List.AddRange Performance of Adding Array vs List - c#

When using List.AddRange(), is there any difference in performance between adding a List or Array.
MyList.AddRange(MyArrayof1000ComplexElements);
VS
MyList.AddRange(MyListof1000ComplexElements);
or is there no difference?

Since an array and a list both implement ICollection<T>, it uses the same code.
It resolves to a call to Array.Copy(...)
http://referencesource.microsoft.com/#mscorlib/system/collections/generic/list.cs#e569d850a66a1771#references

There is no difference between List<T> and T[] - AddRange uses the same handling for anything implementing ICollection<T>, which both of those do.

Both Array and List implement the ICollection<T> interface. Therefore, the implementation of List.AddRange that is used will be identical and will offer the same performance.
In the future, you can either test something like this yourself with a simple program using the Stopwatch class for timing or download a tool like JetBrain's dotPeek to inspect the framework code yourself.

This is a more interesting question than some of the comments might suggest.
As it happens, for this specific list/array implementation the answer is: no difference. Both rely on the same collection interface.
But it doesn't have to be that way. If a list is implemented as a doubly-linked list (which it is in many other cases) then appending one list to another is O(1) while appending an array to a list is O(n).
And I would not start by benchmarking to resolve this question. Benchmarking is time-consuming to do well and can easily produce results susceptible to misinterpretation. In this case a careful study of the implementation and the underlying source code (easily available through a .NET disassembler) will answer the question faster. Then benchmark to confirm, if it matters enough.
Please note that the specific O(1) optimisation that applies here is only available if MyListof1000ComplexElements too is a List. If it some kind of enumerator or linked list then the performance will be O(n).
In response to those who have criticised this answer, please note that it has been written with the intention of highlighting that the other answers given are based on a specific interpretation of the question. They fail to point out how narrowly they have interpreted the question and how narrowly their answers apply. Another reader might easily miss the fact that this answer only applies to this specific circumstance if they don't say so. My aim is simply to point out that in many other closely related situations, this is an O(n) operation rather than O(1).

Related

Why does the generic Dictionary in .NET not provide a ForEach() method?

After a couple hours of research (on MSDN websites and so on) I didn't manage to find out why the generic Dictionary<TKey, TValue> does not provide a ForEach() method like List<T> does. Could someone please give me an explanation? (I know that it's not hard to implement it as an extension method, a great example can be seen here, I just was wondering whether there might be a particular reason why it's not provided by the .NET libraries in the first place.)
Thanks in advance.
Because it's questionable why List<T> has it in the first place. No need to repeat the same mistake everywhere. Eric Lippert gives two reason as to why in his blog post :
The first reason is that doing so violates the functional programming principles that all the other sequence operators are based upon. Clearly the sole purpose of a call to this method is to cause side effects. (...)
The second reason is that doing so adds zero new representational power to the language. Doing this lets you rewrite this perfectly clear code:
foreach(Foo foo in foos){ statement involving foo; }
into this code:
foos.ForEach((Foo foo)=>{ statement involving foo; });
which uses almost exactly the same characters in slightly different order. And yet the second version is harder to understand, harder to debug, and introduces closure semantics, thereby potentially changing object lifetimes in subtle ways.
(...)

Why HashSet<T> class is not used to implement Enumerable.Distinct

I needed to access the asymptotic time and space complexity of the IEnumerable.Distinct in big O notation
So I was looking at the implementation of extension method Enumerable.Distinct and I see it is implemented using and internal class Set<T>, which is almost a classical implementation of a hash table with "open addressing"
What quickly catches the eye is that a lot of code in Set<T> is just a copy-paste from HashSet<T>, with some omissions
However, this simplified Set<T> implementation has some obvious flaws, for example the Resize method not using prime numbers for the size of the slots, like HashSet<T> does, see HashHelpers.ExpandPrime
So, my questions are:
What is the reason for code duplication here, why not stick with DRY principle? Especially given the fact that both of these classes are in the same assembly System.Core
It looks like HashSet<T> will perform better, so should I avoid using Distinct extension method, and write my own extension method that would use HashSet<T> instead of Set<T>?
which is almost a classical implementation of a hash table with "open addressing"
Look again. It's separate chaining with list head cells. While the slots are all in an array, finding the next slot in the case of collision is done by examining the next field of the current slot. This has better cache efficiency than using linked lists with each node as a separate heap object, though not as good as open addressing in that regard. At the same time, it avoids some of the cases where open addressing does poorly.
a lot of code in Set is just a copy-paste from HashSet, with some omissions
AFAICT the reason a private implementation of a hash-set was used is that Enumerable and HashSet were developed independently at about the same time. That's just conjecture on my part, but they were both introduced with .NET 3.5 so it's feasible.
It's quite possible that HashSet<T> started by copying Set<T> and then making it better serve being exposed publicly, though it's also possible that the two were both based on the same principle of separate chaining with list head cells
In terms of performance, HashSet's using prime numbers means its more likely to avoid collisions with poor hashes (but just how much an advantage that is, is not a simple question), but Set is lighter in a lot of ways, especially in .NET Core where some things it doesn't need were removed. In particular, that version of Set takes advantage of the fact that once an item is removed (which happens, for example, during Intersect) there will never be an item added, which allows it to leave out freelist and any work related to it, which HashSet couldn't do. Even the initial implementation is lighter in not tracking a version to catch changes during enumeration, which is a small cost, but a cost to every addition and removal nevertheless.
As such, with different sets of data with different distributions of hash codes sometimes one performs better, sometimes the other.
Especially given the fact that both of these classes are in the same assembly System.Core
Only in some versions of .NET, in some they're in separate assemblies. In .NET Core we had two versions of Set<T>, one in the assembly that has System.Linq and one in the separate assembly that has System.Linq.Expressions. The former got trimmed down as described above, the latter replaced with a use of HashSet<T> as it was doing less there.
Of course System.Core came first, but the fact that those elements could be separated out at all speaks of System.Core not being a single monolithic blob of inter-dependencies.
That there is now a ToHashSet() method in .NET Core's version of Linq makes the possibility of replacing Set<T> with HashSet<T> more justifiable, though not a no-brainer. I think #james-ko was considering testing the benefits of doing that.
It looks like HashSet<T> will perform better
For the reasons explained above, that might not be the case, though it might indeed, depending on source data. That's before getting into considerations of optimisations that go across a few different linq methods (not many in the initial versions of linq, but a good few in .NET Core).
so should I avoid using Distinct extension method, and write my own extension method that would use HashSet<T> instead of Set<T>.
Use Distinct(). If you've a bottle neck then it might be that HashSet<T> will win with a given data-set, but if you do try that make sure your profiling closely matches real values your code will encounter in real life. There's no point deciding one approach is the faster based on some arbitrary tests if your application hits cases where the other does better. (And if I was finding this a problem spot, I'd take a look at whether the GetHashCode() of the types in question could be improved for either speed or distribution of bits, first).

What are the alternatives for System.Collections.ArrayList?

I have been asked to revise the code written some time ago for a windows form application. The programmer has used ArrayList heavily. I think generic lists are way more efficient compared to array lists and plan to rewrite the code using List<T> I wanted to know if there are any other alternatives that might also be worth considering. I work on .net 2.0
If you're working in .NET 2, then you won't have any of the concurrent collections in .NET 4 available to you, which pretty much just leaves List<T> in terms of "collections which are a bit like ArrayList. (Even within the concurrent collections, there isn't an immediate equivalent - and you should only use the concurrent collections when you actually anticipate concurrent access anyway.)
There are Stack<T> and Queue<T>, as well as LinkedList<T> - but all of those are somewhat different to ArrayList in terms of what you can do with them. They're worth considering if you don't need random access, of course.
I wouldn't expect too much more in terms of efficiency unless you're currently boxing a lot of large value types in your ArrayList. What you can expect is far clearer code. Fewer casts, less uncertainty about the contents of the collection, etc.
If you have the option of upgrading to .NET 3.5 at any point in the near future, that would then give you access to LINQ, which is fabulously useful when dealing with collections. Relatively few new collection types, but much simpler ways of expressing operations on them.
Update:
For add to/remove from head/tail it is better to use LinkedList<T>, but if you can determine exact maximum capacity of collection and size will be close to capacity then may be it's better to use Queue<T> (because internally it's array, reallocated when size reaches capacity). With Queue you will not get memory overhead that comes with LinkedList nodes.
Original:
From MSDN: The List<T> class is the generic equivalent of the ArrayList class.
Please, read carefully List<T> Performance Considerations section.
What should you use depends on how ArrayList is used? Is it random access or add to/remove from head/tail?
Try SortedList and Collection.
Both supported by .NET Framework 2.0

Should I be concerned about .NET dictionary speed?

I will be creating a project that will use dictionary lookups and inserts quite a bit. Is this something to be concerned about?
Also, if I do benchmarking and such and it is really bad, then what is the best way of replacing dictionary with something else? Would using an array with "hashed" keys even be faster? That wouldn't help on insert time though will it?
Also, I don't think I'm micro-optimizing because this really will be a significant part of code on a production server, so if this takes an extra 100ms to complete, then we will be looking for new ways to handle this.
You are micro-optimizing. Do you even have working code yet? Remember, "If it doesn't work, it doesn't matter how fast it doesn't work." (Mich Ravera) http://www.codingninja.co.uk/best-programmers-quotes/.
You have no idea where the bottlenecks will be, and already you're focused on Dictionary. What if the problem is somewhere else?
How do you know how the Dictionary class is implemented? Maybe it already uses an array with hashed keys!
P.S. It's really ".NET Dictionaries", not "C# Dictionaries", because C# is just one of several programming languages that use the framework.
Hello, I will be creating a project
that will use dictionary lookups and
inserts quite a bit. Is this something
to be concerned about?
Yes. It is always wise to consider performance factors up front.
The form that your concern should take is as follows: your concern should be encouraging you to write realistic, user-focused performance specifications. It should be encouraging you to start writing performance tests early, and running them often, so that you can see how every single change to the product affects performance. That way you will be informed immediately when a code change causes a user-affecting change in performance. And it should be encouraging you to run profiles often, so that you are reasoning about performance based on empirical measurements, rather than random guesses and hunches.
Also, if I do benchmarking and such
and it is really bad, then what is the
best way of replacing dictionary with
something else?
The best way to do this is to build a reasonable abstraction layer. If you have a class (or interface) which represents the "insert" and "lookup" abstract data type, then you can replace its internals without changing any of the callers.
Note that adding a layer of abstraction itself has a performance cost. If your profiling shows that the abstraction layer is too expensive, if the extra couple nanoseconds per call is too much, then you might have to get rid of the abstraction layer. Again, this decision will be driven by real-world performance data.
Would using an array with "hashed"
keys even be faster? That wouldn't
help on insert time though will it?
Neither you nor anyone reading this can possibly know which one is faster until you write it both ways and then benchmark it both ways under real-world conditions. Doing it under "lab" conditions will skew your results; you'll need to understand how things work when the GC is under realistic memory pressure, and so on. You might as well ask us which horse will run faster in next year's Kentucky Derby. If we knew the answer just by looking at the racing form, we'd all be rich already. You can't possibly expect anyone to know which of two entirely hypothetical, unwritten pieces of code will be faster under unspecified conditions!
The Dictionary<TKey, TValue> class is actually implemented as a hash table which makes lookups very fast (close to O(1)). See the API documentation for more information. I doubt you could make a better implementation yourself.
Wait and see if the performance of your application is below expectations
If it is then use a profiler to determine if the Dictionary lookup is the source of the problem
If it is then do some tests with representative data to see if another choice of list would be quicker.
In short - no, in general you shouldn't worry about the performance of implementation details until after you have a problem.
I would do a benchmark of the Dictionary, HashTable (HashSet in .NET), and perhaps a home grown class, and see which works out best under your typical usage conditions.
Normally I would say it's fine (insert StackOverflow's favorite premature ejaculation quote here), but if this is a core peice of the application, Benchmark, Benchmark, Benchmark.
The only concern that I can think of is that the speed of the dictionary relies on the key class having a reasonably fast GetHashCode method. Lookups and inserts are really fast, so you shouldn't have any problem there.
Regarding using an array, that's what the Dictionary class does already. Actually it uses two arrays, one for the keys and one for the values.
If you would have any performance problems with a Dictionary, it would be quite easy to make a wrapper for any kind of storage, that has the same methods and behaviour as a Dictionary so that you can replace it seamlessly.
I'm not sure that anyone has really answered this part yet:
Also, if I do benchmarking and such
and it is really bad, then what is the
best way of replacing dictionary with
something else?
For this, wherever possible, declare your variables as IDictionary<TKey, TValue>. That's the main interface that Dictionary derives from. (I'm assuming that if you care that much about performance, then you aren't considering non-generic collections.) Then, in the future, you can change the underlying implementation class without having to change any of the code that uses that dictionary. For example:
IDictionary<string, int> myDict = new Dictionary<string, int>();
If your application is multithreaded then the key part of performance is going to be synchronizing this Dictionary correctly.
If it is single-threaded then almost certainly bottleneck will be elsewhere. Such as reading these objects from wherever you are reading them.
I use Dictionary for UDP relay server . Each time packet arrives it performs Dictionary.ContainsKey and Dictionary[Key] , and it works great (massive number of clients). I had concerns when I was making the thing but it turned out that was last thing I should worry about.
Have a look at C# HybridDictionary Usage
HybridDictionary Class
This class is recommended for cases
where the number of elements in a
dictionary is unknown. It takes
advantage of the improved performance
of a ListDictionary with small
collections, and offers the
flexibility of switching to a
Hashtable which handles larger
collections better than ListDictionary
You may consider using the C5 library. I've found it to be very fast and thoughtfully designed. Others on stackoverflow have found the same. With C5 you have the option of using general type interfaces (with a captial I), or directly the data structures underneath. Naturally the interfaces allow you to swap out different implementations, but I have found in performance testing that the interfaces will cost you.
You may want to look at the KeyedCollection class in System.ObjectModel. From the MSDN description, "provides the abstract base class for a collection whose keys are embedded in the values."

Do C# Generics Have a Performance Benefit?

I have a number of data classes representing various entities.
Which is better: writing a generic class (say, to print or output XML) using generics and interfaces, or writing a separate class to deal with each data class?
Is there a performance benefit or any other benefit (other than it saving me the time of writing separate classes)?
There's a significant performance benefit to using generics -- you do away with boxing and unboxing. Compared with developing your own classes, it's a coin toss (with one side of the coin weighted more than the other). Roll your own only if you think you can out-perform the authors of the framework.
Not only yes, but HECK YES. I didn't believe how big of a difference they could make. We did testing in VistaDB after a rewrite of a small percentage of core code that used ArrayLists and HashTables over to generics. 250% or more was the speed improvement.
Read my blog about the testing we did on generics vs weak type collections. The results blew our mind.
I have started rewriting lots of old code that used the weakly typed collections into strongly typed ones. One of my biggest grips with the ADO.NET interface is that they don't expose more strongly typed ways of getting data in and out. The casting time from an object and back is an absolute killer in high volume applications.
Another side effect of strongly typing is that you often will find weakly typed reference problems in your code. We found that through implementing structs in some cases to avoid putting pressure on the GC we could further speed up our code. Combine this with strongly typing for your best speed increase.
Sometimes you have to use weakly typed interfaces within the dot net runtime. Whenever possible though look for ways to stay strongly typed. It really does make a huge difference in performance for non trivial applications.
Generics in C# are truly generic types from the CLR perspective. There should not be any fundamental difference between the performance of a generic class and a specific class that does the exact same thing. This is different from Java Generics, which are more of an automated type cast where needed or C++ templates that expand at compile time.
Here's a good paper, somewhat old, that explains the basic design:
"Design and Implementation of Generics for the
.NET Common Language Runtime".
If you hand-write classes for specific tasks chances are you can optimize some aspects where you would need additional detours through an interface of a generic type.
In summary, there may be a performance benefit but I would recommend the generic solution first, then optimize if needed. This is especially true if you expect to instantiate the generic with many different types.
I did some simple benchmarking on ArrayList's vs Generic Lists for a different question: Generics vs. Array Lists, your mileage will vary, but the Generic List was 4.7 times faster than the ArrayList.
So yes, boxing / unboxing are critical if you are doing a lot of operations. If you are doing simple CRUD stuff, I wouldn't worry about it.
Generics are one of the way to parameterize code and avoid repetition. Looking at your program description and your thought of writing a separate class to deal with each and every data object, I would lean to generics. Having a single class taking care of many data objects, instead of many classes that do the same thing, increases your performance. And of course your performance, measured in the ability to change your code, is usually more important than the computer performance. :-)
According to Microsoft, Generics are faster than casting (boxing/unboxing primitives) which is true.
They also claim generics provide better performance than casting between reference types, which seems to be untrue (no one can quite prove it).
Tony Northrup - co-author of MCTS 70-536: Application Development Foundation - states in the same book the following:
I haven’t been able to reproduce the
performance benefits of generics;
however, according to Microsoft,
generics are faster than using
casting. In practice, casting proved
to be several times faster than using
a generic. However, you probably won’t
notice performance differences in your
applications. (My tests over 100,000
iterations took only a few seconds.)
So you should still use generics
because they are type-safe.
I haven't been able to reproduce such performance benefits with generics compared to casting between reference types - so I'd say the performance gain is "supposed" more than "significant".
if you compare a generic list (for example) to a specific list for exactly the type you use then the difference is minimal, the results from the JIT compiler are almost the same.
if you compare a generic list to a list of objects then there is significant benefits to the generic list - no boxing/unboxing for value types and no type checks for reference types.
also the generic collection classes in the .net library were heavily optimized and you are unlikely to do better yourself.
In the case of generic collections vs. boxing et al, with older collections like ArrayList, generics are a performance win. But in the vast majority of cases this is not the most important benefit of generics. I think there are two things that are of much greater benefit:
Type safety.
Self documenting aka more readable.
Generics promote type safety, forcing a more homogeneous collection. Imagine stumbling across a string when you expect an int. Ouch.
Generic collections are also more self documenting. Consider the two collections below:
ArrayList listOfNames = new ArrayList();
List<NameType> listOfNames = new List<NameType>();
Reading the first line you might think listOfNames is a list of strings. Wrong! It is actually storing objects of type NameType. The second example not only enforces that the type must be NameType (or a descendant), but the code is more readable. I know right away that I need to go find TypeName and learn how to use it just by looking at the code.
I have seen a lot of these "does x perform better than y" questions on StackOverflow. The question here was very fair, and as it turns out generics are a win any way you skin the cat. But at the end of the day the point is to provide the user with something useful. Sure your application needs to be able to perform, but it also needs to not crash, and you need to be able to quickly respond to bugs and feature requests. I think you can see how these last two points tie in with the type safety and code readability of generic collections. If it were the opposite case, if ArrayList outperformed List<>, I would probably still take the List<> implementation unless the performance difference was significant.
As far as performance goes (in general), I would be willing to bet that you will find the majority of your performance bottlenecks in these areas over the course of your career:
Poor design of database or database queries (including indexing, etc),
Poor memory management (forgetting to call dispose, deep stacks, holding onto objects too long, etc),
Improper thread management (too many threads, not calling IO on a background thread in desktop apps, etc),
Poor IO design.
None of these are fixed with single-line solutions. We as programmers, engineers and geeks want to know all the cool little performance tricks. But it is important that we keep our eyes on the ball. I believe focusing on good design and programming practices in the four areas I mentioned above will further that cause far more than worrying about small performance gains.
Generics are faster!
I also discovered that Tony Northrup wrote wrong things about performance of generics and non-generics in his book.
I wrote about this on my blog:
http://andriybuday.blogspot.com/2010/01/generics-performance-vs-non-generics.html
Here is great article where author compares performance of generics and non-generics:
nayyeri.net/use-generics-to-improve-performance
If you're thinking of a generic class that calls methods on some interface to do its work, that will be slower than specific classes using known types, because calling an interface method is slower than a (non-virtual) function call.
Of course, unless the code is the slow part of a performance-critical process, you should focus of clarity.
See Rico Mariani's Blog at MSDN too:
http://blogs.msdn.com/ricom/archive/2005/08/26/456879.aspx
Q1: Which is faster?
The Generics version is considerably
faster, see below.
The article is a little old, but gives the details.
Not only can you do away with boxing but the generic implementations are somewhat faster than the non generic counterparts with reference types due to a change in the underlying implementation.
The originals were designed with a particular extension model in mind. This model was never really used (and would have been a bad idea anyway) but the design decision forced a couple of methods to be virtual and thus uninlineable (based on the current and past JIT optimisations in this regard).
This decision was rectified in the newer classes but cannot be altered in the older ones without it being a potential binary breaking change.
In addition iteration via foreach on an List<> (rather than IList<>) is faster due to the ArrayList's Enumerator requiring a heap allocation. Admittedly this did lead to an obscure bug

Categories