Is there a way around to pass non-constant complex or primitive values to an attribute?
public class SomeClass
{
private SomeOtherClass _someOtherClass = new SomeOtherClass();
private int _somePrimitiveVariable = CalculateSomeValue();
[MyAttribute(InputValue = _someOtherClass)
public void MyMethod()
{
//Some stuff
}
//Or can it be like this?
[MyAttribute(InputValue = _somePrimitiveVariable)
public void MyMethod()
{
//Some stuff
}
}
Attributes are resolved at compile time, so the comments saying "no" are mostly correct.
However, if you can't rework your design, there are limited workarounds. If this is a universal property you wish to set (that will apply to every user of the attribute), your best bet might be having an initializer method in your code call a configuration method on the attribute. This would look vaguely similar to Can C# Attributes access the Target Class?. Ugly, but might work in specific circumstances.
Related
What is a good (object oriented) way of setting a property of a class which implements an interface, when that property doesn't always exist in all classes that implement that same interface?
e.g.
Let's say I have an interface
public interface IDataRepository {
public DataStructure GetData(); // DataStructure is an arbitrary class, doesn't matter for this example
}
Now I also have two classes that inherit from this
public class DatabaseRepository : IDataRepository {
public DataStructure GetData()
{
// get data from database
}
}
and
public class FileRepository : IDataRepository {
public string WorkingFolder { get; set; }
public DataStructure GetData() {
// get data from files
}
}
Now my client method doesn't necessarily know what the repository is but here's what I want to do...
private DataStructure ReadData(IDataRepository repository)
{
repository.WorkingFolder = #"C:\Data"; // What is the best way of doing this?
return repository.GetData();
}
obviously the above code won't work and I could do...
if (repository is FileRepository) {
((FileRepository)repository).WorkingFolder = #"C:\Data";
}
or add WorkingFolder as a property of the interface (and therefore all the classes that implement it) even though in most cases it's irrelevant.
but both of these (esp. the first one) seem very inelegant and not very object oriented. What is the oop way of doing this kind of thing?
Edit
The obvious question is if the method doesn't know what repository is, how can it know the correct value for WorkingFolder... But the above is an over-simplification of what I'm trying to do, so let's just say it can find out...
Apparently your ReadData method can't actually accept any type of repository. It is only able to handle a FileRepository. That's what it expects, and that's what it needs to do its job. Given that, that's what it should actually accept as its parameter, rather than an interface that doesn't actually provide a contract that is sufficient for it to do its job.
The entire point of having an interface is so that anyone using that interface can use it without caring what the implementation is. So if you do want to use the interface you need to include enough information in the interface's definition such that it provides every operation that anyone using the interface needs, otherwise you're better off just not using it at all (at least for that specific operation).
As for the specific example given, you should probably just be providing an already configured repository, that has whatever values it needs in order to allow this method to do its work, as a parameter. It doesn't make sense for a method that's reading a value from an arbitrary repository to be configuring that repository at all. That is, if it really is reading something from an arbitrary repository.
As others have said in the comments, you should initialise these properties in the constructor. This is where you know what type you're creating, so you also know what arguments its constructor requires / can set those there.
Once you've initialised the object, you can just pass it around / have anything using that class operate against its interface.
Example:
public void Main(string[] args)
{
var myRepo = new FileRepository(args[0]); //Here's where we set the working directory
var myThing = new Thing();
var data = myThing.ReadData(myRepo);// of course, the current implementation means you could just call `myRepo.GetData()` directly, since ReadData just passes out the same response; but presumably that method adds some additional value..
Console.WriteLine(data.ToString());
}
Supporting Code
public class DatabaseRepository : IDataRepository {
DbConnection connection; //you may want a connection string or something else; going with this type just to illustrate that this constructor uses a different type to the FileRepo's
public DatabaseRepository(DbConnection connection)
{
this.connection = connection;
}
public DataStructure GetData()
{
// get data from database
}
}
public class FileRepository : IDataRepository {
public string WorkingFolder { get; set; } //Do you need set? Generally best to keep it constant after initialisation unless there's good reason to change it
public FileRepository (string workingFolder)
{
this.WorkingFolder = workingFolder;
}
public DataStructure GetData() {
// get data from files
}
}
How do I call the code that creates the class
i.e. maybe you've implemented a really basic factory pattern like so, and want to know how to provide arguments:
public class DataRepositoryFactory
{
Type baseType = typeof(IDataRepository);
IDictionary<string, Type> typeMap = new Dictionary<string, Type>() {
{"File", typeof(FileRepository) }
,{"Db", typeof(DatabaseRepository) }
}
public void RegisterType(string typeName, Type type)
{
if (!baseType.IsAssignableFrom(type)) throw new ArgumentException(nameof(type));
typeMap.Add(typeName, type);
}
public IDataRepository GetDataRepository(string typeName)
{
return (IDataRepository)Activator.CreateInstance(typeMap[typeName]);
}
}
(For a more complex example of a factory, see https://web.archive.org/web/20140414013728/http://tranxcoder.wordpress.com/2008/07/11/a-generic-factory-in-c).
I.e. in this scenario, when you call the factory you know what type you want, but you're only giving it a string to name/identify that class. You could add a params object[] args to your GetDataRepository method, allowing you to call it like so:
var myRepo = myDataRepositoryFactory.GetDataRepository("File", "c:\somewhere\something.dat");
That's a good approach / is actually what's used on the linked example above. However, it means that your call to this code differs for different types; since if we use variables instead of hardcoded values as in the above example we can't simply do the below, since myRepoType could be set to "Db", whilst "myFilePath" would be a string:
var myRepo = myDataRepositoryFactory.GetDataRepository(myRepoType, myFilePath);
That's fixable by calling:
var myRepo = myDataRepositoryFactory.GetDataRepository(myRepoType, myArgs);
i.e. where myArgs is an object[], giving all of the values required in the desired order to initialise the type. The piece to populate object[] with the required values could then take place at the same point at which you decided you wanted the type to be a file repo vs database repo. However, this approach isn't that clean / casting to and from objects stops you from getting help from the compiler.
So how do I improve things?
There are a few options. One is to replace the need to use object[] by instead creating a type to hold your arguments. e.g.
public interface IDataRepositoryConfiguration
{
//nothing required; this is just so we've got a common base class
}
public class FileRepositoryConfiguration: IDataRepositoryConfiguration
{
public string WorkingFolder {get;set;}
}
public class FileRepository : IDataRepository {
public FileRepository (IDataRepositoryConfiguration configuration)
{
var config = configuration as FileRepositoryConfiguration;
if (config == null) throw new ArgumentException(nameof(configuration)); //improve by having different errors for null config vs config of unsupported type
this.WorkingFolder = config.WorkingFolder;
}
//...
}
This still has some issues; i.e. we may pass a DatabaseRepositoryConfiguration as our IRepositoryConfiguration when creating a FileRepository, in which case we'd get the AgumentNullException at runtime; but this does avoid issues should parameters change order, and makes it less of a headache to code / debug.
Could it be further improved?
Dependency Injection offers one solution. This could be used along the lines of the code below (i.e. you create instances of each of your classes, providing the required arguments, and give each instance a name, so that you can later fetch that instantiation. Exactly what that code looks like would depend on the dependency injection library you used:
//setting up your repositories
var container = new Container();
container.Configure(config =>
{
// Register stuff in container, using the StructureMap APIs...
config.For<IDataRepository>().Add(new FileRepository("\\server\share\customers")).Named("customers");
config.For<IDataRepository>().Add(new FileRepository("\\server\share\invoices")).Named("invoices");
config.For<IDataRepository>().Add(new DatabaseRepository(new DbConnection(configurationString))).Named("persist");
config.For<IDataRepository>().Use("persist"); // Optionally set a default
config.Populate(services);
});
//then later when you need to use it...
public DataStructure ImportCustomers(IContainer container)
{
var customerRepo = container.GetInstance<IDataRepository>("customers");
return customerRepo.GetData();
}
I'm sure there are many other approaches, and exactly what approach to use depends on how your program will operate. Hopefully the above is enough to get you past your current problem; but if you find you're still struggling please post a new question with more detail / saying where you're still having issues having considered these points.
If possible, I'd just put the value for that property in the constructor or create a subinterface, like others suggested.
If it's not possible, C# 7.X (don't remember the exact minor version) has a nice code structure for conditional casting:
IDataRepository repo = new FileRepository();
if (repo is FileRepository fileRepo)
{
fileRepo.WorkingFolder = "some dir";
}
However in your case, you should probably rethink your architecture and always pass (or even better always create) a repository object which is ready to be used.
a) Put it into the Inferface definitions. Deal with any "NotImplemented" Exceptions. You always have to expect those with Interfaces anyway.
For example, IEnumerable has a Reset() function. But in most cases it is not implemented. It is not even supposed to be implemented in most cases. Afaik it is only there for Backwards Compatabilty with some old COM stuff.
b) make a sub-interface just for the property
c) Verify the Interface is properly implemented via is checks (throw exceptions thows if nessesary, like Array.Sort will throw a InvalidOperation one), generic constraints, proper argument types and the like.
I'm trying to take an advantage of AOP with custom attributes and I want to implement a custom attribute which affects return method value based on input parameters. There is a way to define an attribute for a return value:
[return: CustomAttribute]
public string Do(string param1)
{
// do something
}
but I couldn't find a way how add a desired behavior when this attributes is applied. I want to execute some code, based on value of input parameters and in certain cases even change the output value.
C# does not provide any AOP related syntax. [return: CustomAttribute] adds metadata information to return type. That's not what you expect at all. In order to leverage AOP you need to either:
Use an external library designed specifically to allow AOP. Here's a nice list of such libraries.
If you're using container then it may support AOP. For instance here's a link to StructureMap AOP related documentation.
You may try to implement AOP features on your own, but it's pretty hard (especially if you care about performance).
Here's a way to do something ugly, which gets your result, but it's well... ugly.
public class UglySolution
{
private static string _changedString;
private class CustomAttribute : Attribute
{
public CustomAttribute()
{
_changedString = "New";
}
}
public class SomeClass
{
public SomeClass()
{
_changedString = "Original";
}
[Custom]
public string GetValue()
{
typeof(SomeClass).GetMethod("GetValue").GetCustomAttributes(true).OfType<CustomAttribute>().First();
return _changedString;
}
}
}
Here's how I want to use them:
class SecuredModel
{
public SecuredModel() { }
[Permission(Permissions.Read)]
public void restrictedMethod()
{
if (IsPermitted)
{
// code
}
}
}
I have defined here the "Permission" class:
[System.AttributeUsage(System.AttributeTargets.Method, AllowMultiple = true)]
class Permission : System.Attribute
{
private Permissions PermissionsRequired { get; set; }
public bool IsPermitted
{
// some code to check for permissions
}
public Permission(Permissions permissionsRequired)
{
this.PermissionsRequired = permissionsRequired;
}
}
The problem I am having is that I don't know how to use the attributes I've assigned to my methods. I'd like to access them from within the method, is that a possibility? If not, could I instead access them from outside the method? I haven't been able to find this usage of any of the MSDN pages I've looked at, and I've seen some answers on SO, but I feel like a lambda expression is overcomplicating this. It shouldn't be that difficult, right?
Attributes are a way to decorate classes but they are only useful when you have some abstraction (like an IDE or some upfront processing mechanism that inspects the class) that is enforcing their purpose. They don't make sense to be used within the method/property they decorate (performance etc..)
Consider adding some extra properties (private/protected) that are set after inspecting the class, that way you are not reflecting all the time.
Here is a helpful link on attributes: Reflection - get attribute name and value on property
In classes whose instances I persist using an object database, I keep having to do this:
private string _name;
public string Name
{
get { return this._name; }
set { _name = value; this.Save(); }
}
whereas I would much rather type this:
[PersistedProperty(Name)]
private string _name;
where the PersistedProperty attributes generates a Getter and Setter just like the default [Property()] attribute, except I want to add a line of code to the generated Setter.
Is there a way I can create an attribute which does this? Hopefully , which works with Intellisense.
How does the default [Property()] attribute even do it's stuff? If I saw the code I could graft that...
Note: I am actually doing this in Boo, but thought I'd give c# code as more people might be willing to answer that, however, if there is a Boo specific solution, I'm all ears!
Update:
My aim was simply to reduce typing and clutter. It turns out the simplest way of doing this was with a script which generates partial classes based on markup in my classes.
Auto-generating source code from markup (in tandem with partial classes) is easy, and actually looks like an extremely promising way to get round some of the problems we normally try to solve with inheritance and generic types.
This requires aspect oriented programming. While not directly supported in .NET, it can be done via third party tooling, such as PostSharp.
For intellisense to work, however, this must be done in a library, as the (final) compiled code will be unrolled into the full property getter/setter.
Not easy to implement using attributes IMO.
Maybe you could use another approach, such as an extension method:
// Extension method that allows updating a property
// and calling .Save() in a single line of code.
public static class ISaveableExtensions
{
public static void UpdateAndSave<T>(
this ISaveable instance,
Expression<Func<T>> propertyExpression, T newValue)
{
// Gets the property name
string propertyName = ((MemberExpression)propertyExpression.Body).Member.Name;
// Updates its value
PropertyInfo prop = instance.GetType().GetProperty(propertyName);
prop.SetValue(instance, newValue, null);
// Now call Save
instance.Save();
}
}
...
// Some interface that implements the Save method
public interface ISaveable
{
void Save();
}
...
// Test class
public class Foo : ISaveable
{
public string Property { get; set; }
public void Save()
{
// Some stuff here
Console.WriteLine("Saving");
}
public override string ToString()
{
return this.Property;
}
}
...
public class Program
{
private static void Main(string[] args)
{
Foo d = new Foo();
// Updates the property with a new value, and automatically call Save
d.UpdateAndSave(() => d.Property, "newValue");
Console.WriteLine(d);
Console.ReadKey();
}
}
It's type-safe, autocompletion-friendly, but it requires more code than just .Save() in all setters, so not sure I would use it actually...
All I need is a way to make a property of one class only 'settable' from one other class (a sort of manager class).
Is this even possible in c#?
My colleague 'reliably' informs me that I have a design flaw, but I feel I should at least ask the community before I concede defeat!
No, it's not really possible to do this in any clean way in C#. You probably have a design flaw ;-)
You can use the internal modifier, which lets all types in the same assembly access the data (or nominated assemblies if using [InternalsVisibleTo] - but no: there is no friend equivalent in C#.
For example:
public string Foo {get; internal set;}
You have a design flaw. Also, don't be paranoid about data hiding. Here's 3.5's way to do it:
class Program
{
static void Main(string[] args)
{
Managed m = new Managed();
Console.WriteLine(m.PrivateSetter);
m.Mgr.SetProperty("lol");
Console.WriteLine(m.PrivateSetter);
Console.Read();
}
}
public class Managed
{
private Manager _mgr;
public Manager Mgr
{
get { return _mgr ?? (_mgr = new Manager(s => PrivateSetter = s)); }
}
public string PrivateSetter { get; private set; }
public Managed()
{
PrivateSetter = "Unset";
}
}
public class Manager
{
private Action<string> _setPrivateProperty;
public Manager(Action<string> setter)
{
_setPrivateProperty = setter;
}
public void SetProperty(string value)
{
_setPrivateProperty(value);
}
}
Here's how we'd do it in pre-lambda days:
public class Managed
{
private Manager _mgr;
public Manager Mgr
{
get { return _mgr ?? (_mgr = new Manager(this)); }
}
public string PrivateSetter { get; private set; }
public Managed()
{
PrivateSetter = "Unset";
}
public class Manager
{
public void SetProperty(string value)
{
m.PrivateSetter = value;
}
private Managed m;
public Manager(Managed man)
{
m = man;
}
}
}
The best way to do it would be:
/// <summary>
/// Gets or sets foo
/// <b>Setter should only be invoked by SomeClass</b>
/// </summary>
public Object Foo
{
get { return foo; }
set { foo = value; }
}
When you have some complex access or inheritance restriction, and enforcing it demands too much complexity in the code, sometimes the best way to do it is just properly commenting it.
Note however that you cannot rely on this if this restriction has some security implications, as you are depending on the goodwill of the developer that will use this code.
You cannot do that on that way, but you can access a property's setter method from a derived class, so you can use inheritance for the purpose. All you have to do is to place protected access modifier. If you try to do so, your colleague is right :). You can try doing it like this:
public string Name
{
get{ return _name; }
protected set { _name = value; }
}
keep in mind that the set method of the property is only accessible from the derived class.
Or you could have these two classes in an assembly alone and have the setter as internal. I would vote up for the design flaw though, unless the previous answer by milot (inheriting and protected) makes sense.
You could do:
public void setMyProperty(int value, Object caller)
{
if(caller is MyManagerClass)
{
MyProperty = value;
}
}
This would mean that you could use a 'this' pointer from the calling class. I would question the logic of what you're attempting to achieve, but without knowing the scenario I can't advise any futher. What I will say is this: if it is possible to refactor your code to make it clearer, then it is often worthwhile doing so.
But this is pretty messy and certinly NOT fool-proof ... you have been warned!
Alternativly...
You could pass a delegate from the Class with the Property (Class A) to the Manager Class (Class B). The delegate can refer to a private function within A to allow B to call that delegate as any normal function. This precludes that A knows about B and potentially that A is created before B. Again... messy and not fool-proof!
You can achieve to this by making a Public property in your "settable class" that will inherit from the real class that will have a protected property... this way only the inherit class can SET and not class that doesn't inherit. But the drawback is that you will require to have an inherit class...
Reflection, though I would agree that having to do this just to get around an access modifier is probably an indication of a bad design.
public class Widget
{
private int count;
public int Count
{
get { return this.count; }
private set { this.count = value; }
}
}
public static class WidgetManager
{
public static void CatastrophicErrorResetWidgetCount( Widget widget )
{
Type type = widget.GetType();
PropertyInfo info = type.GetProperty("Count",BindingFlags.Instance|BindingFlags.NonPublic);
info.SetValue(widget,0,null);
}
}
The reason this is a design flaw is because it seems muddled between the scope of the two objects.
The properties of a class should be accessible in the context of that class, at least internally.
It sounds like the settable property on your item class is really a property of the manager class.
You could do something similar to what you want by closely coupling the two classes:
public class MyItem {
internal MyItemManager manager { get;set; }
public string Property1 {
get { return manager.GetPropertyForItem( this ); }
}
}
Unfortunately this isn't great design either.
What your looking for is what C++ calls a Friend class but neither c# or vb has this functionality. There is a lot of debate as to the merit of such functionality since it almost encourages very strong coupling between classes. The only way you could implement this in c# would be with reflection.
If your goal is to have a class Foo let some property (e.g. Bar, of type Biz) to be changed by some other object, without exposing it publicly, a simple way to do that is to have an instance of Foo which is supposed to be changeable by some other object to pass that other object an Action<Biz> which points to a private method that changes Bar to the passed-in value. The other object may use that delegate to change the Bar value of the object that supplied it.
If one wishes to have give all instances of some type Woozle the ability to set the Bar value of any instance of Foo, rather than exposing such abilities on a per-instance basis, one may require that Woozle have a public static method Woozle.InstallFooBarSetter which takes a parameter of type Action<Foo, Biz> and one of type Object. Foo should then have a static method WoozleRequestBarSetter which takes an Object, and passes it to Woozle.InstallFooBarSetter along with an Action<Foo,Biz>. The class initializer for Woozle should generate a new Object, and pass it to Foo.RequestBarSetter; that will pass the object to Woozle.InstallFooBarSetter along with a delegate. Woozle can then confirm that the passed-in object is the one that it generated, and--if so--install the appropriate delegate. Doing things this way will ensure that nobody but Woozle can get the delegate (since the delegate is only passed to Woozle.InstallFooBarSetter), and Woozle can be sure its delegate comes from Foo (since nobody else would have access to the object that Woozle created, and Woozle.InstallFooBarSetter won't do anything without it).
if it is a design flaw depends on what you want to do. You could use the StackTrace class from System.Diagnostics to get the Type of the class setting your property and then compare to the type you want to allow setting yor property..but maybe there are better ways for performing something like this (e.g. boxing)