C# Generic Class field possible - c#

I am new to C# (Java developer), I want to have a class field that is a generic list, actually it is a dictionary of lists:
protected IDictionary<String, IList<Object>> filters;
I have code that sets
public void SetFilters(String key, params Object[] values) {
if (key == null || values == null) {
throw new ArgumentNullException("Must have filter name and values.");
}
if (filters == null) filters = new Dictionary<String, IList<Object>>();
IList<Object> fvalues = values.ToList();
filters.Add(key, fvalues);
}
But when my code tries to retrieve and cast the IList<Object> back to IList<String> or IList<int> I get an InvalidCastException.
I thought I would make the list generic:
protected IDictionary<String, IList<T>> filters; //does not complile
protected IDictionary<String, IList<T>> filters where T: Object;//does not compile either
I cannot make the class generic since the dictionary will have lists of Strings or int. In Java, Integer and Strings are all Objects, so this was not an issue with IList<? extends Object>.
Thanks!

You could use System.Collection.IList, similar to this:
public class Foo
{
public IDictionary<String, IList> filters;
public void SetFilters(String key, params object[] values)
{
if (key == null || values == null)
{
throw new ArgumentNullException("Must have filter name and values.");
}
if (filters == null)
{
filters = new Dictionary<String, IList>();
}
IList fvalues = values.ToList();
filters.Add(key, fvalues);
}
}
You could then use it like this:
var foo = new Foo();
foo.SetFilters("Key1", 1,2,3);
foo.SetFilters("Key2", "a","b","c");
foo.SetFilters("Key3", new {a = 1, b = 2}, new {c = 1, d = 2});
You still have then the issue of casting back each list type into the expected type when accessing and using it.
DEMO - Using IList

Does it help? I created a new generic class.
internal class Program
{
private class Reed<T>
{
private IDictionary<String, IList<T>> filters;
public void SetFilters(String key, params T[] values)
{
if (key == null || values == null)
{
throw new ArgumentNullException("Must have filter name and values.");
}
if (filters == null)
filters = new Dictionary<String, IList<T>>();
IList<T> fvalues = values.ToList();
filters.Add(key, fvalues);
}
}
private static void Main(string[] args)
{
var r1 = new Reed<string>();
r1.SetFilters("test", "one", "two", "three");
var r2 = new Reed<int>();
r2.SetFilters("test", 1, 2, 3);
}
}

In order to avoid the error casting, you need to create a typed list in the first place. To do that you should use a generic.
For the dictionary item type, you can use IList or object but you will need to store a strongly typed list as the item value.
If you make SetFilters a generic method, then it can make a properly typed list to store in the dictionary. I included a GetFilters method that returns the list that matches the key. i.e. values.ToList() will create a List<T>
public class FilterManager
{
protected IDictionary<String, IList> filters = new Dictionary<string, IList>();
public void SetFilters<T>(String key, params T[] values)
{
if (key == null || values == null)
{
throw new ArgumentNullException("Must have filter name and values.");
}
IList fvalues = values.ToList();
filters.Add(key, fvalues);
}
public IList<T> GetFilters<T>(string key)
{
return (IList<T>)filters[key];
}
}
Call it like this
var filterManager = new FilterManager();
filterManager.SetFilters("MyIntegerFilters", 3, 4, 5);
filterManager.SetFilters("MyStringFilters", "A", "B", "C");
var intFilters = filterManager.GetFilters<int>("MyIntegerFilters");
var stringFilters = filterManager.GetFilters<string>("MyStringFilters");
You will get an exception if you call
var filters = filterManager.GetFilters<int>("MyStringFilters");
because it will try to convert a List<string> to a List<int>

Related

Generic reflection, how to get a list?

I have the following piece of code:
var prop = FindEntityProperty(entityName);
if(prop==null)
{
throw new InvalidOperationException("entityName: " + entityName);
}
var db = new DatabaseContext();
Type returnType = prop.PropertyType;
var col = (prop.GetValue(db) as ???);
Data = col.ToList(); //or something IEnumerable<?>
Situation looks that, I have PropertyInfo named prop here).
I'm sure this property is DbSet<Τ>. I don't know what type is T (only that it's a class). But because it's generic DbSet, it can be treated like a generic IEnumarble.
So, because propertyInfo.GetValue() return a simple object, Ι need to cast my collection.
How can I do this?
I know it's a bad practice in programming. Here I'm doing it only for learning reflection.
I've had a similar problem like that, i wanted to create a method that gives me the object back from the database, so created this piece of code.
I hope this helps you:
Put this into your DatabaseContainer:
public IEnumerable<TEntity> Find<TEntity>(Dictionary<string, object> findValues = null) where TEntity : EntityObject
{
var entities = this.CreateObjectSet<TEntity>().ToList();
if (findValues!= null && findValues.Count > 0)
{
foreach (var item in findValues)
{
if(item.Value != null)
entities = entities.DynamicContains<TEntity>(item.Key, item.Value);
}
}
return entities;
}
And put this into a extention class:
public static List<TEntity> DynamicContains<TEntity>(this IEnumerable<TEntity> entities, string propertyName, object item)
{
List<TEntity> comparingEntities = new List<TEntity>();
foreach (var obj in entities)
{
var property = obj.GetType().GetProperty(propertyName);
if (property.PropertyType == typeof(String) && ((string)property.GetValue(obj, new object[] { })).ToLower().Contains(item.ToString().ToLower()))
comparingEntities.Add(obj);
if (property.PropertyType == typeof(Boolean) && ((bool)property.GetValue(obj, new object[] { })) == (bool)item)
comparingEntities.Add(obj);
}
return comparingEntities;
}
Usage:
Dictionary<string, object> findValues = new Dictionary<string, object>();
findValues.Add("Name", "Tom");
findValues.Add("Age", 4);
var list1 = db.Find<Person>(findValues); // Returns a list of persons that includes the find values.
var list2 = db.Find<Person>() // Returns all persons in the database.

Compare two dictionaries for equality

I want to compare in C# two dictionaries with as keys a string and as value a list of ints. I assume two dictionaries to be equal when they both have the same keys and for each key as value a list with the same integers (both not necessarily in the same order).
I use both the answers from this and this related question, but both fail my test suite for the test functions DoesOrderKeysMatter and DoesOrderValuesMatter.
My test suite:
using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Collections.Generic;
using System.Linq;
namespace UnitTestProject1
{
[TestClass]
public class ProvideReportTests
{
[TestMethod]
public void AreSameDictionariesEqual()
{
// arrange
Dictionary<string, List<int>> dict1 = new Dictionary<string, List<int>>();
List<int> list1 = new List<int>();
list1.Add(1);
list1.Add(2);
dict1.Add("a", list1);
List<int> list2 = new List<int>();
list2.Add(3);
list2.Add(4);
dict1.Add("b", list2);
// act
bool dictsAreEqual = false;
dictsAreEqual = AreDictionariesEqual(dict1, dict1);
// assert
Assert.IsTrue(dictsAreEqual, "Dictionaries are not equal");
}
[TestMethod]
public void AreDifferentDictionariesNotEqual()
{
// arrange
Dictionary<string, List<int>> dict1 = new Dictionary<string, List<int>>();
List<int> list1 = new List<int>();
list1.Add(1);
list1.Add(2);
dict1.Add("a", list1);
List<int> list2 = new List<int>();
list2.Add(3);
list2.Add(4);
dict1.Add("b", list2);
Dictionary<string, List<int>> dict2 = new Dictionary<string, List<int>>();
// act
bool dictsAreEqual = true;
dictsAreEqual = AreDictionariesEqual(dict1, dict2);
// assert
Assert.IsFalse(dictsAreEqual, "Dictionaries are equal");
}
[TestMethod]
public void DoesOrderKeysMatter()
{
// arrange
Dictionary<string, List<int>> dict1 = new Dictionary<string, List<int>>();
List<int> list1 = new List<int>();
list1.Add(1);
list1.Add(2);
dict1.Add("a", list1);
List<int> list2 = new List<int>();
list2.Add(3);
list2.Add(4);
dict1.Add("b", list2);
Dictionary<string, List<int>> dict2 = new Dictionary<string, List<int>>();
List<int> list3 = new List<int>();
list3.Add(3);
list3.Add(4);
dict2.Add("b", list3);
List<int> list4 = new List<int>();
list4.Add(1);
list4.Add(2);
dict2.Add("a", list4);
// act
bool dictsAreEqual = false;
dictsAreEqual = AreDictionariesEqual(dict1, dict2);
// assert
Assert.IsTrue(dictsAreEqual, "Dictionaries are not equal");
}
[TestMethod]
public void DoesOrderValuesMatter()
{
// arrange
Dictionary<string, List<int>> dict1 = new Dictionary<string, List<int>>();
List<int> list1 = new List<int>();
list1.Add(1);
list1.Add(2);
dict1.Add("a", list1);
List<int> list2 = new List<int>();
list2.Add(3);
list2.Add(4);
dict1.Add("b", list2);
Dictionary<string, List<int>> dict2 = new Dictionary<string, List<int>>();
List<int> list3 = new List<int>();
list3.Add(2);
list3.Add(1);
dict2.Add("a", list3);
List<int> list4 = new List<int>();
list4.Add(4);
list4.Add(3);
dict2.Add("b", list4);
// act
bool dictsAreEqual = false;
dictsAreEqual = AreDictionariesEqual(dict1, dict2);
// assert
Assert.IsTrue(dictsAreEqual, "Dictionaries are not equal");
}
private bool AreDictionariesEqual(Dictionary<string, List<int>> dict1, Dictionary<string, List<int>> dict2)
{
return dict1.Keys.Count == dict2.Keys.Count &&
dict1.Keys.All(k => dict2.ContainsKey(k) && object.Equals(dict2[k], dict1[k]));
// also fails:
// return dict1.OrderBy(kvp => kvp.Key).SequenceEqual(dict2.OrderBy(kvp => kvp.Key));
}
}
}
What is the correct way to compare these kind of dictionaries? Or is there an error in my (admittedly clumsily written) TestSuite?
Update
I'm trying to incorporate Servy's answer in my test suite, like below, but I get some errors (underlined with a red wiggly line in Visual Studio):
SetEquals in the `Equals method says: "does not contain a definition for SetEquals accepting a first argument of type Generic.List.
In AreDictionariesEqualit saysDictionaryComparer<List> is a type but is used as a variable.`
namespace UnitTestProject1
{
[TestClass]
public class ProvideReportTests
{
[TestMethod]
// ... same as above
private bool AreDictionariesEqual(Dictionary<string, List<int>> dict1, Dictionary<string, List<int>> dict2)
{
DictionaryComparer<string, List<int>>(new ListComparer<int>() dc = new DictionaryComparer<string, List<int>>(new ListComparer<int>();
return dc.Equals(dict1, dict2);
}
}
public class DictionaryComparer<TKey, TValue> :
IEqualityComparer<Dictionary<TKey, TValue>>
{
private IEqualityComparer<TValue> valueComparer;
public DictionaryComparer(IEqualityComparer<TValue> valueComparer = null)
{
this.valueComparer = valueComparer ?? EqualityComparer<TValue>.Default;
}
public bool Equals(Dictionary<TKey, TValue> x, Dictionary<TKey, TValue> y)
{
if (x.Count != y.Count)
return false;
if (x.Keys.Except(y.Keys).Any())
return false;
if (y.Keys.Except(x.Keys).Any())
return false;
foreach (var pair in x)
if (!valueComparer.Equals(pair.Value, y[pair.Key]))
return false;
return true;
}
public int GetHashCode(Dictionary<TKey, TValue> obj)
{
throw new NotImplementedException();
}
}
public class ListComparer<T> : IEqualityComparer<List<T>>
{
private IEqualityComparer<T> valueComparer;
public ListComparer(IEqualityComparer<T> valueComparer = null)
{
this.valueComparer = valueComparer ?? EqualityComparer<T>.Default;
}
public bool Equals(List<T> x, List<T> y)
{
return x.SetEquals(y, valueComparer);
}
public int GetHashCode(List<T> obj)
{
throw new NotImplementedException();
}
}
public static bool SetEquals<T>(this IEnumerable<T> first, IEnumerable<T> second, IEqualityComparer<T> comparer)
{
return new HashSet<T>(second, comparer ?? EqualityComparer<T>.Default)
.SetEquals(first);
}
}
So first we need an equality comparer for dictionaries. It needs to ensure that they have matching keys and, if they do, compare the values of each key:
public class DictionaryComparer<TKey, TValue> :
IEqualityComparer<Dictionary<TKey, TValue>>
{
private IEqualityComparer<TValue> valueComparer;
public DictionaryComparer(IEqualityComparer<TValue> valueComparer = null)
{
this.valueComparer = valueComparer ?? EqualityComparer<TValue>.Default;
}
public bool Equals(Dictionary<TKey, TValue> x, Dictionary<TKey, TValue> y)
{
if (x.Count != y.Count)
return false;
if (x.Keys.Except(y.Keys).Any())
return false;
if (y.Keys.Except(x.Keys).Any())
return false;
foreach (var pair in x)
if (!valueComparer.Equals(pair.Value, y[pair.Key]))
return false;
return true;
}
public int GetHashCode(Dictionary<TKey, TValue> obj)
{
throw new NotImplementedException();
}
}
but this isn't enough on its own. We need to compare the values of the dictionary using another custom comparer, not the default comparer as the default list comparer won't look at the values of the list:
public class ListComparer<T> : IEqualityComparer<List<T>>
{
private IEqualityComparer<T> valueComparer;
public ListComparer(IEqualityComparer<T> valueComparer = null)
{
this.valueComparer = valueComparer ?? EqualityComparer<T>.Default;
}
public bool Equals(List<T> x, List<T> y)
{
return x.SetEquals(y, valueComparer);
}
public int GetHashCode(List<T> obj)
{
throw new NotImplementedException();
}
}
Which uses the following extension method:
public static bool SetEquals<T>(this IEnumerable<T> first, IEnumerable<T> second,
IEqualityComparer<T> comparer)
{
return new HashSet<T>(second, comparer ?? EqualityComparer<T>.Default)
.SetEquals(first);
}
Now we can simply write:
new DictionaryComparer<string, List<int>>(new ListComparer<int>())
.Equals(dict1, dict2);
I know this question already has an accepted answer, but I'd like to offer an even simpler alternative:
using System.Linq;
using System.Collections.Generic;
namespace Foo
{
public static class DictionaryExtensionMethods
{
public static bool ContentEquals<TKey, TValue>(this Dictionary<TKey, TValue> dictionary, Dictionary<TKey, TValue> otherDictionary)
{
return (otherDictionary ?? new Dictionary<TKey, TValue>())
.OrderBy(kvp => kvp.Key)
.SequenceEqual((dictionary ?? new Dictionary<TKey, TValue>())
.OrderBy(kvp => kvp.Key));
}
}
}
Convert the dictionary to a KeyValuePair list and then compare as collections:
CollectionAssert.AreEqual(
dict1.OrderBy(kv => kv.Key).ToList(),
dict2.OrderBy(kv => kv.Key).ToList()
);
I think that AreDictionariesEqual() just needs another method for List comparison
So if order of entries doesn't matter you can try this:
static bool ListEquals(List<int> L1, List<int> L2)
{
if (L1.Count != L2.Count)
return false;
return L1.Except(L2).Count() == 0;
}
/*
if it is ok to change List content you may try
L1.Sort();
L2.Sort();
return L1.SequenceEqual(L2);
*/
static bool DictEquals(Dictionary<string, List<int>> D1, Dictionary<string, List<int>> D2)
{
if (D1.Count != D2.Count)
return false;
return D1.Keys.All(k => D2.ContainsKey(k) && ListEquals(D1[k],D2[k]));
}
And if order of entries matters, try this:
static bool DictEqualsOrderM(Dictionary<string, List<int>> D1, Dictionary<string, List<int>> D2)
{
if (D1.Count != D2.Count)
return false;
//check keys for equality, than lists.
return (D1.Keys.SequenceEqual(D2.Keys) && D1.Keys.All(k => D1[k].SequenceEqual(D2[k])));
}
The accepted answer above will not always return a correct comparison because
using a HashSet to compare 2 lists will not account for duplicate values in the lists.
For instance if the OP had:
var dict1 = new Dictionary<string, List<int>>() { { "A", new List<int>() { 1, 2, 1 } } };
var dict2 = new Dictionary<string, List<int>>() { { "A", new List<int>() { 2, 2, 1 } } };
Then the result of the dictionary comparison is they are equal, when they are not. The only solution I see is to sort the 2 list and compare the values by index, but I'm sure someone smarter then me can come up with a more efficient way.
Here is a way using Linq, probably sacrificing some efficiency for tidy code. The other Linq example from jfren484 actually fails the DoesOrderValuesMatter() test, because it depends on the default Equals() for List<int>, which is order-dependent.
private bool AreDictionariesEqual(Dictionary<string, List<int>> dict1, Dictionary<string, List<int>> dict2)
{
string dict1string = String.Join(",", dict1.OrderBy(kv => kv.Key).Select(kv => kv.Key + ":" + String.Join("|", kv.Value.OrderBy(v => v))));
string dict2string = String.Join(",", dict2.OrderBy(kv => kv.Key).Select(kv => kv.Key + ":" + String.Join("|", kv.Value.OrderBy(v => v))));
return dict1string.Equals(dict2string);
}
If two dictionaries are known to use equivalent implementations of IEqualityComparer, and one wishes to regard as equivalent all keys which that implementation regardss as equivalent, they contain the same number of items, and one (arbitrarily chosen) maps all of the elements keys found in the other to corresponding values from the other, they will be equivalent unless or until one of them is modified. Testing for those conditions will be faster than any approach which does not not assume that both dictionaries use the same IEqualityComparer.
If two dictionaries do not use the same implementation of IEqualityComparer, they should generally not be considered equivalent regardless of the items they contain. For example, a Dictionary<String,String> with a case-sensitive comparer and one with a case-insensitive comparer, both of which contain the key-value pair ("Fred", "Quimby") are not equivalent, since the latter would map "FRED" to "Quimby", but the former would not.
Only if the dictionaries use the same implementation of IEqualityComparer, but if one is interested in a finer-grained definition of key-equality than the one used by the dictionaries and a copy of the key is not stored with each value, it will it be necessary to build a new dictionary for the purpose of testing the original dictionaries for equality. It may be best to delay this step until the earlier test has suggested that the dictionaries seem to match. Then build a Dictionary<TKey,TKey> which maps each key from one of the dictionaries to itself, and then look up all of the other dictionary's keys in that to make sure that they map to things which match. If both dictionaries used case-insensitive comparers, and one contained ("Fred", "Quimby") and the other ("FRED", "Quimby"), the new temporary dictionary would map "FRED" to "Fred", and comparing those two strings would reveal that the dictionaries don't match.
Most of the answers are iterating the dictionaries multiple times while it should be simple:
static bool AreEqual(IDictionary<string, string> thisItems, IDictionary<string, string> otherItems)
{
if (thisItems.Count != otherItems.Count)
{
return false;
}
var thisKeys = thisItems.Keys;
foreach (var key in thisKeys)
{
if (!(otherItems.TryGetValue(key, out var value) &&
string.Equals(thisItems[key], value, StringComparison.OrdinalIgnoreCase)))
{
return false;
}
}
return true;
}
I like this approach because it gives more details when the test fails
public void AssertSameDictionary<TKey,TValue>(Dictionary<TKey,TValue> expected,Dictionary<TKey,TValue> actual)
{
string d1 = "expected";
string d2 = "actual";
Dictionary<TKey,TValue>.KeyCollection keys1= expected.Keys;
Dictionary<TKey,TValue>.KeyCollection keys2= actual.Keys;
if (actual.Keys.Count > expected.Keys.Count)
{
string tmp = d1;
d1 = d2;
d2 = tmp;
Dictionary<TKey, TValue>.KeyCollection tmpkeys = keys1;
keys1 = keys2;
keys2 = tmpkeys;
}
foreach(TKey key in keys1)
{
Assert.IsTrue(keys2.Contains(key), $"key '{key}' of {d1} dict was not found in {d2}");
}
foreach (TKey key in expected.Keys)
{
//already ensured they both have the same keys
Assert.AreEqual(expected[key], actual[key], $"for key '{key}'");
}
}
public static IDictionary<string, object> ToDictionary(this object source)
{
var fields = source.GetType().GetFields(
BindingFlags.GetField |
BindingFlags.Public |
BindingFlags.Instance).ToDictionary
(
propInfo => propInfo.Name,
propInfo => propInfo.GetValue(source) ?? string.Empty
);
var properties = source.GetType().GetProperties(
BindingFlags.GetField |
BindingFlags.GetProperty |
BindingFlags.Public |
BindingFlags.Instance).ToDictionary
(
propInfo => propInfo.Name,
propInfo => propInfo.GetValue(source, null) ?? string.Empty
);
return fields.Concat(properties).ToDictionary(key => key.Key, value => value.Value); ;
}
public static bool EqualsByValue(this object source, object destination)
{
var firstDic = source.ToFlattenDictionary();
var secondDic = destination.ToFlattenDictionary();
if (firstDic.Count != secondDic.Count)
return false;
if (firstDic.Keys.Except(secondDic.Keys).Any())
return false;
if (secondDic.Keys.Except(firstDic.Keys).Any())
return false;
return firstDic.All(pair =>
pair.Value.ToString().Equals(secondDic[pair.Key].ToString())
);
}
public static bool IsAnonymousType(this object instance)
{
if (instance == null)
return false;
return instance.GetType().Namespace == null;
}
public static IDictionary<string, object> ToFlattenDictionary(this object source, string parentPropertyKey = null, IDictionary<string, object> parentPropertyValue = null)
{
var propsDic = parentPropertyValue ?? new Dictionary<string, object>();
foreach (var item in source.ToDictionary())
{
var key = string.IsNullOrEmpty(parentPropertyKey) ? item.Key : $"{parentPropertyKey}.{item.Key}";
if (item.Value.IsAnonymousType())
return item.Value.ToFlattenDictionary(key, propsDic);
else
propsDic.Add(key, item.Value);
}
return propsDic;
}
Comparing dictionary using string keys is way more complex than what it looks at first glance.
Dictionary<TKey,TValue> uses an IEqualityComparer<TKey> every time you access an entry in the dictionary to compare your input with the actual entries. The comparer is also used for hash calculations, which serves as some kind of index for faster random access to the entries. Trying to compare dictionaries with different comparers may have some side effects on key sorting and equality considerations for the key-value pair. The key point here is you need to compare the comparers too when comparing dictionaries.
Dictionary<TKey,TValue> also provides collections of keys and values, but they are unsorted. The keys and values collections are consistent inside the dictionary (the nth key is the nth value's key), but not across instances. This means we'll have to work with KeyValuePairs<TKey,TValue> and sort them by key on both dictionaries before comparing them.
However, the comparers in the dictionary only check for equality, it's not able to sort the keys. In order to sort pairs, we'll need a new IComparer<TKey> instance, which is another interface than IEqualityComparer<TKey>. But there's a trap here: default implementations of these two interfaces are not consistent. When you create a dictionary using the default contructor, the class will instanciate a GenericEqualityComparer<TKey> if TKey implements IEquatable<TKey>, which require TKey to implement bool Equals(TKey other); (otherwise, it will fallback to an ObjectEqualityComparer). If you create default Comparer, that will instanciate a GenericComparer<TKey> if TKey implements IComparable<TKey>, which will require TKey to implement int CompareTo(TKey other); (otherwise it will default to an ObjectComparer). Not all types implement both interfaces, and those who do sometimes use different implementations. There is a risk that two different keys (according to Equals) are sorted identically (according to CompareTo). In that case, there's a risk on the key sorting consitency.
Fortunately, string implements both interfaces. Unfortunately, its implementations are NOT consistent: CompareTo depends on the current culture to sort items, whereas Equals does not ! The solution to this problem is to inject a custom comparer to the dictionary, which provides consistent implementation of both interface. We can use StringComparer for that rather than relying on the default implementation. Then we'll simply get the dictionary comparer, cast it, and use it for sorting keys. Also, StringComparer allows comparing the comparers, so we can ensure both dictionaries use the same one.
First, we need a way to compare the values of the dictionary. Since you want to compare lists of int without order, we'll implement an generic equality comparer that sorts items and SequenceEqual them.
internal class OrderInsensitiveListComparer<TValue>
: IEqualityComparer<IEnumerable<TValue>>
{
private readonly IComparer<TValue> comparer;
public OrderInsensitiveListComparer(IComparer<TValue> comparer = null)
{
this.comparer = comparer ?? Comparer<TValue>.Default;
}
public bool Equals([AllowNull] IEnumerable<TValue> x, [AllowNull] IEnumerable<TValue> y)
{
return x != null
&& y != null
&& Enumerable.SequenceEqual(
x.OrderBy(value => value, comparer),
y.OrderBy(value => value, comparer));
}
public int GetHashCode([DisallowNull] IEnumerable<TValue> obj)
{
return obj.Aggregate(17, (hash, item) => hash * 23 ^ item.GetHashCode());
}
}
Now, we've got the values covered, but we also need to compare KeyValuePair. It is a simple ref struct, so we don't need to check for nulls. We'll simply delegate the comparison to two comparers : one for the key, another for the value.
internal class KeyValuePairComparer<TKey, TValue> : IEqualityComparer<KeyValuePair<TKey, TValue>>
{
private readonly IEqualityComparer<TKey> key;
private readonly IEqualityComparer<TValue> value;
public KeyValuePairComparer(
IEqualityComparer<TKey> key = null,
IEqualityComparer<TValue> value = null)
{
this.key = key ?? EqualityComparer<TKey>.Default;
this.value = value ?? EqualityComparer<TValue>.Default;
}
public bool Equals([AllowNull] KeyValuePair<TKey, TValue> x, [AllowNull] KeyValuePair<TKey, TValue> y)
{
// KeyValuePair is a struct, you can't null check
return key.Equals(x.Key, y.Key) && value.Equals(x.Value, y.Value);
}
public int GetHashCode([DisallowNull] KeyValuePair<TKey, TValue> obj)
{
return 17 * 23 ^ obj.Key.GetHashCode() * 23 ^ obj.Value.GetHashCode();
}
}
Now, we can implement the dictionary comparer. We do null check and compare the dictionaries comparers. Then we consider the dictionary as a simple enumerable of KeyValuePair and SequenceEqual them after sorting them by key. For that, we cast the dictionary comparer and delegate the comparison to the KeyValueComparer.
internal class DictionaryComparer<TValue> : IEqualityComparer<Dictionary<string, TValue>>
{
private readonly IEqualityComparer<TValue> comparer;
public DictionaryComparer(
IEqualityComparer<TValue> comparer = null)
{
this.comparer = comparer ?? EqualityComparer<TValue>.Default;
}
public bool Equals([AllowNull] Dictionary<string, TValue> x, [AllowNull] Dictionary<string, TValue> y)
{
return x != null
&& y != null
&& Equals(x.Comparer, y.Comparer)
&& x.Comparer is StringComparer sorter
&& Enumerable.SequenceEqual(
x.AsEnumerable().OrderBy(pair => pair.Key, sorter),
y.AsEnumerable().OrderBy(pair => pair.Key, sorter),
new KeyValuePairComparer<string, TValue>(x.Comparer, comparer));
}
public int GetHashCode([DisallowNull] Dictionary<string, TValue> obj)
{
return new OrderInsensitiveListComparer<KeyValuePair<string, TValue>>()
.GetHashCode(obj.AsEnumerable()) * 23 ^ obj.Comparer.GetHashCode();
}
}
Finally, we only need to instanciate comparers and let them do the work.
private bool AreDictionariesEqual(Dictionary<string, List<int>> dict1, Dictionary<string, List<int>> dict2)
{
return new DictionaryComparer<List<int>>(
new OrderInsensitiveListComparer<int>())
.Equals(dict1, dict2);
}
However, for this to work, we need to use a StringComparer in every dictionary.
[TestMethod]
public void DoesOrderValuesMatter()
{
Dictionary<string, List<int>> dict1 = new Dictionary<string, List<int>>(StringComparer.CurrentCulture);
// more stuff
}
The function shown below can be accommodated to perform any generic comparison:
public bool AreDictionaryEquals(Dictionary<ulong?, string> dictionaryList1, Dictionary<ulong?, string> dictionaryList2)
{
if (dictionaryList1.Count != dictionaryList2.Count)
return false;
IDictionary<ulong?, string> orderedList1 = new Dictionary<ulong?, string>();
IDictionary<ulong?, string> orderedList2 = new Dictionary<ulong?, string>();
foreach (var itemDict1 in dictionaryList1.OrderByDescending(key => key.Id))
{
orderedList1.Add(itemDict1.Id, itemDict1.PropertyX);
}
foreach (var itemDict2 in dictionaryList2.OrderByDescending(key => key.Id))
{
orderedList2.Add(itemDict2.Id, itemDict2.PropertyX);
}
//check keys and values for equality
return (orderedList1.Keys.SequenceEqual(orderedList2.Keys) && orderedList1.Keys.All(k => orderedList1[k].SequenceEqual(orderedList2[k])));
}
1- If the length of both dictionaries is not equal we can safely return false.
2- Then, we proceed to sort both dictionaries using the value of the keys. The reason for doing this is you could have situations like this:
Dictionary A: [1,A], [3,B]
Dictionary B: [3,B], [1,A]
Even though the order is not the same, the content of both can be considered equal.
Finally:
3- We compare both sorted sequences and retrieve the result of this comparison.

How to compare two lists that contain objects that contain Dictionaries?

I have two Lists (List “A” and List “B”) that hold objects of type “KeyStore”, which is shown below:
public class KeyStore
{
public Dictionary<string, string> PrimaryKeys { get; set; }
public KeyStore(string pkName, string pkValue)
{
PrimaryKeys = new Dictionary<string, string> {{pkName, pkValue}};
}
public KeyStore()
{
PrimaryKeys = new Dictionary<string, string>();
}
}
I need to look at each record in List “A” and see if there is a matching record in List “B”. If there is, then this record needs to be stored in a new list that contains just matching records. A match is considered true if a record’s PrimaryKeys dictionary contains the same number of entries and the same key value combination as a record in List “B”. The order of the entries in the dictionary is not important in testing for equality. If there is a record in List “A” that does not have a match in List “B”, then this needs to be stored in a new list that will only contain records found in List “A”.
Previously I did something similar when I had Lists of strings where I used “Intersect” and “Except” to create lists of matched and non-matched records. I’m assuming that now that I need to compare these KeyStore objects I need to go up a level of complexity. Can anyone offer a solution or advise on how I should approach this problem?
EDIT 1 ----------------
Based on comments, I have created a class that implements IEqualityComparer, as shown below:
class KeyStoreComparer : IEqualityComparer<KeyStore>
{
public bool Equals(KeyStore x, KeyStore y)
{
if (x != null && x.PrimaryKeys.Count == y.PrimaryKeys.Count)
{
return x.PrimaryKeys.Keys.All(k => y.PrimaryKeys.ContainsKey(k)) &&
x.PrimaryKeys.Keys.All(k => x.PrimaryKeys[k].Equals(y.PrimaryKeys[k]));
}
return false;
}
public int GetHashCode(KeyStore obj)
{
return ReferenceEquals(obj, null) ? 0 : obj.GetHashCode();
}
}
I have created some dummy data but when the "Intersect" command is run the above code is never called. Any ideas where I am going wrong?
var ListA = new List<KeyStore>();
ListA.Add(new KeyStore("a", "b"));
ListA.Add(new KeyStore("c", "d"));
var ListB = new List<KeyStore>();
ListB.Add(new KeyStore("a", "b"));
ListB.Add(new KeyStore("x", "y"));
var g = ListA.Intersect(ListB, new KeyStoreComparer());
The code in the "Equals" and "GetHashCode" may not be correct but I'm just trying to get it to get as far as running it before I can improve it.
EDIT 2 ---------------------------------------
I have made various changes to the KeyStore class as shown in the example by “fox” on this page. I still don’t get the overridden functions to be called. As an experiment I tried this:
var result = ListA.Equals(ListB);
When I do this the overridden functions in the KeyStor class don’t run. But if I do this:
var result = ListA[0].Equals(ListB[0]);
The overridden functions do run and give the expected result. Anyone know how I can get this to work for all items in the lists rather than just for individual records?
EDIT 3 ---------------------------------------
The problem I am seeing is that the override works fine for single items, eg:
var a = new KeyStore("a", "b");
var b = new KeyStore("a", "b");
var c = a.Equals(b);
When I run the above my break point on the KeyStore "Equals" function is hit. As soon as I try to do something similar but with a List of KeyStore, the breakpoint is no longer hit. Do I need to do something extra when working with Lists?
public class KeyStore
{
public Dictionary<string, string> PrimaryKeys { get; set; }
public KeyStore(string pkName, string pkValue)
{
PrimaryKeys = new Dictionary<string, string> { { pkName, pkValue } };
}
public KeyStore()
{
PrimaryKeys = new Dictionary<string, string>();
}
public override bool Equals(object obj)
{
// If parameter is null return false.
if (obj == null)
return false;
// If parameter cannot be cast to KeyStore return false.
KeyStore targetKeyStore = obj as KeyStore;
if (targetKeyStore == null)
return false;
return PrimaryKeys.OrderBy(pk => pk.Key).SequenceEqual(targetKeyStore.PrimaryKeys.OrderBy(pk => pk.Key));
}
public override int GetHashCode()
{
StringBuilder content = new StringBuilder();
foreach (var item in PrimaryKeys.OrderBy(pk => pk.Key))
content.AppendFormat("{0}-{1}", item.Key, item.Value);
return content.ToString().GetHashCode();
}
}
Eric Lippert's guide on implementing GetHashCode wrote that "equal items have equal hashes". GetHashCode() implementation above just to show concept, might not suitable for production code.
Overriding the ToString method will help simplify your code quite a bit. See if this helps:
public class KeyStore
{
public SortedDictionary<string, string> PrimaryKeys
{
get;
set;
}
public KeyStore(string pkName, string pkValue)
{
PrimaryKeys = new SortedDictionary<string, string> { { pkName, pkValue } };
}
public KeyStore()
{
PrimaryKeys = new SortedDictionary<string, string>();
}
public override bool Equals(object obj)
{
if(obj == null || (KeyStore)obj == null)
return false;
KeyStore temp = (KeyStore)obj;
return ToString() == temp.ToString();
}
public override int GetHashCode()
{
return ToString().GetHashCode();
}
public override string ToString()
{
return PrimaryKeys.Count.ToString() + " : \n" + string.Join("\n",(from kvp in PrimaryKeys
let s = kvp.Key + " - " + kvp.Value
select s));
}
}
List<KeyStore> Lista = new List<KeyStore>
{
new KeyStore("testa","testa1"),
new KeyStore("testb","testb1"),
new KeyStore("testc", "testc1")
};
List<KeyStore> Listb = new List<KeyStore>
{
new KeyStore("testa","testa1"),
new KeyStore("testd","testb1"),
new KeyStore("testc", "testa1"),
new KeyStore("teste", "teste1")
};
var Listc = Lista.Intersect(Listb).ToList();
var Listd = Lista.Except(Listb).ToList();
?Listc
Count = 1
[0]: {1 :
testa - testa1}
?Listd
Count = 2
[0]: {1 :
testb - testb1}
[1]: {1 :
testc - testc1}

Adding new T to empty List<T> using reflection

I'm attempting to set add a new instance of an Officer class to a potentially empty list using reflection.
These are my classes
public class Report(){
public virtual ICollection<Officer> Officer { get; set; }
}
public class Officer(){
public string Name{ get; set; }
}
Simplified code snippet:
Report report = new Report()
PropertyInfo propertyInfo = report.GetType().GetProperty("Officer");
object entity = propertyInfo.GetValue(report, null);
if (entity == null)
{
//Gets the inner type of the list - the Officer class
Type type = propertyInfo.PropertyType.GetGenericArguments()[0];
var listType = typeof(List<>);
var constructedListType = listType.MakeGenericType(type);
entity = Activator.CreateInstance(constructedListType);
}
//The entity is now List<Officer> and is either just created or contains a list of
//Officers
//I want to check how many officers are in the list and if there are none, insert one
//Pseudo code:
if (entity.count = 0)
{
entity.add(new instance of type)
}
Much appreciated!
Use:
object o = Activator.CreateInstance(type); // "type" is the same variable you got a few lines above
((IList)entity).add(o);
You have two options:
1) Using dynamic:
dynamic list = entity;
if (list.Count = 0)
{
list.Add(new instance of type)
}
2) Using Reflection:
var countProp = entity.GetType().GetProperties(BindingFlags.Public | BindingFlags.Instance).First(p => p.Name == "Count");
var count = (int)countProp.GetValue(entity,null);
if(count == 0)
{
var method = entity.GetType().GetMethods(BindingFlags.Instance | BindingFlags.Public).First(m => m.Name == "Add");
method.Invoke(entity,new instance of type);
}
This isn't quite what you asked for but may accomplish the same task.
public static ICollection<T> EnsureListExistsAndHasAtLeastOneItem(ICollection<T> source)
where T : Officer, new()
{
var list = source ?? new List<T>();
if( list.Count == 0 ) list.Add(new T());
return list;
}
If Officer doesn't have a default constructor then you could add a factory callback
public static ICollection<T> EnsureListExistsAndHasAtLeastOneItem
(ICollection<T> source, Func<T> builder)
where T : Officer
{
var list = source ?? new List<T>();
if( list.Count == 0 ) list.Add(builder());
return list;
}
Just type your entity appropriately as a List<Officer> (or an appropriately more abstract type (such as IList)) and use as normal:
entity = Activator.CreateInstance(constructedListType) as IList;
But no need to check whether to insert or not, just insert:
entity.Insert(0, officer);
I'm assuming (based on the fact that you already know how to create instances using reflection) you're not having trouble creating the instance of type Officer.
Edit after re-reading over your question: This doesn't directly answer your question but is rather a suggestion of a different implementation.
You can easily get by without using reflection:
public class TestContainer<T>
{
private readonly List<T> _list;
public TestContainer()
{
_list = new List<T>();
}
public void Add()
{
_list.Add(default(T));
}
}
Then calling e.g.:
var t = new TestContainer<YourClass>();
t.Add();
t.Add();
t.Add();
you will have a list of 3 instances of YourClass by their default value

Generic form of NameValueCollection in .Net

Does .Net provides generic form of NameValueCollection or an alternative to
Dictionary<string,List<T>> ?
Something like
Person john = new Person();
...
Person vick = new Person();
...
NameValueCollection<Person> stringToPerson = new NameValueCollection<Person>();
stringToPerson.Add("John",john)
stringToPerson.Add("Vick",vick)
Actually in my case am forced to rely on Dictionary<string,List<Peron>>, is there any other alternative?
Regards,
Jeez
There's no such thing built in to the BCL as far as I know. I would just write your own class which wraps a Dictionary<string, List<T>> internally and exposes appropriate methods (e.g., Add could add an element to the List<T> for the given key).
For example:
class NameValueCollection<T>
{
Dictionary<string, List<T>> _dict = new Dictionary<string, List<T>>();
public void Add(string name, T value)
{
List<T> list;
if (!_dict.TryGetValue(name, out list))
{
_dict[name] = list = new List<T>();
}
list.Add(value);
}
// etc.
}
The closest alternative is probably the ILookup<TKey, TElement> interface. At the moment, the only public type that implements it in the BCL is the immutable Lookup<TKey, TElement> class, an instance of which can be created with the Enumerable.ToLookup method. If you want a mutable type that implements the interface, you'll have to write one yourself; you can find an example implementation here.
In your case, you probably want an ILookup<string, Person>.
Oh, I see what you want to do now. You want to be able to add to the Person collection without having to create a new List each time. Extension methods to the rescue!
public static void SafeAdd<TValue>(this IDictionary<TKey, ICollection<TValue>> dict, TKey key, TValue value)
{
HashSet<T> container;
if (!dict.TryGetValue(key, out container))
{
dict[key] = new HashSet<TValue>();
}
dict[key].Add(value);
}
Usage:
var names = new Dictionary<string, ICollection<Person>>();
names.SafeAdd("John", new Person("John"));
Nothing inbuilt; there is Lookup<TKey,TValue> which operates as a multi-map, but that is immutable. I wrote a mutable EditableLookup<TKey,TValue> for MiscUtil which may help.
Generic NameValueCollection
What makes NameValueCollection special unlike Dictionary, is that one key can contain several elements.
The generic NameValueCollection<T> based on NameObjectCollectionBase is in the following code:
using System.Collections.Specialized;
namespace System.Collections.Generic
{
public class NameValueCollection<T> : NameObjectCollectionBase
{
private string[] _keys; // Cached keys.
private T[] _values; // Cached values.
// Resets the caches.
protected void InvalidateCachedArrays()
{
_values = null;
_keys = null;
}
// Converts ArrayLit to Array of T elements.
protected static T[] AsArray(ArrayList list)
{
int count = 0;
if (list == null || (count = list.Count) == 0)
return (T[])null;
T[] array = new T[count];
list.CopyTo(0, array, 0, count);
return array;
}
// Gets all values cache.
protected ArrayList GetAllValues()
{
int count = Count;
ArrayList arrayList = new ArrayList(count);
for (int i = 0; i < count; ++i)
{
arrayList.AddRange(Get(i));
}
return arrayList;
}
// Adds single value to collection.
public void Add(string name, T value)
{
InvalidateCachedArrays();
ArrayList arrayList = (ArrayList)BaseGet(name);
if (arrayList == null)
{
arrayList = new ArrayList(1);
if (value != null) arrayList.Add(value);
BaseAdd(name, arrayList);
}
else
{
if (value == null) return;
arrayList.Add(value);
}
}
// Adds range of values to collection.
public void Add(NameValueCollection<T> collection)
{
InvalidateCachedArrays();
int count = collection.Count;
for (int i = 0; i < count; i++)
{
string key = collection.GetKey(i);
T[] values = collection.Get(i);
foreach (var value in values)
{
Add(key, value);
}
}
}
// Set single value (prevoious values will be removed).
public void Set(string name, T value)
{
InvalidateCachedArrays();
BaseSet(name, new ArrayList(1) { value });
}
// Set range of values (prevoious values will be removed).
public void Set(string name, params T[] values)
{
InvalidateCachedArrays();
BaseSet(name, new ArrayList(values));
}
// Gets all values that paired with specified key.
public T[] Get(string name)
{
return AsArray((ArrayList)BaseGet(name));
}
// Gets all values at the specified index of collection.
public T[] Get(int index)
{
return AsArray((ArrayList)BaseGet(index));
}
// Gets string containing the key at the specified index.
public string GetKey(int index)
{
return BaseGetKey(index);
}
// Removes values from the specified key.
public void Remove(string name)
{
InvalidateCachedArrays();
BaseRemove(name);
}
// Removes all data from the collection.
public void Clear()
{
InvalidateCachedArrays();
BaseClear();
}
// All keys that the current collection contains.
public new string[] Keys
{
get
{
if (_keys == null)
_keys = BaseGetAllKeys();
return _keys;
}
}
// All values that the current collection contains.
public T[] Values
{
get
{
if (_values == null)
_values = AsArray(GetAllValues());
return _values;
}
}
// Values at the specefied index.
public T[] this[int index]
{
get
{
return Get(index);
}
set
{
BaseSet(index, new ArrayList(value));
}
}
// Values at the specefied key.
public T[] this[string name]
{
get
{
return Get(name);
}
set
{
BaseSet(name, new ArrayList(value));
}
}
// Enumerates all entries.
public IEnumerable<KeyValuePair<string, T>> GetAllEntries()
{
foreach (string key in Keys)
{
foreach (T value in Get(key))
{
yield return new KeyValuePair<string, T>(key, value);
}
}
}
}
}
Usage:
NameValueCollection<int> collection = new NameValueCollection<int>();
collection.Add("a", 123);
collection.Add("a", 456); // 123 and 456 will be inserted into the same key.
collection.Add("b", 789); // 789 will be inserted into another key.
int[] a = collection.Get("a"); // contains 123 and 456.
int[] b = collection.Get("b"); // contains 789.
The above code implements the main features.
Here is complete implementation of the NameValueCollection<T> with additional tools.

Categories