How do i see if
string1 contains string2 OR
string2 contains string1 OR
String 3 contains string 1 OR
String 1 contains string 3 OR
String 2 contains string 3 OR
string 3 contains String 2 in single line?
like i want to do
if ( string1.contains(string2) || string2.contains(string1) || string3.contains(string1) string3.contains(string2) || .. and so on.. )
{
}
in single check without or clause.
In reality, i have to do this check multiple times and multiple places. So just wondering if there is a better way.
I have updated my business logic or the reason for this logic. We have 6 Sites and we will get just the page names of the sites. i have to check the site names are similar. The only problem is.. i donot get the site names in any particular pattern. like for eg:
String1 = "/search-results"
string2= "www.foo.com/search-results?Id=1234"
string3 = "search-results"
string4= "/search-results?Id=1234"
and if you look at my values, you will note that if you compare any two strings with OR clause.. they will be true.
Put your strings into an array or a list, then:
bool result = yourStrings
.Where((x, idx) =>
yourStrings.Where((y, index) => idx != index && x.Contains(y))
.Any())
.Any();
Explanation:
This query will take each string, and compare them with others and returns a result that indicates whether any of the strings is contains another string in the collection.
For example consider we have three strings foo, bar and fooBar, the steps would be like the following:
Take "foo" and check if it contains bar or fooBar (false)
Take "bar" and check if it contains foo or fooBar (false)
Take "fooBar" and check if it contains foo or bar (true because of foo)
I wish there is an overload of Any that accepts the index parameter...
Edit: here is also more efficient implementation for larger collections:
public static bool ContainsAny(IList<string> source)
{
int count = source.Count;
for (int i = 0; i < count; i++)
{
for (int j = 0; j < count; j++)
{
if (i != j && source[i].Contains(source[j]))
{
return true;
}
}
}
return false;
}
You can have an helper method and use it :
public static void SomeContainsAnOther(this IEnumerable<string> #this)
{
#this.Any(v=>#this.Count(other=>other.Contains(v)) > 1);
}
And use it :
new string[] {string1,string2,string3,..stringN}.SomeContainsAnOther();
Related
I have a rather complex issue that I'am unable to figure out.
I'm getting a set of string every 10 seconds from another process in which the first set has first 5 characters constant, next 3 are variable and can change. And then another set of string in which first 3 are variable and next 3 are constant.
I want to compare these values to a fixed string to check if the first 5 char matches in 1st set of string (ABCDE*** == ABCDEFGH) and ignore the last 3 variable characters while making sure the length is the same. Eg : if (ABCDE*** == ABCDEDEF) then condition is true, but if (ABCDE*** == ABCDDEFG) then the condition is false because the first 5 char is not same, also if (ABCDE*** == ABCDEFV) the condition should be false as one char is missing.
I'm using the * in fixed string to try to make the length same while comparing.
Does this solve your requirements?
private static bool MatchesPattern(string input)
{
const string fixedString = "ABCDExyz";
return fixedString.Length == input.Length && fixedString.Substring(0, 5).Equals(input.Substring(0, 5));
}
In last versions of C# you can also use ranges:
private static bool MatchesPattern(string input)
{
const string fixedString = "ABCDExyz";
return fixedString.Length == input.Length && fixedString[..5].Equals(input[..5]);
}
See this fiddle.
BTW: You could probably achieve the same using regex.
It's always a good idea to make an abstraction. Here I've made a simple function that takes the pattern and the value and makes a check:
bool PatternMatches(string pattern, string value)
{
// The null string doesn't match any pattern
if (value == null)
{
return false;
}
// If the value has a different length than the pattern, it doesn't match.
if (pattern.Length != value.Length)
{
return false;
}
// If both strings are zero-length, it's considered a match
bool result = true;
// Check every character against the pattern
for (int i = 0; i< pattern.Length; i++)
{
// Logical and the result, * matches everything
result&= (pattern[i]== '*') ? true: value[i] == pattern[i];
}
return result;
}
You can then call it like this:
bool b1 = PatternMatches("ABCDE***", "ABCDEFGH");
bool b2 = PatternMatches("ABC***", "ABCDEF");
You could use regular expressions, but this is fairly readable, RegExes aren't always.
Here is a link to a dotnetfiddle: https://dotnetfiddle.net/4x1U1E
If the string you match against is known at compile time, your best bet is probably using regular expressions. In the first case, match against ^ABCDE...$. In the second case, match against ^...DEF$.
Another way, probably better if the match string is unknown, uses Length, StartsWith and EndsWith:
String prefix = "ABCDE";
if (str.Length == 8 && str.StartsWith(prefix)) {
// do something
}
Then similarly for the second case, but using EndsWith instead of StartsWith.
check this
public bool Comparing(string str1, string str2)
=> str2.StartWith(str1.replace("*","")) && str1.length == str2.Length;
I am trying to find the differences in two lists. List, "y" should have 1 unique value when compared to list "x". However, Except, does not return the difference. The, "differences" list's count always equals 0.
List<EtaNotificationUser> etaNotifications = GetAllNotificationsByCompanyIDAndUserID(PrevSelectedCompany.cmp_ID);
IEnumerable<string> x = etaNotifications.OfType<string>();
IEnumerable<string> y = EmailList.OfType<string>();
IEnumerable<string> differences = x.Except(y, new StringLengthEqualityComparer()).ToList();
foreach(string diff in differences)
{
addDiffs.Add(diff);
}
After reading a few posts and articles on the post, I created a custom comparer. The comparer looks at string length (kept it simple for testing) and obtains the Hashcode, since these are two objects of a different type (even though I convert their types to string), I thought it may have been the issue.
class StringLengthEqualityComparer : IEqualityComparer<string>
{
public bool Equals(string x, string y)
{
return x.Length == y.Length;
}
public int GetHashCode(string obj)
{
return obj.Length;
}
}
This is my first time using Except. Sounds like a great, optimized way of comparing two lists, but I can't get it to work.
Update
X - Should hold Email Addresses from the database.
GetAllNotificationsByCompanyIDAndUserID - brings back email values from the DB.
Y - Should hold all Email Addresses in the UI Grid.
What I am trying to do is detect if a new e-mail has been added to the grid. So at this point X will have the saved values from past entries. Y will have any new e-mail addresses add by the user and have not been saved yet.
I have verified this is all working correctly.
The problem is here:
IEnumerable<string> x = etaNotifications.OfType<string>();
but etaNotifications is a List<EtaNotificationUser>, none of which can be a string since string is sealed. OfType returns all instances that are of the given type - it does not "convert" each member to that type.
So x will always be empty.
Maybe you want:
IEnumerable<string> x = etaNotifications.Select(e => e.ToString());
if EtaNotificationUser has overridden ToString to give you the value you want to compare. If the value you want to compare is in a property you can use:
IEnumerable<string> x = etaNotifications.Select(e => e.EmailAddress);
or some other property.
You'll likely have to do something similar for y (unless EmailList is already a List<string> which I doubt).
Assuming you have verified that your two enumerables x and y actually contain the strings you expect them to, I believe your problem is with your string comparer. According to the docs, Enumerable.Except "Produces the set difference of two sequences. The set difference is the members of the first sequence that don't appear in the second sequence." But your equality comparer equates all strings with the same length. Thus, if a string in the first sequence happens to have the same length as a string in the second, it will not be found as different using your comparer.
Update: yup, I just tested it:
public class StringLengthEqualityComparer : IEqualityComparer<string>
{
public bool Equals(string x, string y)
{
return x.Length == y.Length;
}
public int GetHashCode(string obj)
{
return obj.Length;
}
}
string [] array1 = new string [] { "foo", "bar", "yup" };
string[] array2 = new string[] { "dll" };
int diffCount;
diffCount = 0;
foreach (var diff in array1.Except(array2, new StringLengthEqualityComparer()))
{
diffCount++;
}
Debug.Assert(diffCount == 0); // No assert.
diffCount = 0;
foreach (var diff in array1.Except(array2))
{
diffCount++;
}
Debug.Assert(diffCount == 0); // Assert b/c diffCount == 3.
There is no assert with the custom comparer but there is with the standard.
I want to implement a custom string IComparer in C# and apply it to a ComboBox.
Actual Results
If I set the ComboBox's Sorted property to true, the output is :
A
AA
AAA
B
BB
BBB
Wanted Results
The wanted behavior of the sorting algorithm is the following (financial developers will understand why :) ) :
AAA
AA
A
BBB
BB
B
Question
Is it possible to do it ? Are sorting algorithms needed here ?
PS : I don't need a complete answer with code, i just need an idea of how it might be done ..
EDIT
This is about credit ratings. I've omitted something in my question. The ratings have to be sorted in this order :
XXX
XX+
XX
XX-
X+
X
X-
with X in ('A','B','C') and 'A' > 'B' > 'C'
Here's a mostly implemented version:
public class MyComparer : IComparer<string>
{
public int Compare(string x, string y)
{
//todo null checks on input
var pairs = x.Zip(y, (a, b) => new { x = a, y = b });
foreach (var pair in pairs)
{
int value = pair.x.CompareTo(pair.y);
if (value != 0)
return value;
}
//if we got here then either they are the same,
//or one starts with the other
return y.Length.CompareTo(x.Length); //note x and y are reversed here
}
}
So this uses Zip to get the pairs of chars from each corresponding string until one ends, returning the appropriate value if they aren't equal. If it makes it past that then one string start with the other. For a traditional string comparison we'd just compare the lengths in the same order as the input parameters. Since we're essentially reversing the order based on length, note that the x and y are swapped on the last line. That reverses the comparison logic.
Assuming this is for credit ratings, normally this is done by having a "sort order" column on the CreditRating class that you could use to sort the list before assigning it as the data source of the drop-down.
But, a quick workaround (based on the limited possible values) would be to sort by the first letter ascending, then by the length of the string descending:
if(left[0] != right[0])
return left[0].CompareTo(right[0]);
else
return right.Length - left.Length;
Another workaround if you want more control over the order is to create a list of possible values in the "right" order and then use that to sort the list:
public class MyComparer : IComparer<string>
{
private static readonly string[] Ratings = new [] {
"CC","C","CCC-","CCC","CCC+",
"B-","B","B+","BB-","BB","BB+","BBB-","BBB","BBB+",
"A-","A","A+","AA-","AA","AA+","AAA"};
// reverse the order so that any strings not found will be put at the end.
public int Compare(string left, string right)
{
return Array.IndexOf(Ratings, right).CompareTo(Array.IndexOf(Ratings, left));
}
}
Write the IComparer so that it takes strings but compares per character,
if A[0] == B[0] go to the next character.
if B[1] == null or A[1] < B[1], return A < B.
if A[1] == null or B[1] < A[1], return B < A.
if equal...continue as needed
I have a string that contains numbers separated by periods. When I sort it appears like this since it is a string: (ascii char order)
3.9.5.2.1.1
3.9.5.2.1.10
3.9.5.2.1.11
3.9.5.2.1.12
3.9.5.2.1.2
3.9.5.2.1.3
3.9.5.2.1.4
etc.
I want it to sort like this: (in numeric order)
3.9.5.2.1.1
3.9.5.2.1.2
3.9.5.2.1.3
...
3.9.5.2.1.9
3.9.5.2.1.10
3.9.5.2.1.11
3.9.5.2.1.12
I know that I can:
Use the Split function to get the individual numbers
Put the values into an object
Sort the object
I prefer to avoid all of that work if it is duplicating existing functionality. Is a method in the .net framework that does this already?
Here's my working solution that also takes care of strings that are not in the right format (e.g. contain text).
The idea is to get the first number within both strings and compare these numbers. If they match, continue with the next number. If they don't, we have a winner. If one if these numbers isn't a number at all, do a string comparison of the part, which wasn't already compared.
It would be easy to make the comparer fully compatible to natural sort order by changing the way to determine the next number.
Look at that.. just found this question.
The Comparer:
class StringNumberComparer : IComparer<string>
{
public int Compare(string x, string y)
{
int compareResult;
int xIndex = 0, yIndex = 0;
int xIndexLast = 0, yIndexLast = 0;
int xNumber, yNumber;
int xLength = x.Length;
int yLength = y.Length;
do
{
bool xHasNextNumber = TryGetNextNumber(x, ref xIndex, out xNumber);
bool yHasNextNumber = TryGetNextNumber(y, ref yIndex, out yNumber);
if (!(xHasNextNumber && yHasNextNumber))
{
// At least one the strings has either no more number or contains non-numeric chars
// In this case do a string comparison of that last part
return x.Substring(xIndexLast).CompareTo(y.Substring(yIndexLast));
}
xIndexLast = xIndex;
yIndexLast = yIndex;
compareResult = xNumber.CompareTo(yNumber);
}
while (compareResult == 0
&& xIndex < xLength
&& yIndex < yLength);
return compareResult;
}
private bool TryGetNextNumber(string text, ref int startIndex, out int number)
{
number = 0;
int pos = text.IndexOf('.', startIndex);
if (pos < 0) pos = text.Length;
if (!int.TryParse(text.Substring(startIndex, pos - startIndex), out number))
return false;
startIndex = pos + 1;
return true;
}
}
Usage:
public static void Main()
{
var comparer = new StringNumberComparer();
List<string> testStrings = new List<string>{
"3.9.5.2.1.1",
"3.9.5.2.1.10",
"3.9.5.2.1.11",
"3.9.test2",
"3.9.test",
"3.9.5.2.1.12",
"3.9.5.2.1.2",
"blabla",
"....",
"3.9.5.2.1.3",
"3.9.5.2.1.4"};
testStrings.Sort(comparer);
DumpArray(testStrings);
Console.Read();
}
private static void DumpArray(List<string> values)
{
foreach (string value in values)
{
Console.WriteLine(value);
}
}
Output:
....
3.9.5.2.1.1
3.9.5.2.1.2
3.9.5.2.1.3
3.9.5.2.1.4
3.9.5.2.1.10
3.9.5.2.1.11
3.9.5.2.1.12
3.9.test
3.9.test2
blabla
No, I don't believe there's anything in the framework which does this automatically. You could write your own IComparer<string> implementation which doesn't do any splitting, but instead iterates over both strings, only comparing as much as is required (i.e. parsing just the first number of each, then continuing if necessary etc) but it would be quite fiddly I suspect. It would also need to make assumptions about how "1.2.3.4.5" compared with "1.3" for example (i.e. where the values contain different numbers of numbers).
Since the comparison you want to do on the strings is different from how strings are normally compared in .Net, you will have to use a custom string string comparer
class MyStringComparer : IComparer<string>
{
public int Compare(string x, string y)
{
// your comparison logic
// split the string using '.' separator
// parse each string item in split array into an int
// compare parsed integers from left to right
}
}
Then you can use the comparer in methods like OrderBy and Sort
var sorted = lst.OrderBy(s => s, new MyStringComparer());
lst.Sort(new MyStringComparer());
This will give you the desired result. If not then just tweak the comparer.
What you are looking for is the natural sort order and Jeff Atwood bloged about it and has links to implementations in different languages. The .NET Framework does not contain an implementation.
Is it possible for you to pad your fields to the same length on the front with 0? If so, then you can just use straight lexicographic sorting on the strings. Otherwise, there is no such method built in to the framework that does this automatically. You'll have to implement your own IComparer<string> if padding is not an option.
Not really, though you may be able to use Regexes or Linq to avoid too much wheel-reinventing. Keep in mind it will cost you much the same computationally to use something built-in as to roll your own.
Try this:
List<string> myList = GetNumberStrings();
myList.Select(s=>s.Split('.')).ToArray().
.Sort((a,b)=>RecursiveCompare(a,b))
.Select(a=>a.Aggregate(new StringBuilder(),
(s,sb)=>sb.Append(s).Append(".")).Remove(sb.Length-1, 1).ToString())
.ToList();
...
public int RecursiveCompare(string[] a, string[] b)
{
return RecursiveCompare(a,b,0)
}
public int RecursiveCompare(string[] a, string[] b, int index)
{
return index == a.Length || index == b.Length
? 0
: a[index] < b[index]
? -1
: a[index] > b[index]
? 1
: RecursiveCompare(a,b, index++);
}
Not the most compact, but it should work and you could use a y-combinator to make the comparison a lambda.
Split each string by '.', iterate through the components and compare them numerically.
This code also assumes that the number of components is signficant (a string '1.1.1' will be greater than '2.1'. This can be adjusted by altering the first if statement in the Compare method below.
int Compare(string a, string b)
{
string[] aParts = a.Split('.');
string[] bParts = b.Split('.');
/// if A has more components than B, it must be larger.
if (aParts.Length != bParts.Length)
return (aParts.Length > bParts.Length) ? 1 : -1;
int result = 0;
/// iterate through each numerical component
for (int i = 0; i < aParts.Length; i++)
if ( (result = int.Parse(aParts[i]).CompareTo(int.Parse(bParts[i]))) !=0 )
return result;
/// all components are equal.
return 0;
}
public string[] sort()
{
/// initialize test data
string l = "3.9.5.2.1.1\n"
+ "3.9.5.2.1.10\n"
+ "3.9.5.2.1.11\n"
+ "3.9.5.2.1.12\n"
+ "3.9.5.2.1.2\n"
+ "3.9.5.2.1.3\n"
+ "3.9.5.2.1.4\n";
/// split the large string into lines
string[] arr = l.Split(new char[] { '\n' },StringSplitOptions.RemoveEmptyEntries);
/// create a list from the array
List<string> strings = new List<string>(arr);
/// sort using our custom sort routine
strings.Sort(Compare);
/// concatenate the list back to an array.
return strings.ToArray();
}
You can use the awesome AlphanumComparator Alphanum natural sort algorithm by David Koelle.
Code:
OrderBy(o => o.MyString, new AlphanumComparator())
If you're gonna use the C# version change it to:
AlphanumComparator : IComparer<string>
and
public int Compare(string x, string y)
In addition to implementing your own IComparer as Jon mentions, if you call ToList() on your array, you can call the .Sort() method and pass in a function parameter that compares two values, as shown here: http://msdn.microsoft.com/en-us/library/w56d4y5z.aspx
If I have two values eg/ABC001 and ABC100 or A0B0C1 and A1B0C0, is there a RegEx I can use to make sure the two values have the same pattern?
Well, here's my shot at it. This doesn't use regular expressions, and assumes s1 and s2 only contain numbers or digits:
public static bool SamePattern(string s1, string s2)
{
if (s1.Length == s2.Length)
{
char[] chars1 = s1.ToCharArray();
char[] chars2 = s2.ToCharArray();
for (int i = 0; i < chars1.Length; i++)
{
if (!Char.IsDigit(chars1[i]) && chars1[i] != chars2[i])
{
return false;
}
else if (Char.IsDigit(chars1[i]) != Char.IsDigit(chars2[i]))
{
return false;
}
}
return true;
}
else
{
return false;
}
}
A description of the algorithm is as follows:
If the strings have different lengths, return false.
Otherwise, check the characters in the same position in both strings:
If they are both digits or both numbers, move on to the next iteration.
If they aren't digits but aren't the same, return false.
If one is a digit and one is a number, return false.
If all characters in both strings were checked successfully, return true.
If you don't know the pattern in advance, but are only going to encounter two groups of characters (alpha and digits), then you could do the following:
Write some C# that parsed the first pattern, looking at each char and determine if it's alpha, or digit, then generate a regex accordingly from that pattern.
You may find that there's no point writing code to generate a regex, as it could be just as simple to check the second string against the first.
Alternatively, without regex:
First check the strings are the same length.
Then loop through both strings at the same time, char by char. If char[x] from string 1 is alpha, and char[x] from string two is the same, you're patterns are matching.
Try this, it should cope if a string sneaks in some symbols. Edited to compare character values ... and use Char.IsLetter and Char.IsDigit
private bool matchPattern(string string1, string string2)
{
bool result = (string1.Length == string2.Length);
char[] chars1 = string1.ToCharArray();
char[] chars2 = string2.ToCharArray();
for (int i = 0; i < string1.Length; i++)
{
if (Char.IsLetter(chars1[i]) != Char.IsLetter(chars2[i]))
{
result = false;
}
if (Char.IsLetter(chars1[i]) && (chars1[i] != chars2[i]))
{
//Characters must be identical
result = false;
}
if (Char.IsDigit(chars1[i]) != Char.IsDigit(chars2[i]))
result = false;
}
return result;
}
Consider using Char.GetUnicodeCategory
You can write a helper class for this task:
public class Mask
{
public Mask(string originalString)
{
OriginalString = originalString;
CharCategories = originalString.Select(Char.GetUnicodeCategory).ToList();
}
public string OriginalString { get; private set; }
public IEnumerable<UnicodeCategory> CharCategories { get; private set; }
public bool HasSameCharCategories(Mask other)
{
//null checks
return CharCategories.SequenceEqual(other.CharCategories);
}
}
Use as
Mask mask1 = new Mask("ab12c3");
Mask mask2 = new Mask("ds124d");
MessageBox.Show(mask1.HasSameCharCategories(mask2).ToString());
I don't know C# syntax but here is a pseudo code:
split the strings on ''
sort the 2 arrays
join each arrays with ''
compare the 2 strings
A general-purpose solution with LINQ can be achieved quite easily. The idea is:
Sort the two strings (reordering the characters).
Compare each sorted string as a character sequence using SequenceEquals.
This scheme enables a short, graceful and configurable solution, for example:
// We will be using this in SequenceEquals
class MyComparer : IEqualityComparer<char>
{
public bool Equals(char x, char y)
{
return x.Equals(y);
}
public int GetHashCode(char obj)
{
return obj.GetHashCode();
}
}
// and then:
var s1 = "ABC0102";
var s2 = "AC201B0";
Func<char, double> orderFunction = char.GetNumericValue;
var comparer = new MyComparer();
var result = s1.OrderBy(orderFunction).SequenceEqual(s2.OrderBy(orderFunction), comparer);
Console.WriteLine("result = " + result);
As you can see, it's all in 3 lines of code (not counting the comparer class). It's also very very easily configurable.
The code as it stands checks if s1 is a permutation of s2.
Do you want to check if s1 has the same number and kind of characters with s2, but not necessarily the same characters (e.g. "ABC" to be equal to "ABB")? No problem, change MyComparer.Equals to return char.GetUnicodeCategory(x).Equals(char.GetUnicodeCategory(y));.
By changing the values of orderFunction and comparer you can configure a multitude of other comparison options.
And finally, since I don't find it very elegant to define a MyComparer class just to enable this scenario, you can also use the technique described in this question:
Wrap a delegate in an IEqualityComparer
to define your comparer as an inline lambda. This would result in a configurable solution contained in 2-3 lines of code.