public interface IFilePath
{
Task<string> GetAssetAsync();
}
I would attempt to make the other implementations asynchronous (file I/O is a naturally asynchronous operation), but if you have truly synchronous implementations (e.g., reading from an in-memory zip file or something), then you can wrap your result in Task.FromResult:
class SynchronousFilePath: IFilePath
{
public string GetAsset(); // natural synchronous implementation
public Task<string> GetAssetAsync()
{
return Task.FromResult(GetAsset());
}
}

Categories