(I hope this isn't regarded as "too much like a discussion", but we'll see.)
I have a few hours to refactor long-existing code. I notice I have quite a number of static methods on ListItemCollection:
public static ListItem ListItem_InsertIfNotPresent(ListItemCollection lic, ...)
public static ListItemCollection ListItems_Selected(ListItemCollection lic)
public static string[] ListItemValues(ListItemCollection lic)
public static void ListItems_SortByText(ListItemCollection lic)
....
So they look suitable to refactor. ListItemCollections are returned by many CLR functions, so I cannot derive/sub-class. I am toying with:
Implement as extension methods. Code currently does not have any extension methods. Not mad about having to add using ListItemCollectionExtensions to all my source files, nor risking future .NET CLRs possibly adding clashes. But the calling syntax is nice.
Add a ListItemCollectionHelper class to put these in. Code will have to go var licx = new ListItemCollectionHelper(dropDownList.Items); before any licx.SortByText();-type calls, which is a bit messy when I only need to call one method.
Leave as-is, with named statics as now!
I have looked at articles like What are the best practices for using Extension Methods in .Net? and others, but they don't really advise this case. Of particular interest is your comments on #1 versus #2.
I don't actually have to worry about "other users" of my code, but good practice never hurts. For right or for wrong, I do not want to use LINQ or lambda solutions.
In your example I would leave it as is unless you need the code somewhere else because it is working and refactoring just to refactor might lead to bugs. However, if I was starting from scratch I would make these extension methods. It makes the code easier to re-use and hopefully prevents someone from copying this code the next time this same pattern is needed.
I prefer Extension methods over the Helper class because it is generally easier to find the methods through Intellisense. In my experience any class that ends with the word Helper turns into a mess at some point. That becomes the place where code that does not fit anywhere goes. The Helper classes never start out bad but in a larger team you will soon find methods in there that have no business being there.
I would go ahead and make them extension methods.
It doesn't break anything (you can still use like regular methods in the Helper pattern, so your existing code will still function)
When you do refactor existing code or write new code, you can use the cleaner extension method syntax.
Related
I would like to do a very simple test for the Constructor of my class,
[Test]
public void InitLensShadingPluginTest()
{
_lensShadingStory.WithScenario("Init Lens Shading plug-in")
.Given(InitLensShadingPlugin)
.When(Nothing)
.Then(PluginIsCreated)
.Execute();
}
this can be in Given or When it... I think it should be in When() but it doesn't really matter.
private void InitLensShadingPlugin()
{
_plugin = new LSCPlugin(_imagesDatabaseProvider, n_iExternalToolImageViewerControl);
}
Since the Constructor is the one being tested, I do not have anything to do inside the When() statement,
And in Then() I assert about the plugin creation.
private void PluginIsCreated()
{
Assert.NotNull(_plugin);
}
my question is about StoryQ, since I do not want to do anything inside When()
i tried to use When(()=>{}) however this is not supported by storyQ,
this means I need to implement something like
private void Nothing()
{
}
and call When(Nothing)
is there a better practice?
It's strange that StoryQ doesn't support missing steps; your scenario is actually pretty typical of other examples I've used of starting applications, games etc. up:
Given the chess program is running
Then the pieces should be in the starting positions
for instance. So your desire to use a condition followed by an outcome is perfectly valid.
Looking at StoryQ's API, it doesn't look as if it supports these empty steps. You could always make your own method and call both the Given and When steps inside it, returning the operation from the When:
.GivenIStartedWith(InitLensShadingPlugin)
.Then(PluginIsCreated)
If that seems too clunky, I'd do as you suggested and move the Given to a When, initializing the Given with an empty method with a more meaningful name instead:
Given(NothingIsInitializedYet)
.When(InitLensShadingPlugin)
.Then(PluginIsCreated)
Either of these will solve your problem.
However, if all you're testing is a class, rather than an entire application, using StoryQ is probably overkill. The natural-language BDD frameworks like StoryQ, Cucumber, JBehave etc. are intended to help business and development teams collaborate in their exploration of requirements. They incur significant setup and maintenance overhead, so if the audience of your class-level scenarios / examples is technical, there may be an easier way.
For class-level examples of behaviour I would just go with a plain unit testing tool like NUnit or MSpec. I like using NUnit and putting my "Given / When / Then" in comments:
// Given I initialized the lens shading plugin on startup
_plugin = new LSCPlugin(_imagesDatabaseProvider, n_iExternalToolImageViewerControl);
// Then the plugin should have been created
Assert.NotNull(_plugin);
Steps at a class level aren't reused in the same way they are in full-system scenarios, because classes have much smaller, more encapsulated responsibilities; and developers benefit from reading the code rather than having it hidden away in the step definitions.
Your Given/When/Then comments here might still echo scenarios at a higher level, if the class is directly driving the functionality that the user sees.
Normally for full-system scenarios we would derive the steps from conversations with the "3 amigos":
a business representative (PO, SME, someone who has a problem to be solved)
a tester (who spots scenarios we might otherwise miss)
the dev (who's going to solve the problem).
There might be a pair of devs. UI designers can get involved if they want to. Matt Wynne says it's "3 amigos, where 3 is any number between 3 and 7". The best time to have the conversations is right before the devs pick up the work to begin coding it.
However, if you're working on your own, whether it's a toy or a real application, you might benefit just from having imaginary conversations. I use a pixie called Thistle for mine.
Is it bad to have a lot of methods referring to each other, like the following example?
public void MainMethod()
{
GetProducts();
}
public void GetProducts()
{
var _products = new Products();
var productlist = _products.GetProductList;
GetExcelFile(productlist);
}
public void GetExcelFile(List<product> productlist)
{
var _getExcelFile = new GetExcelFile();
var excelfile = _getExcelFile.GetExcelFileFromProductList(productlist);
//create excel file and so on...
}
So I am creating a new method for every little action. It would be just as easy to call GetProducts from the MainMethod and do all actions in that method, but I think that isn't the way to create re-usable code.
The following tells me that there should be no more than 7 statements in a method:
Only 7 statements in a method
So the advantages of using methods with a minimal amount of code:
Code is re-usable
Every task can get his own method
The disadvantages of using methods with a minimal amount of code:
It's like spaghetti code
You get: refer to refer and so on
My question:
Should my methods be bigger, or should I keep creating small methods, that do little and refer to a lot of other methods?
The guideline is right. Methods should be small and you are doing the right thing be giving not only each operation its own method, but a well defined name. If those methods have a clear name, one responsibility and a clear intention (and don't forget to separate commands from queries), your code will not be spagetti. On top of that, try to order methods like a news article: most important methods on top of the file, methods with the most detail on the bottom. This way anyone else can start reading at the top and stop reading when they're bored (or have enough information).
I can advice you to get a copy of Robert Martin's Clean Code. There's no one in the industry who describes this more clearly than he does.
The guideline is generally a good one, not so much for reuse, but for readability of your code.
Your example, though, is not a good one. What you're doing is basically creating a long list of methods where each one stops when you feel it's too long and calls another one to perform the rest of the operations.
I would follow more this kind of approach, where reading the main method tells you the "story" that your code needs to tell by steps and the detail of each step is in smaller methods.
public void MainMethod()
{
var productlist=GetProducts();
string excelfile=GetExcelFile(productlist);
// do something in the excel file
}
public List<product> GetProducts()
{
var _products = new Products();
return _products.GetProductList;
}
public string GetExcelFile(List<product> productlist)
{
var _getExcelFile = new GetExcelFile();
var excelfile = _getExcelFile.GetExcelFileFromProductList(productlist);
return excelfile;
}
I don't really agree with '7 statements in a method'. A method can have dozens of statements, as long as the method performs a single function and the specific logic will only be used in one place, I don't really see the point of cutting it into parts just because some guyideline says so, it should be seperated based on what makes sense.
Re-use of code is good if it makes sense, but I don't think you should make everything everywhere re-usable, when you have no plans in the near future to actually re-use it. It increases the development time needlessly, it often makes the software more complex and harder to interpret then it needs to be, and (at least in my company) the majority of the code never gets re-used, and even if it is it still needs modifications in new products. Only the most generic parts of our codebase actually gets used in several applications without modifications for each product.
And I think that's fine.
this is mostly opinion based question, but i'll tell you one thing:
if you're not going to use a method from more then one place, it might be better not to create a method for that.
you can use regions for clarity and you might not want a method that is larger then a full page, but not every 2-3 commands should get a method.
readonlyAction and Method must both be defined once, but assume I will assign to variableAction many times:
Action variableAction;
readonly Action readonlyAction;
void Method() {}
Which is better suited to the task, the readonly delegate, or the method? I'm thinking that there may be some optimizations happening in one case or the other, but maybe there are semantic issues to consider as well?
variableAction = readonlyAction;
variableAction = Method;
If you are the one setting up either the method or the action (pre-compilation) (which you probably would not be asking this if you werent), then I would assume that there is not a whole lot of difference performance-wise. But, you should take a look at the IL if you want the exact answer. The compiler might just create a method or inline for a static action anyway. That being said, I would focus on readability more than anything else at that point. Try to imagine a new dev trying to read the code, and if one way makes it harder to read, then use the other way....I would probably lean towards a method personally. Actions should probably be left for the scenario below:
Otherwise, the Action could be something that is passed in on construction, so you would HAVE to use the Action since you would not know the implementation until runtime anyway. But, I doubt that is why you are asking, as using the Method would be impossible in this scenario, anyway.
I have been looking for a neat answer to this design question with no success. I could not find help neither in the ".NET Framework design guidelines" nor in the "C# programing guidelines".
I basically have to expose a pattern as an API so the users can define and integrate their algorithms into my framework like this:
1)
// This what I provide
public abstract class AbstractDoSomething{
public abstract SomeThing DoSomething();
}
Users need to implementing this abstract class, they have to implement the DoSomething method (that I can call from within my framework and use it)
2)
I found out that this can also acheived by using delegates:
public sealed class DoSomething{
public String Id;
Func<SomeThing> DoSomething;
}
In this case, a user can only use DoSomething class this way:
DoSomething do = new DoSomething()
{
Id="ThisIsMyID",
DoSomething = (() => new Something())
}
Question
Which of these two options is best for an easy, usable and most importantly understandable to expose as an API?
EDIT
In case of 1 : The registration is done this way (assuming MyDoSomething extends AbstractDoSomething:
MyFramework.AddDoSomething("DoSomethingIdentifier", new MyDoSomething());
In case of 2 : The registration is done like this:
MyFramework.AddDoSomething(new DoSomething());
Which of these two options is best for an easy, usable and most importantly understandable to expose as an API?
The first is more "traditional" in terms of OOP, and may be more understandable to many developers. It also can have advantages in terms of allowing the user to manage lifetimes of the objects (ie: you can let the class implement IDisposable and dispose of instances on shutdown, etc), as well as being easy to extend in future versions in a way that doesn't break backwards compatibility, since adding virtual members to the base class won't break the API. Finally, it can be simpler to use if you want to use something like MEF to compose this automatically, which can simplify/remove the process of "registration" from the user's standpoint (as they can just create the subclass, and drop it in a folder, and have it discovered/used automatically).
The second is a more functional approach, and is simpler in many ways. This allows the user to implement your API with far fewer changes to their existing code, as they just need to wrap the necessary calls in a lambda with closures instead of creating a new type.
That being said, if you're going to take the approach of using a delegate, I wouldn't even make the user create a class - just use a method like:
MyFramework.AddOperation("ThisIsMyID", () => DoFoo());
This makes it a little bit more clear, in my opinion, that you're adding an operation to the system directly. It also completely eliminates the need for another type in your public API (DoSomething), which again simplifies the API.
I would go with the abstract class / interface if:
DoSomething is required
DoSomething will normally get really big (so DoSomething's implementation can be splited into several private / protected methods)
I would go with delegates if:
DoSomething can be treated as an event (OnDoingSomething)
DoSomething is optional (so you default it to a no-op delegate)
Though personally, if in my hand, I would always go by Delegate Model. I just love the simplicity and elegance of higher order functions. But while implementing the model, be careful about memory leaks. Subscribed events are one of the most common reasons of memory leaks in .Net. This means, suppose if you have an object that has some events exposed, the original object would never be disposed until all events are unsubscribed since event creates a strong reference.
As is typical for most of these types of questions, I would say "it depends". :)
But I think the reason for using the abstract class versus the lambda really comes down to behavior. Usually, I think of the lambda being used as a callback type of functionality -- where you'd like something custom happen when something else happens. I do this a lot in my client-side code:
- make a service call
- get some data back
- now invoke my callback to handle that data accordingly
You can do the same with the lambdas -- they are specific and are targeted for very specific situations.
Using the abstract class (or interface) really comes down to where your class' behavior is driven by the environment around it. What's happening, what client am I dealing with, etc.? These larger questions could suggest that you should define a set of behaviors and then allow your developers (or consumers of your API) to create their own sets of behavior based upon their requirements. Granted, you could do the same with lambdas, but I think it would be more complex to develop and also more complex to clearly communicate to your users.
So, I guess my rough rule of thumb is:
- use lambdas for specific callback or side-effect customized behaviors;
- use abstract classes or interfaces to provide a mechanism for object behavior customization (or at least the majority of the object's primary behavior).
Sorry I can't give you a clear definition, but I hope this helps. Good luck!
A few things to consider :
How many different functions/delegates would need to be over-ridden? If may functions, inheretance will group "sets" of overrides in an easier to understand way. If you have a single "registration" function, but many sub-portions can be delegated out to the implementor, this is a classic case of the "Template" pattern, which makes the most sense to be inherited.
How many different implementations of the same function will be needed? If just one, then inheretance is good, but if you have many implementations a delegate might save overhead.
If there are multiple implementations, will the program need to switch between them? Or will it only use a single implementation. If switching is required, delegates might be easier, but I would caution this, especially depending on the answer to #1. See the Strategy Pattern.
If the override needs access to any protected members, then inheretance. If it can rely only on publics, then delegate.
Other choices would be events, and extension methods as well.
I have a piece of software written with fluent syntax. The method chain has a definitive "ending", before which nothing useful is actually done in the code (think NBuilder, or Linq-to-SQL's query generation not actually hitting the database until we iterate over our objects with, say, ToList()).
The problem I am having is there is confusion among other developers about proper usage of the code. They are neglecting to call the "ending" method (thus never actually "doing anything")!
I am interested in enforcing the usage of the return value of some of my methods so that we can never "end the chain" without calling that "Finalize()" or "Save()" method that actually does the work.
Consider the following code:
//The "factory" class the user will be dealing with
public class FluentClass
{
//The entry point for this software
public IntermediateClass<T> Init<T>()
{
return new IntermediateClass<T>();
}
}
//The class that actually does the work
public class IntermediateClass<T>
{
private List<T> _values;
//The user cannot call this constructor
internal IntermediateClass<T>()
{
_values = new List<T>();
}
//Once generated, they can call "setup" methods such as this
public IntermediateClass<T> With(T value)
{
var instance = new IntermediateClass<T>() { _values = _values };
instance._values.Add(value);
return instance;
}
//Picture "lazy loading" - you have to call this method to
//actually do anything worthwhile
public void Save()
{
var itemCount = _values.Count();
. . . //save to database, write a log, do some real work
}
}
As you can see, proper usage of this code would be something like:
new FluentClass().Init<int>().With(-1).With(300).With(42).Save();
The problem is that people are using it this way (thinking it achieves the same as the above):
new FluentClass().Init<int>().With(-1).With(300).With(42);
So pervasive is this problem that, with entirely good intentions, another developer once actually changed the name of the "Init" method to indicate that THAT method was doing the "real work" of the software.
Logic errors like these are very difficult to spot, and, of course, it compiles, because it is perfectly acceptable to call a method with a return value and just "pretend" it returns void. Visual Studio doesn't care if you do this; your software will still compile and run (although in some cases I believe it throws a warning). This is a great feature to have, of course. Imagine a simple "InsertToDatabase" method that returns the ID of the new row as an integer - it is easy to see that there are some cases where we need that ID, and some cases where we could do without it.
In the case of this piece of software, there is definitively never any reason to eschew that "Save" function at the end of the method chain. It is a very specialized utility, and the only gain comes from the final step.
I want somebody's software to fail at the compiler level if they call "With()" and not "Save()".
It seems like an impossible task by traditional means - but that's why I come to you guys. Is there an Attribute I can use to prevent a method from being "cast to void" or some such?
Note: The alternate way of achieving this goal that has already been suggested to me is writing a suite of unit tests to enforce this rule, and using something like http://www.testdriven.net to bind them to the compiler. This is an acceptable solution, but I am hoping for something more elegant.
I don't know of a way to enforce this at a compiler level. It's often requested for objects which implement IDisposable as well, but isn't really enforceable.
One potential option which can help, however, is to set up your class, in DEBUG only, to have a finalizer that logs/throws/etc. if Save() was never called. This can help you discover these runtime problems while debugging instead of relying on searching the code, etc.
However, make sure that, in release mode, this is not used, as it will incur a performance overhead since the addition of an unnecessary finalizer is very bad on GC performance.
You could require specific methods to use a callback like so:
new FluentClass().Init<int>(x =>
{
x.Save(y =>
{
y.With(-1),
y.With(300)
});
});
The with method returns some specific object, and the only way to get that object is by calling x.Save(), which itself has a callback that lets you set up your indeterminate number of with statements. So the init takes something like this:
public T Init<T>(Func<MyInitInputType, MySaveResultType> initSetup)
I can think of three a few solutions, not ideal.
AIUI what you want is a function which is called when the temporary variable goes out of scope (as in, when it becomes available for garbage collection, but will probably not be garbage collected for some time yet). (See: The difference between a destructor and a finalizer?) This hypothetical function would say "if you've constructed a query in this object but not called save, produce an error". C++/CLI calls this RAII, and in C++/CLI there is a concept of a "destructor" when the object isn't used any more, and a "finaliser" which is called when it's finally garbage collected. Very confusingly, C# has only a so-called destructor, but this is only called by the garbage collector (it would be valid for the framework to call it earlier, as if it were partially cleaning the object immediately, but AFAIK it doesn't do anything like that). So what you would like is a C++/CLI destructor. Unfortunately, AIUI this maps onto the concept of IDisposable, which exposes a dispose() method which can be called when a C++/CLI destructor would be called, or when the C# destructor is called -- but AIUI you still have to call "dispose" manually, which defeats the point?
Refactor the interface slightly to convey the concept more accurately. Call the init function something like "prepareQuery" or "AAA" or "initRememberToCallSaveOrThisWontDoAnything". (The last is an exaggeration, but it might be necessary to make the point).
This is more of a social problem than a technical problem. The interface should make it easy to do the right thing, but programmers do have to know how to use code! Get all the programmers together. Explain simply once-and-for-all this simple fact. If necessary have them all sign a piece of paper saying they understand, and if they wilfully continue to write code which doesn't do anythign they're worse than useless to the company and will be fired.
Fiddle with the way the operators are chained, eg. have each of the intermediateClass functions assemble an aggregate intermediateclass object containing all of the parameters (you mostly do it this was already (?)) but require an init-like function of the original class to take that as an argument, rather than have them chained after it, and then you can have save and the other functions return two different class types (with essentially the same contents), and have init only accept a class of the correct type.
The fact that it's still a problem suggests that either your coworkers need a helpful reminder, or they're rather sub-par, or the interface wasn't very clear (perhaps its perfectly good, but the author didn't realise it wouldn't be clear if you only used it in passing rather than getting to know it), or you yourself have misunderstood the situation. A technical solution would be good, but you should probably think about why the problem occurred and how to communicate more clearly, probably asking someone senior's input.
After great deliberation and trial and error, it turns out that throwing an exception from the Finalize() method was not going to work for me. Apparently, you simply can't do that; the exception gets eaten up, because garbage collection operates non-deterministically. I was unable to get the software to call Dispose() automatically from the destructor either. Jack V.'s comment explains this well; here was the link he posted, for redundancy/emphasis:
The difference between a destructor and a finalizer?
Changing the syntax to use a callback was a clever way to make the behavior foolproof, but the agreed-upon syntax was fixed, and I had to work with it. Our company is all about fluent method chains. I was also a fan of the "out parameter" solution to be honest, but again, the bottom line is the method signatures simply could not change.
Helpful information about my particular problem includes the fact that my software is only ever to be run as part of a suite of unit tests - so efficiency is not a problem.
What I ended up doing was use Mono.Cecil to Reflect upon the Calling Assembly (the code calling into my software). Note that System.Reflection was insufficient for my purposes, because it cannot pinpoint method references, but I still needed(?) to use it to get the "calling assembly" itself (Mono.Cecil remains underdocumented, so it's possible I just need to get more familiar with it in order to do away with System.Reflection altogether; that remains to be seen....)
I placed the Mono.Cecil code in the Init() method, and the structure now looks something like:
public IntermediateClass<T> Init<T>()
{
ValidateUsage(Assembly.GetCallingAssembly());
return new IntermediateClass<T>();
}
void ValidateUsage(Assembly assembly)
{
// 1) Use Mono.Cecil to inspect the codebase inside the assembly
var assemblyLocation = assembly.CodeBase.Replace("file:///", "");
var monoCecilAssembly = AssemblyFactory.GetAssembly(assemblyLocation);
// 2) Retrieve the list of Instructions in the calling method
var methods = monoCecilAssembly.Modules...Types...Methods...Instructions
// (It's a little more complicated than that...
// if anybody would like more specific information on how I got this,
// let me know... I just didn't want to clutter up this post)
// 3) Those instructions refer to OpCodes and Operands....
// Defining "invalid method" as a method that calls "Init" but not "Save"
var methodCallingInit = method.Body.Instructions.Any
(instruction => instruction.OpCode.Name.Equals("callvirt")
&& instruction.Operand is IMethodReference
&& instruction.Operand.ToString.Equals(INITMETHODSIGNATURE);
var methodNotCallingSave = !method.Body.Instructions.Any
(instruction => instruction.OpCode.Name.Equals("callvirt")
&& instruction.Operand is IMethodReference
&& instruction.Operand.ToString.Equals(SAVEMETHODSIGNATURE);
var methodInvalid = methodCallingInit && methodNotCallingSave;
// Note: this is partially pseudocode;
// It doesn't 100% faithfully represent either Mono.Cecil's syntax or my own
// There are actually a lot of annoying casts involved, omitted for sanity
// 4) Obviously, if the method is invalid, throw
if (methodInvalid)
{
throw new Exception(String.Format("Bad developer! BAD! {0}", method.Name));
}
}
Trust me, the actual code is even uglier looking than my pseudocode.... :-)
But Mono.Cecil just might be my new favorite toy.
I now have a method that refuses to be run its main body unless the calling code "promises" to also call a second method afterwards. It's like a strange kind of code contract. I'm actually thinking about making this generic and reusable. Would any of you have a use for such a thing? Say, if it were an attribute?
What if you made it so Init and With don't return objects of type FluentClass? Have them return, e.g., UninitializedFluentClass which wraps a FluentClass object. Then calling .Save(0 on the UnitializedFluentClass object calls it on the wrapped FluentClass object and returns it. If they don't call Save they don't get a FluentClass object.
In Debug mode beside implementing IDisposable you can setup a timer that will throw a exception after 1 second if the resultmethod has not been called.
Use an out parameter! All the outs must be used.
Edit: I am not sure of it will help, tho...
It would break the fluent syntax.