C# PerformanceCounter Class causes Handle Leak - c#

I have an application developed with .NET 4.0. This application keeps track on some Custom Performance Counter and display to the user. Recently i found that there's handle leak in the application. The 2 types of handles are Mutant and PcwObject.
I followed this page (http://blogs.technet.com/b/yongrhee/archive/2011/12/19/how-to-troubleshoot-a-handle-leak.aspx) and got the following stack trace:
Handle = 0x0000000000003760 - OPEN
Thread ID = 0x00000000000073d0, Process ID = 0x0000000000005fdc
0x0000000077c41cea: ntdll!NtCreateMutant+0x000000000000000a
0x000007fefde08bf7: KERNELBASE!CreateMutexExW+0x000000000000004f
0x000007fefde14460: KERNELBASE!CreateMutexExA+0x0000000000000038
0x000007feff6bbcf6: ADVAPI32!PerflibciOpenLocalQueryHandle+0x0000000000000116
0x000007feff6a5a86: ADVAPI32!PerflibciQueryV2Provider+0x000000000000020d
0x000007feff68926d: ADVAPI32!QueryExtensibleData+0x00000000000004a2
0x000007feff6898e4: ADVAPI32!alloca_probe+0x00000000000051b2
0x00000000779d4087: KERNEL32!TlsGetValue+0x000000000000fbb8
0x00000000779e4b52: KERNEL32!RegQueryValueExW+0x00000000000000f2
0x000007feff68c2ed: ADVAPI32!RegQueryValueExWStub+0x000000000000001d
0x000007fef99b17c7: clr!DoNDirectCall__PatchGetThreadCall+0x000000000000007b
0x000007fef8a38422: mscorlib_ni+0x0000000000428422
0x000007fef89948f1: mscorlib_ni+0x00000000003848f1
0x000007fef899392e: mscorlib_ni+0x000000000038392e
and
Handle = 0x0000000000003998 - OPEN
Thread ID = 0x0000000000002808, Process ID = 0x0000000000005fdc
0x0000000077c4138a: ntdll!NtDeviceIoControlFile+0x000000000000000a
0x000007fefce214a3: pcwum!PcwpSendIoctl+0x00000000000000f3
0x000007fefce21962: pcwum!PcwCreateNotifier+0x000000000000003e
0x000007feff6abf53: ADVAPI32!PerfpCreateProvider+0x00000000000000d3
0x000007feff6ddb77: ADVAPI32!PerflibciLocalValidateCounters+0x0000000000000167
0x000007feff6a5ced: ADVAPI32!PerflibciQueryV2Provider+0x0000000000000478
0x000007feff68926d: ADVAPI32!QueryExtensibleData+0x00000000000004a2
0x000007feff6898e4: ADVAPI32!alloca_probe+0x00000000000051b2
0x00000000779d4087: KERNEL32!TlsGetValue+0x000000000000fbb8
I also opened Process Explorer to monitor the handle state. According to my observation, the above 2 handles (3760 and 3998) keep alive for over half an hour and not yet destroyed. The handles count is increased by ~1000 within 2 hours. half of them are Mutant and the other half are PcwObject.
I suspect it is related to PerformanceCounter coz i know the PerformanceCounter Class grep data from Registry and i find PerflibciQuery and RegQueryValue in the stack trace.
I've search through the Internet but seems no luck. Does anyone have any idea about this?
Thanks
Additional Information
I tested those Performance Counters one by one and find that these handles were leaked when getting this counter : PerformanceCounter("HTTP Service Request Queues", "CurrentQueueSize", "ABC")
My Code is like this :
private PerformanceCounter counter;
private void Detect()
{
/*
Do sth
*/
try
{
if (null == counter) counter = new PerformanceCounter("HTTP Service Request Queues", "CurrentQueueSize", "ABC");
long rawValue = counter.RawValue;
if (0 < rawValue)
WriteLog("ABC CurrentQueueSize: {0}", rawValue);
}
catch(Exception e)
{
WriteLog("Fail to get ABC counter. {0}", e);
}
}
counter is a member variable and I'm very sure that it is disposed when this class is destroyed. So i don't know why it leaks the handles.

What i noticed recently was a handle leak if you ask the counter for a value in a different thread. If you create a new thread, ask the performance counter for next value it will create bunch of handled that dont get cleaned up even if you dispose the counter.

I already found the cause few days ago but forgot to post it. Sorry about this.
Actually this is a resource leak caused by using v2 PerformanceCounter (http://support.microsoft.com/kb/2734909). Then I followed instruction in this page (http://msdn.microsoft.com/en-us/library/aa392740(v=vs.85).aspx) and found that "HTTP Service Request Queues" is a v2 counters provider.
So that's the cause! Done!

Related

Threads increase abnormally in linux service

I have a service that runs in linux under SystemD but gets compiled and debugged in VS22 under Windows.
The service is mainly a proxy to a MariaDB10 database shaped as a BackgroundWorker serving clients via SignalR.
If I run it in relase mode on Windows, the number of logical threads remains in a reasonable value (20-25 approx). See pic below.
Under linux, after few minutes (i cannot give you more insight unfortuantely... i still have to figure out what could be changing) the number of threads start increasing constantly every second.
see pic here arriving already to more than 100 and still counting:
Reading current logical threads increasing / thread stack is leaking i got confirmed that the CLR is allowing new threads if the others are not completing, but there is currently no change in the code when moving from Windows to Linux.
This is the HostBuilder with the call to SystemD
 public static IHostBuilder CreateWebHostBuilder(string[] args)
        {
            string curDir = MondayConfiguration.DefineCurrentDir();
            IConfigurationRoot config = new ConfigurationBuilder()
                // .SetBasePath(Directory.GetCurrentDirectory())
                .SetBasePath(curDir)
                .AddJsonFile("servicelocationoptions.json", optional: false, reloadOnChange: true)
#if DEBUG
                   .AddJsonFile("appSettings.Debug.json")
#else
                   .AddJsonFile("appSettings.json")
#endif
                   .Build();
            return Host.CreateDefaultBuilder(args)
                .UseContentRoot(curDir)
                .ConfigureAppConfiguration((_, configuration) =>
                {
                    configuration
                    .AddIniFile("appSettings.ini", optional: true, reloadOnChange: true)
#if DEBUG
                   .AddJsonFile("appSettings.Debug.json")
#else
                   .AddJsonFile("appSettings.json")
#endif
                    .AddJsonFile("servicelocationoptions.json", optional: false, reloadOnChange: true);
                })
                .UseSerilog((_, services, configuration) => configuration
                    .ReadFrom.Configuration(config, sectionName: "AppLog")// (context.Configuration)
                    .ReadFrom.Services(services)
                    .Enrich.FromLogContext()
                    .WriteTo.Console())
                // .UseSerilog(MondayConfiguration.Logger)
                .ConfigureServices((hostContext, services) =>
                {
                    services
                    .Configure<ServiceLocationOptions>(hostContext.Configuration.GetSection(key: nameof(ServiceLocationOptions)))
                    .Configure<HostOptions>(opts => opts.ShutdownTimeout = TimeSpan.FromSeconds(30));
                })
                .ConfigureWebHostDefaults(webBuilder =>
                {
                    webBuilder.UseStartup<Startup>();
                    ServiceLocationOptions locationOptions = config.GetSection(nameof(ServiceLocationOptions)).Get<ServiceLocationOptions>();
                    string url = locationOptions.HttpBase + "*:" + locationOptions.Port;
                    webBuilder.UseUrls(url);
                })
                .UseSystemd();
        }
In the meantime I am trying to trace all the Monitor.Enter() that I use to render serial the API endpoints that touch the state of the service and the inner structures, but in Windows seems all ok.
I am starting wondering if the issue in the call to SystemD. I would like to know what is really involved in a call to UseSystemD() but there is not so much documentation around.
I did just find [https://devblogs.microsoft.com/dotnet/net-core-and-systemd/] (https://devblogs.microsoft.com/dotnet/net-core-and-systemd/) by Glenn Condron and few quick notes on MSDN.
EDIT 1: To debug further I created a class to scan the threadpool using ClrMd.
My main service has an heartbeat (weird it is called Ping) as follows (not the add to processTracker.Scan()):
private async Task Ping()
{
await _containerServer.SyslogQueue.Writer.WriteAsync((
LogLevel.Information,
$"Monday Service active at: {DateTime.UtcNow.ToLocalTime()}"));
string processMessage = ProcessTracker.Scan();
await _containerServer.SyslogQueue.Writer.WriteAsync((LogLevel.Information, processMessage));
_logger.DebugInfo()
.Information("Monday Service active at: {Now}", DateTime.UtcNow.ToLocalTime());
}
where the processTrackes id constructed like this:
public static class ProcessTracker
{
static ProcessTracker()
{
}
public static string Scan()
{
// see https://stackoverflow.com/questions/31633541/clrmd-throws-exception-when-creating-runtime/31745689#31745689
StringBuilder sb = new();
string answer = $"Active Threads{Environment.NewLine}";
// Create the data target. This tells us the versions of CLR loaded in the target process.
int countThread = 0;
var pid = Process.GetCurrentProcess().Id;
using (var dataTarget = DataTarget.AttachToProcess(pid, 5000, AttachFlag.Passive))
{
// Note I just take the first version of CLR in the process. You can loop over
// every loaded CLR to handle the SxS case where both desktop CLR and .Net Core
// are loaded in the process.
ClrInfo version = dataTarget.ClrVersions[0];
var runtime = version.CreateRuntime();
// Walk each thread in the process.
foreach (ClrThread thread in runtime.Threads)
{
try
{
sb = new();
// The ClrRuntime.Threads will also report threads which have recently
// died, but their underlying data structures have not yet been cleaned
// up. This can potentially be useful in debugging (!threads displays
// this information with XXX displayed for their OS thread id). You
// cannot walk the stack of these threads though, so we skip them here.
if (!thread.IsAlive)
continue;
sb.Append($"Thread {thread.OSThreadId:X}:");
countThread++;
// Each thread tracks a "last thrown exception". This is the exception
// object which !threads prints. If that exception object is present, we
// will display some basic exception data here. Note that you can get
// the stack trace of the exception with ClrHeapException.StackTrace (we
// don't do that here).
ClrException? currException = thread.CurrentException;
if (currException is ClrException ex)
sb.AppendLine($"Exception: {ex.Address:X} ({ex.Type.Name}), HRESULT={ex.HResult:X}");
// Walk the stack of the thread and print output similar to !ClrStack.
sb.AppendLine(" ------> Managed Call stack:");
var collection = thread.EnumerateStackTrace().ToList();
foreach (ClrStackFrame frame in collection)
{
// Note that CLRStackFrame currently only has three pieces of data:
// stack pointer, instruction pointer, and frame name (which comes
// from ToString). Future versions of this API will allow you to get
// the type/function/module of the method (instead of just the
// name). This is not yet implemented.
sb.AppendLine($" {frame}");
}
}
catch
{
//skip to the next
}
finally
{
answer += sb.ToString();
}
}
}
answer += $"{Environment.NewLine} Total thread listed: {countThread}";
return answer;
}
}
All fine, in Windows it prints a lot of nice information in some kind of tree textual view.
The point is that somewhere it requires Kernel32.dll and in linux that is not available. Can someone give hints on this? The service is published natively without .NET infrastructure, in release mode, arch linux64, single file.
thanks a lot
Alex
I found a way to skip the whole logging of what I needed from a simple debug session.
I was not aware I could attach also to a Systemd process remotely.
Just followed https://learn.microsoft.com/en-us/visualstudio/debugger/remote-debugging-dotnet-core-linux-with-ssh?view=vs-2022 for a quick step by step guide.
The only preresquisites are to let the service be in debug mode and have the NET runtime installed on the host, but that's really all.
Sorry for not having known this earlier.
Alex

How do I properly dispose and free the memory used for V8.Net.V8Engine instances?

I'm running into an issue when using my V8Engine instance, it appears to have a small memory leak, and disposing of it, as well as forcing the garbage collection doesn't seem to help much. It will eventually throw an AccessViolationException on V8Enging local_m_negine = new V8Engine() claiming a Fatal error in heap setup, Allocation failed - process out of memory and Attempted to read or write protected memory. This is often an indication that other memory is corrupt.
Monitoring the program's memory usage through Task manager whilst running confirms that it is leaking memory, around 1000 KB every couple of seconds I think. I suspect it is the variables being declared within the executed script not being collected, or something to do with the GlobalObject.SetProperty method. Calling V8Engine.ForceV8GarbageCollection(), V8Engine.Dispose() and even GC.WaitForPendingFinalizers() & GC.Collect() doesn't prevent this memory being leaked (Although it is worth noting that it seems to leak it slower with these commands in place, and I know I shouldn't use GC but it was there as a last resort to see if it would fix the issue.)
A tangential issue that could also provide a solution is the inability to clear the execution context for V8Engine. I am required to dispose and re-instantiate the engine for each script, which I believe is where the memory leak is happening, otherwise I run into issues where variables have already been declared, causing V8Engine.Execute() to throw an exception saying such.
I can definitely confirm that the memory leak is something to do with the V8Engine Implementation, as running the older version of this program that uses Microsoft.JScript has no such memory leak, and the memory used remains consistent.
The affected code is as follows;
//Create the V8Engine and dispose when done
using (V8Engine local_m_engine = new V8Engine())
{
//Set the Lookup instance as a global object so that the JS code in the V8.Net wrapper can access it
local_m_engine.GlobalObject.SetProperty("Lookup", m_lookup, null, true, ScriptMemberSecurity.ReadOnly);
//Execute the script
result = local_m_engine.Execute(script);
//Please just clear everything I can't cope.
local_m_engine.ForceV8GarbageCollection();
local_m_engine.GlobalObject.Dispose();
}
EDIT:
Not sure how useful this will be but I've been running some memory profiling tools on it and have learnt that after running an isolated version of the original code, My software ends up with a large amount of instances of IndexedObjectList's full of null values (see here: http://imgur.com/a/bll5K). It appears to have one instance of each class for each V8Engine instance that is made, but they aren't being disposed or freed. I cant help but feel like I'm missing a command or something here.
The code I'm using to test and recreate the memory leak that the above implementation causes is as follows:
using System;
using V8.Net;
namespace V8DotNetMemoryTest
{
class Program
{
static void Main(string[] args)
{
string script = #" var math1 = 5;
var math2 = 10;
result = 5 + 10;";
Handle result;
int i = 0;
V8Engine local_m_engine;
while (true)
{
//Create the V8Engine and dispose when done
local_m_engine = new V8Engine();
//Set the Lookup instance as a global object so that the JS code in the V8.Net wrapper can access it
//local_m_engine.GlobalObject.SetProperty("Lookup", m_lookup, null, true, ScriptMemberSecurity.ReadOnly);
//Execute the script
result = local_m_engine.Execute(script);
Console.WriteLine(i++);
result.ReleaseManagedObject();
result.Dispose();
local_m_engine.Dispose();
GC.WaitForPendingFinalizers();
GC.Collect();
local_m_engine = null;
}
}
}
}
Sorry, I had no idea this question existed. Make sure to use the v8.net tag.
Your problem is this line:
result = local_m_engine.Execute(script);
The result returned is never disposed. ;) You are responsible for returned handles. Those handles are struct values, not class objects.
You could also do using (result = local_m_engine.Execute(script)) { ... }
There is a new version released. I am finally resurrecting this project again as I will need it for the FlowScript VPL project - and it now supports .Net Standard as well for cross-platform support!

ObjectDisposedException: Safe handle has been closed

So this is a rather small question with a big explanation. As is noted by the title I am getting an unhandled exception telling me my Safe handle has been closed. What I'll probably have to do is edit this post a few times with more and more code to help me diagnose what the problem is.
I'm using POS for .NET to make a Service Object for my RFID and MSR device. Although my devices are the same, I have 2 different Virtual COM Port chips that communicate to those devices. One by Silicon labs, the other by FTDI. I wanted to use the plug and play features with POS for .NET so I gave it both my Hardware ID's. Because it is plug and play I have the full hardware path available to me which I can then create a SafeFileHandle using a call to PInvoke and using that SafeFileHandle I create a FileStream. The FTDI chip doesn't let me talk to the devices directly like that so I have to get the friendly name of the device then use mutex to pull out the COM port then create a SerialPort instance. That step works fine and great. As a FYI I have tried to use the Friendly name of both chips to get the COM port and the Silicon Labs one (for some strange reason) doesn't get listed using SetupAPI.GetDeviceDetails using the Ports GUID. I'm not sure on that one since in Device Manager the Silicon labs Device Class Guid is the Ports GUID.
Well since both the SerialPort and the FileStream have a Stream object I decided to use that to read and write to that port. The problem with that is if I send a RFID command to the MSR device the MSR device doesn't respond back with anything. So if I use this code int fromReader = ReaderStream.ReadByte(); my thread is blocked. It's a blocking call and requires a minimum of 1 byte to proceed. So I looked around and it appears the only solution is to use a separate thread and set a timeout. If the timeout happens then abort the thread.
Thread t = new Thread(new ThreadStart(ReadFromStream));
t.Start();
if (!t.Join(timeout))
{
t.Abort();
}
(t.Abort has been surrounded with a try/catch to no avail, since it didn't fix the problem I removed it)
ReadFromStream is Abstract method in RFID Device. Here is one of the implementations
protected override void ReadFromStream()
{
var commandLength = USN3170Constants.MIN_RESPONSE_LENGTH;
var response = new System.Collections.Generic.List<byte>(USN3170Constants.MIN_RESPONSE_LENGTH);
for (int i = 0; i <= commandLength; i++)
{
int fromReader = ReaderStream.ReadByte();
if (fromReader == -1) break; //at end of stream
response.Add((byte)fromReader);
if (response.Count > USN3170Constants.DATA_LENGTH_INDEX && response[USN3170Constants.DATA_LENGTH_INDEX] > 0)
{
commandLength = response[USN3170Constants.DATA_LENGTH_INDEX] + 3;
}
}
streamBuffer = response.ToArray();
}
(int fromReader = ReaderStream.ReadByte(); was surrounded with a try/catch. Only thing it caught was the aborted thread exception, so I took it out)
The above code is where I suspect the problem lies. The strange thing is, though, is that I have a unit test which I feel mimics rather well the Microsoft Test App.
(FYI QUADPORT is the FTDI chipset)
PosExplorer posExplorer;
DeviceCollection smartCardRWs;
[Test]
public void TestQuadPortOpen()
{
posExplorer = new PosExplorer();
smartCardRWs = posExplorer.GetDevices(DeviceType.SmartCardRW, DeviceCompatibilities.CompatibilityLevel1);
//if using quadport one item is the MSR and the other is the RFID
//because of that one of them will fail. Currently the first Device in the collection is the the RFID, and the second is MSR
Assert.GreaterOrEqual(smartCardRWs.Count, 2);
//Hardware Id: QUADPORT\QUAD_SERIAL_INTERFACE
foreach(DeviceInfo item in smartCardRWs)
{
Assert.AreEqual("QUADPORT\\QUAD_SERIAL_INTERFACE", item.HardwareId);
}
SmartCardRW rfidDevice = (SmartCardRW)posExplorer.CreateInstance(smartCardRWs[0]);
SmartCardRW msrDevice = (SmartCardRW)posExplorer.CreateInstance(smartCardRWs[1]);
rfidDevice.Open();
Assert.AreNotEqual(ControlState.Closed, rfidDevice.State);
rfidDevice.Close();
try
{
msrDevice.Open();
Assert.Fail("MSR Device is not a RFID Device");
}
catch
{
Assert.AreEqual(ControlState.Closed, msrDevice.State);
}
rfidDevice = null;
msrDevice = null;
}
When I run that test I do not get the SafeFileHandle exception. In fact the test passes.
So I am at a loss as to how to track down this bug. Since I'll be using this Service Object in a different program that I am also creating I'll probably end up using this code from this test in that program. However I feel that the Microsoft Test App is more or less the "Golden Standard". Is it really... probably not. But it does work good for my purposes, SO I feel it is a problem with my code and not theirs.
Any tricks on how I can narrow this down? FYI I've tried using the debugger but walking the Open Code the error does not occur. I also walked the Update Status Timer and it also does not throw the error. Once I hit continue then I'll get the exception. I turned of Just My Code and Loaded Symbols and it tells me "Source Information is missing from teh debug information for this module"
This problem (and in particular the reference to a SerialPort instance) sounds suspiciously like the problem documented at http://connect.microsoft.com/VisualStudio/feedback/details/140018/serialport-crashes-after-disconnect-of-usb-com-port.
As I understand it, in the case of a non-permanent SerialPort (like one associated with a USB device, for example) when the port "goes away" unexpectedly the underlying Stream associated with it gets disposed. If there is an active read or write operation on the port at the time a subsequent call to SerialPort.Close can lead to the exception you mention, however the exception is occurring in Microsoft's code running on a different thread and cannot be caught from within your code. (It will still be seen by any "last chance" exception handler you have bound to the UnhandledException event on the AppDomain.)
There seem to be two basic workaround styles in the linked document. In both instances, after opening the port you store a reference to the BaseStream instance for the open port. One workaround then suppresses garbage collection on that base stream. The other explicitly calls Close on the base stream, capturing any exceptions thrown during that operation, before calling Close on the SerialPort.
EDIT: For what it's worth, under the .NET framework V4.5, it appears that none of the documented workarounds on the Microsoft Connect site fully resolve the problem although they may be reducing the frequency with which it occurs. :-(
I had the same error when I used a thread to read from a SerialPort. Calling Interrupt on the thread occasionally caused the uncatchable ObjectDisposedException. After hours of debugging and carefully reading this:
https://blogs.msdn.microsoft.com/bclteam/2006/10/10/top-5-serialport-tips-kim-hamilton/
I realized that the problem is just this:
NET 2.0 (and above) isn’t letting you get away with some things, such as attempting to cancel a SerialPort read by interrupting the thread accessing the SerialPort.
So before you call Thread.Interrupt() you have to close the COM... This will cause a catchable exception on the ReadByte operation.
Or you may use the ReadTimeout property on the SerialPort to avoid using a thread just to have a timeout.
I would like to post my case in which I had a similar issue trying to read from a serial port (virtual com driven by a Moxa RS232 to ethernet).
Since I did have no chance to catch the ObjectDisposedException, the only solution was to increase the ReadTimeout property which was originally set to -1 (continuous reading).
Setting the ReadTimeout to 100 millis solved this issue in my case.
EDIT
It is not the definitive solution: it can happen that if you close the application during a read attempt you can get the same uncatchable exception.
My final solution is to kill the process of the application directly in the FormClosing event :
private void MyForm_FormClosing(object sender, FormClosingEventArgs e)
{
Process p = Process.GetCurrentProcess();
p.Kill();
}
Please take a look at this:
https://github.com/jcurl/SerialPortStream
I replaced System.IO.Ports with RJPC.IO.Ports, fixed up a couple parameter differences in the initialization, and all the problems went away with this issue.

ASP.NET: Firing batch jobs

My application could have up to roughly 100 requests for a batch job within a few milliseconds but in actuality, these job requests are being masked as one job request.
To fix this issue so that only one job request is just not feasible at the moment.
A workaround that I have thought is to program my application to fulfill only 1 batch job every x milliseconds, in this case I was thinking of 200 milliseconds, and ignore any other batch job that may come in within those 200 milliseconds or when my batch job have completed. After those 200 milliseconds are up or when the batch job is completed, my application will wait and accept 1 job request from that time on and it will not process any requests that may have been ignored before. Once my application accepts another job requests, it will repeat the cycle above.
What's the best way of doing this using .Net 4.0? Are there any boiler plate code that I can simply follow as a guide?
Update
Sorry for being unclear. I have added more details about my scenario. Also I just realized that my proposed workaround above will not work. Sorry guys, lol. Here's some background information.
I have an application that builds an index using files in a specified directory. When a file is added, deleted or modified in this directory, my application listens for these events using a FileSystemWatcher and re-indexes these files. The problem is that around 100 files can be added, deleted or modified by an external process and they occur very quickly, ie: within a few milliseconds. My end goal is to re-index these files after the last file change have occurred by the external process. The best solution is to modify the external process to signal my application when it has finished modifying the files I'm listening to but that's not feasible at the moment. Thus, I have to create a workaround.
A workaround that may solve my problem is to wait for the first file change. When the first file change have occurred, wait 200 milliseconds for any other subsequent file changes. Why 200 milliseconds? Because I'm hoping and confident that the external process can perform its file changes within 200 milliseconds. Once my application have waited for 200 milliseconds, I would like it to start a task that will re-index the files and go through another cycle of listening to a file change.
What's the best way of doing this?
Again, sorry for the confusion.
This question is a bit too high level to guess at.
My guess is your application is run as a service, you have your requests come into your application and arrive in a queue to be processed. And every 200 ms, you wake the queue and pop and item off for processing.
I'm confused about the "masked as one job request". Since you mentioned you will "ignore any other batch job", my guess is you haven't arranged your code to accept the incoming requests in a queue.
Regardless, you will generally always have one application process running (your service) and if you choose you could spawn a new thread for each item you process in the queue. You can monitor how much cpu/memory utilization this required and adjust the firing time (200ms) accordingly.
I may not be accurately understanding the problem, but my recommendation is to use the singleton pattern to work around this issue.
With the singleton approach, you can implement a lock on an object (the access method could potentially be something along the lines of BatchProcessor::GetBatchResults) that would then lock all requests to the batch job results object. Once the batch has finished, the lock will be released, and the underlying object, will have the results of the batch job available.
Please keep in mind that this is a "work around". There may be a better solution that involves looking into and changing the underlying business logic that causes multiple requests to come in for a job that's processing on demand.
Update:
Here is a link for information regarding Singleton (includes code examples): http://msdn.microsoft.com/en-us/library/ff650316.aspx
It is my understanding that the poster has some sort of an application that sits and waits for incoming requests to perform a batch job. The problem that he is receiving multiple requests within a short period of time that should actually have come in as just a single request. And, unfortunately, he is not able to solve this problem.
So, his solution is to assume that all requests received within a 200 ms timespan are the same, and to only process these once. My concern with this would be whether this assumption is correct or not? This entirely depends on the sending systems and the environment in which this is being used. The general idea to be able to do this would be to update a lastReceived date/time when a request is processed. Then when a new request comes in, compare the current date/time to the lastReceived date/time and only process it if the difference is greater than 200 ms.
Other possible solutions:
You said you could not modify the sending application so only one job request was sent, but could you add additional information to it, for instance a unique identifier?
Could you store the parameters from the last job request and compare it with the next job request and only process them if they are different?
Based on your Update
Here is an example how you could wait 200ms using a Timer:
static Timer timer;
static int waitTime = 200; //in ms
static void Main(string[] args)
{
FileSystemWatcher fsw = new FileSystemWatcher();
fsw.Path = #"C:\temp\";
fsw.Created += new FileSystemEventHandler(fsw_Created);
fsw.EnableRaisingEvents = true;
Console.ReadLine();
}
static void fsw_Created(object sender, FileSystemEventArgs e)
{
DateTime currTime = DateTime.Now;
if (timer == null)
{
Console.WriteLine("Started # " + currTime);
timer = new Timer();
timer.Interval = waitTime;
timer.Elapsed += new ElapsedEventHandler(timer_Elapsed);
timer.Start();
}
else
{
Console.WriteLine("Ignored # " + currTime);
}
}
static void timer_Elapsed(object sender, ElapsedEventArgs e)
{
//Start task here
Console.WriteLine("Elapsed # " + DateTime.Now);
timer = null;
}

Performance Counter - System.InvalidOperationException: Category does not exist

I have following class that returns number of current Request per Second of IIS. I call RefreshCounters every minute in order to keep Requests per Second value refreshed (because it is average and if I keep it too long old value will influence result too much)... and when I need to display current RequestsPerSecond I call that property.
public class Counters
{
private static PerformanceCounter pcReqsPerSec;
private const string counterKey = "Requests_Sec";
public static object RequestsPerSecond
{
get
{
lock (counterKey)
{
if (pcReqsPerSec != null)
return pcReqsPerSec.NextValue().ToString("N2"); // EXCEPTION
else
return "0";
}
}
}
internal static string RefreshCounters()
{
lock (counterKey)
{
try
{
if (pcReqsPerSec != null)
{
pcReqsPerSec.Dispose();
pcReqsPerSec = null;
}
pcReqsPerSec = new PerformanceCounter("W3SVC_W3WP", "Requests / Sec", "_Total", true);
pcReqsPerSec.NextValue();
PerformanceCounter.CloseSharedResources();
return null;
}
catch (Exception ex)
{
return ex.ToString();
}
}
}
}
The problem is that following Exception is sometimes thrown:
System.InvalidOperationException: Category does not exist.
at System.Diagnostics.PerformanceCounterLib.GetCategorySample(String machine,\ String category)
at System.Diagnostics.PerformanceCounter.NextSample()
at System.Diagnostics.PerformanceCounter.NextValue()
at BidBop.Admin.PerfCounter.Counters.get_RequestsPerSecond() in [[[pcReqsPerSec.NextValue().ToString("N2");]]]
Am I not closing previous instances of PerformanceCounter properly? What am I doing wrong so that I end up with that exception sometimes?
EDIT:
And just for the record, I am hosting this class in IIS website (that is, of course, hosted in App Pool which has administrative privileges) and invoking methods from ASMX service. Site that uses Counter values (displays them) calls RefreshCounters every 1 minute and RequestsPerSecond every 5 seconds; RequestPerSecond are cached between calls.
I am calling RefreshCounters every 1 minute because values tend to become "stale" - too influenced by older values (that were actual 1 minute ago, for example).
Antenka has led you in a good direction here. You should not be disposing and re-creating the performance counter on every update/request for value. There is a cost for instantiating the performance counters and the first read can be inaccurate as indicated in the quote below. Also your lock() { ... } statements are very broad (they cover a lot of statements) and will be slow. Its better to have your locks as small as possible. I'm giving Antenka a voteup for the quality reference and good advice!
However, I think I can provide a better answer for you. I have a fair bit of experience with monitoring server performance and understand exactly what you need. One problem your code doesn't take into account is that whatever code is displaying your performance counter (.aspx, .asmx, console app, winform app, etc) could be requesting this statistic at any rate; it could be requested once every 10 seconds, maybe 5 times per second, you don't know and shouldn't care. So you need to separate the PerformanceCounter collection code from that does the monitoring from the code that actually reports the current Requests / Second value. And for performance reasons, I'm also going to show you how to setup the performance counter on first request and then keep it going until nobody has made any requests for 5 seconds, then close/dispose the PerformanceCounter properly.
public class RequestsPerSecondCollector
{
#region General Declaration
//Static Stuff for the polling timer
private static System.Threading.Timer pollingTimer;
private static int stateCounter = 0;
private static int lockTimerCounter = 0;
//Instance Stuff for our performance counter
private static System.Diagnostics.PerformanceCounter pcReqsPerSec;
private readonly static object threadLock = new object();
private static decimal CurrentRequestsPerSecondValue;
private static int LastRequestTicks;
#endregion
#region Singleton Implementation
/// <summary>
/// Static members are 'eagerly initialized', that is,
/// immediately when class is loaded for the first time.
/// .NET guarantees thread safety for static initialization.
/// </summary>
private static readonly RequestsPerSecondCollector _instance = new RequestsPerSecondCollector();
#endregion
#region Constructor/Finalizer
/// <summary>
/// Private constructor for static singleton instance construction, you won't be able to instantiate this class outside of itself.
/// </summary>
private RequestsPerSecondCollector()
{
LastRequestTicks = System.Environment.TickCount;
// Start things up by making the first request.
GetRequestsPerSecond();
}
#endregion
#region Getter for current requests per second measure
public static decimal GetRequestsPerSecond()
{
if (pollingTimer == null)
{
Console.WriteLine("Starting Poll Timer");
// Let's check the performance counter every 1 second, and don't do the first time until after 1 second.
pollingTimer = new System.Threading.Timer(OnTimerCallback, null, 1000, 1000);
// The first read from a performance counter is notoriously inaccurate, so
OnTimerCallback(null);
}
LastRequestTicks = System.Environment.TickCount;
lock (threadLock)
{
return CurrentRequestsPerSecondValue;
}
}
#endregion
#region Polling Timer
static void OnTimerCallback(object state)
{
if (System.Threading.Interlocked.CompareExchange(ref lockTimerCounter, 1, 0) == 0)
{
if (pcReqsPerSec == null)
pcReqsPerSec = new System.Diagnostics.PerformanceCounter("W3SVC_W3WP", "Requests / Sec", "_Total", true);
if (pcReqsPerSec != null)
{
try
{
lock (threadLock)
{
CurrentRequestsPerSecondValue = Convert.ToDecimal(pcReqsPerSec.NextValue().ToString("N2"));
}
}
catch (Exception) {
// We had problem, just get rid of the performance counter and we'll rebuild it next revision
if (pcReqsPerSec != null)
{
pcReqsPerSec.Close();
pcReqsPerSec.Dispose();
pcReqsPerSec = null;
}
}
}
stateCounter++;
//Check every 5 seconds or so if anybody is still monitoring the server PerformanceCounter, if not shut down our PerformanceCounter
if (stateCounter % 5 == 0)
{
if (System.Environment.TickCount - LastRequestTicks > 5000)
{
Console.WriteLine("Stopping Poll Timer");
pollingTimer.Dispose();
pollingTimer = null;
if (pcReqsPerSec != null)
{
pcReqsPerSec.Close();
pcReqsPerSec.Dispose();
pcReqsPerSec = null;
}
}
}
System.Threading.Interlocked.Add(ref lockTimerCounter, -1);
}
}
#endregion
}
Ok now for some explanation.
First you'll notice this class is designed to be a static singleton.
You can't load multiple copies of it, it has a private constructor
and and eagerly initialized internal instance of itself. This makes
sure you don't accidentally create multiple copies of the same
PerformanceCounter.
Next you'll notice in the private constructor (this will only run
once when the class is first accessed) we create both the
PerformanceCounter and a timer which will be used to poll the
PerformanceCounter.
The Timer's callback method will create the PerformanceCounter if
needed and get its next value is available. Also every 5 iterations
we're going to see how long its been since your last request for the
PerformanceCounter's value. If it's been more than 5 seconds, we'll
shutdown the polling timer as its unneeded at the moment. We can
always start it up again later if we need it again.
Now we have a static method called GetRequestsPerSecond() for you to
call which will return the current value of the RequestsPerSecond
PerformanceCounter.
The benefits of this implementation are that you only create the performance counter once and then keep using until you are finished with it. Its easy to use because you simple call RequestsPerSecondCollector.GetRequestsPerSecond() from wherever you need it (.aspx, .asmx, console app, winforms app, etc). There will always be only one PerformanceCounter and it will always be polled at exactly 1 times per second regardless of how quickly you call RequestsPerSecondCollector.GetRequestsPerSecond(). It will also automatically close and dispose of the PerformanceCounter if you haven't requested its value in more than 5 seconds. Of course you can adjust both the timer interval and the timeout milliseconds to suit your needs. You could poll faster and timeout in say 60 seconds instead of 5. I chose 5 seconds as it proves that it works very quickly while debugging in visual studio. Once you test it and know it works, you might want a longer timeout.
Hopefully this helps you not only better use PerformanceCounters, but also feel safe to reuse this class which is separate from whatever you want to display the statistics in. Reusable code is always a plus!
EDIT: As a follow up question, what if you want to performance some cleanup or babysitting task every 60 seconds while this performance counter is running? Well we already have the timer running every 1 second and a variable tracking our loop iterations called stateCounter which is incremented on each timer callback. So you could add in some code like this:
// Every 60 seconds I want to close/dispose my PerformanceCounter
if (stateCounter % 60 == 0)
{
if (pcReqsPerSec != null)
{
pcReqsPerSec.Close();
pcReqsPerSec.Dispose();
pcReqsPerSec = null;
}
}
I should point out that this performance counter in the example should not "go stale". I believe 'Request / Sec" should be an average and not a moving average statistic. But this sample just illustrates a way you could do any type of cleanup or "babysitting" of your PerformanceCounter on a regular time interval. In this case we are closing and disposing the performance counter which will cause it to be recreated on next timer callback. You could modify this for your use case and according the specific PerformanceCounter you are using. Most people reading this question/answer should not need to do this. Check the documentation for your desired PerformanceCounter to see if it is a continuous count, an average, a moving average, etc... and adjust your implementation appropriately.
I don't know, if this passes you .. I've read article PerformanceCounter.NextValue Method
And there was a comment:
// If the category does not exist, create the category and exit.
// Performance counters should not be created and immediately used.
// There is a latency time to enable the counters, they should be created
// prior to executing the application that uses the counters.
// Execute this sample a second time to use the category.
So, I have a question, which can lead to answer: isn't call to a RequestsPerSecond method happends too early?
Also, I would suggest you to to try check if the Category doesn't exists and log the info somewhere, so we can analyze it and determine which conditions we have and how often that happends.
I just solved this type of error or exception with:
Using,
new PerformanceCounter("Processor Information", "% Processor Time", "_Total");
Instead of,
new PerformanceCounter("Processor", "% Processor Time", "_Total");
I had an issue retrieving requests per second on IIS using code similar to the following
var pc = new PerformanceCounter();
pc.CategoryName = #"W3SVC_W3WP";
pc.InstanceName = #"_Total";
pc.CounterName = #"Requests / Sec";
Console.WriteLine(pc.NextValue());
This would sometimes throw InvalidOperationException and I was able to reproduce the exception by restarting IIS. If I run with a non warmed up IIS, e.g. after a laptop reboot or IIS restart, then I get this exception. Hit the website first, make any http request beforehand, and wait a second or two and I don't get the exception. This smells like the performance counters are cached,and when Idle they get dumped, and take a while to re-cache? (or similar).
Update1: Initially when I manually browse to the website and warm it up, it solves the problem. I've tried programmatically warming up the server with new WebClient().DownloadString(); Thread.Sleep() up to 3000ms and this has not worked? So my results of manually warming up server, might somehow be a false positive. I'm leaving my answer here, because it might be the cause, (i.e. manual warming up), and maybe someone else can elaborate further?
Update2: Ah, ok, here are some unit tests that summarises some learning from further experimenting I did yesterday. (There's not a lot on google on this subject btw.)
As far as I can reason, the following statements might be true; (and I submit the unit tests underneath as evidence.) I may have misinterpreted the results, so please double check ;-D
Create a performance counter and calling getValue before the category exists, e.g. querying an IIS counter, while IIS is cold and no process running, will throw InvalidOperation exception "category does not exist". (I assume this is true for all counters, and not just IIS.)
From within a Visual Studio unit test, once your counter throws an exception, if you subsequently warm up the server after the first exception, and create a new PerformanceCounter and query again, it will still throw an exception! (this one was a surprise, I assume this is because of some singleton action. My apologies I have not had enough time to decompile the sources to investigate further before posting this reply.)
In 2 above, if you mark the unit test with [STAThread] then I was able to create a new PerformanceCounter after one has failed. (This might have something to do with Performance counter possibly being singletons? Needs further testing.)
No pause was required for me before creating counter and using it, despite some warnings in MSDN same code documentation, other than the time it takes to create a performance counter itself before calling NextValue().In my case, to warm up the counter and bring the "category" into existance, was for me to fire one shot across the bow of IIS, i.e. make a single GET request, and viola, no longer get "InvalidOperationException", and this seems to be a reliable fix for me, for now. At least when querying IIS performance counters.
CreatingPerformanceCounterBeforeWarmingUpServerThrowsException
[Test, Ignore("Run manually AFTER restarting IIS with 'iisreset' at cmd prompt.")]
public void CreatingPerformanceCounterBeforeWarmingUpServerThrowsException()
{
Console.WriteLine("Given a webserver that is cold");
Console.WriteLine("When I create a performance counter and read next value");
using (var pc1 = new PerformanceCounter())
{
pc1.CategoryName = #"W3SVC_W3WP";
pc1.InstanceName = #"_Total";
pc1.CounterName = #"Requests / Sec";
Action action1 = () => pc1.NextValue();
Console.WriteLine("Then InvalidOperationException will be thrown");
action1.ShouldThrow<InvalidOperationException>();
}
}
[Test, Ignore("Run manually AFTER restarting IIS with 'iisreset' at cmd prompt.")]
public void CreatingPerformanceCounterAfterWarmingUpServerDoesNotThrowException()
{
Console.WriteLine("Given a webserver that has been Warmed up");
using (var client = new WebClient())
{
client.DownloadString("http://localhost:8082/small1.json");
}
Console.WriteLine("When I create a performance counter and read next value");
using (var pc2 = new PerformanceCounter())
{
pc2.CategoryName = #"W3SVC_W3WP";
pc2.InstanceName = #"_Total";
pc2.CounterName = #"Requests / Sec";
float? result = null;
Action action2 = () => result = pc2.NextValue();
Console.WriteLine("Then InvalidOperationException will not be thrown");
action2.ShouldNotThrow();
Console.WriteLine("And the counter value will be returned");
result.HasValue.Should().BeTrue();
}
}
Just out of curiousity, what do you have set for properties in Visual Studio? In VS go to Project Properties, Build, Platform target and change it to AnyCPU. I have seen it before where Performance Counters aren't always retrieved when it is set to x86, and changing it to AnyCPU could fix it.

Categories