Websphere MQ isConnected variable after exception - c#

I use an C# Console Application to put and read messages of the MQ..
When the application starts, it connect once with the MQ and then the connection should be always upholded.
The program runs every 30 sec and check if new messages are in the queue or a database(to put them on the queue) and check the isConnected-variable if its true.
But what happen if an exception(2009 - connection broke) in the Put/Get occur? Will the isConnected automatically set to false?
Is the connection automatically disconnected or do I have to call Disconnect() in the error handling?
Thanks!

To answer your exact question, for a basic .net application (non XMS) using MQQueue for put/get, if you get CERTAIN bad return codes from the underlying API call which indicates a connection issue, MQ will attempt an MQBACK and an MQDISC for you and will result in the connection handle being invalidated (IsConnected would return false) and an exception being thrown. However if an exception occurs outside those return codes then no attempt is made to do anything with the connection.
Basically you should not code an application relying on this behaviour, when the most simple answer is to always disconnect if you get an exception which relates to the quality of the connection or queue manager. For example, a no message available etc type exception doesnt mean you need to disconnect but a connection broken obviously does. There is no harm in calling disconnect on an already disconnected connection.

Related

TcpClient: How do I close and reconnect it again?

Hello and thanks for your help.
This time I would like to ask about TcpClient.
I have a server program and I am writing a client program.
This client uses TcpClient. It starts by creating a new client
clientSocket=new TcpClient();
(By the way, can this cause exceptions? just in case I put it inside a try-catch but I am not sure if that is really necessary)
Anyway, later I enter a loop and inside this loop I connect to the server
clientSocket.Connect("xx.xx.xx.xx",port);
Then I create a NetworkStream with
clientStream=clientSocket.GetStream();
and then start waiting for data from the server through Read. I know this is blocking so I also set a ReadTimeOut (say 1 second)
Anyway, so far so good.
Later if I don't receive anything from the server, I attempt to send something to it. If this keeps happening for say 3 times I want to close the connection and reconnect to the server again
(notice that a whole different problem is when the server somehow is down, cause that causes other kinds of errors in the client-perhaps I will ask about that later)
So, what do I do?
if(clientSocket.Connected)
{
Console.WriteLine("Closing the socket");
clientSocket.Close();
}
I close the socket.
The loop is finished so I go again to the beginning and try to connect to the server.
clientSocket.Connect("xx.xx.xx.xx",port);
However this causes an error(an unhandled exception actually) "Can not access a disposed object"
So my question is How can I close and reconnect to the server again??
Thanks again for any help
A TcpClient instance can only be used to connect once. You can simply instantiate a new TcpClient, rather than trying to re-open a closed one.
As explained in the other answer, a TcpClient object can only be connected once. If you want to reconnect to the server, you have to create a new TcpClient object and call Connect() again.
That said, you have a number of apparent misconceptions in your question:
First and most important, you should not use ReceiveTimeout if you have any intention whatsoever of trying to use the TcpClient object again, e.g. to send some data to the server. Once the timeout period has expired, the underlying socket is no longer usable.If you want to periodically send data to the server when the server hasn't sent data to you, you should use asynchronous I/O (which you should do anyway, in spite of the learning curve) and use a regular timer object to keep track of how long it's been since you received data from the server.
The TcpClient constructor certainly can throw an exception. At the very least, any attempt to new a reference type object could throw OutOfMemoryException, and in the case of TcpClient, it ultimately tries to create a native socket handle, which could also fail.While all I/O objects and methods can throw exceptions, you should only ever catch exceptions that you have a way to handle gracefully. So before you add a try/catch block to your code, decide what it is you want to do in the case of an exception that will ensure that your code doesn't corrupt any data and continues to operate correctly. It is generally not possible to gracefully handle OutOfMemoryException (and impractical to protect all uses of new in any case), but you certainly can catch SocketException, which could be thrown by the constructor. If that exception is thrown, you should immediately abandon the attempt to create and use TcpClient, and report the error the user so that they can attempt to correct whatever problem prevented the socket's creation.
If your server is expected to be sending you data, and you don't receive it, then closing the connection and retrying is unlikely to improve the situation. That will only cause additional load on the server, making it even more likely it will fail to respond. Likewise sending the same data over and over. You should your request once, wait as long as is practical for a response from the server, and if you get no response within the desired time, report the error to the user and let them decide what to do next.Note that in this case, you could use the ReceiveTimeout property, because all you're going to do if you don't get a response in time is abandon the connection, which is fine.
Very simple:
client.Close();
client = new TcpClient();
client.Connect(host, port);

No exception thrown when connecting to an offline SQL Server

When I try to access (open a connection to) an offline sql server instance (service turned off) from my web service, no exception is thrown, just a brief 5 sec timeout followed by return (I put the breakpoint way out in my controller, not sure what the connection object returns yet during the call to open).
I'm trying to simulate a scenario where the DB is not available to the webservice, and figured an exception would be thrown and I could just log the error.
Any suggestions on how to properly detect DB connection issues (I'm guessing I need to look to see what the connection object returns when calling open). It'd be nice to just have an exception bubble up though.
Thanks.
A connection timeout will be thrown for sure unless your thread is being aborted before that by a web server timeout. Placing a try/catch in your controller would certainly catch the DB connection timeout.
You should post code, as SqlConnection.Open() definitely would throw an exception but if you're using some other call/code to open the connection and it's getting swallowed then it is obviously difficult to determine a root cause.
My guess is that you are getting back a Connection object that is not connected, to check if it's connected:
if (conn.State == ConnectionState.Closed)
{
...
}

Problem about checking a WCF connection is opened

I have a problem about checking a WCF connection is opened. My WCF Connection is bi-directional. I use State property to check the connection's state at client. My function:
private bool ConnectionIsOpen()
{
if (m_Service != null && (m_Service.State | CommunicationState.Opened) == CommunicationState.Opened)
{
return true;
}
return false;
}
I create a service which is a thread running every 10 seconds to check the connection's state. I use the method ConnectionIsOpen() for checking. Everything is well on running on Windows XP. However there is a problem when running on Windows 7.
When I unplug the network cable to create to disconnect, If running application on Windows XP, checking connection's State is Faulted but if running on Windows 7, checking connection' State is still Opened.
Anyone can help me how to check a connection is openned or not in this case. Thanks.
This will always be true:
(m_Service.State | CommunicationState.Opened) == CommunicationState.Opened
Example, m_Service.State = 0:
0 | CommuncationState.Opened == CommuncationState.Opened
You want to use & (AND) instead.
We ran into a similar problem in our own system; disconnecting the network cable or placing either the client machine or the server in sleep mode does not generate a channel fault.
From what I can tell, it seems that the connection state only indicates the state of the connection after the last call and not the current connection state. The only way to know the current state is to actually call the service.
If your client doesn’t need to call the service that often but must react if the connection is lost one solution is to implement a dummy call on the client side which periodically polls the service. If the connection is unavailable when the dummy call is made you’ll get a channel fault that you can then deal with.
The catch is you can’t simply use the dummy call to guarantee that the next call to the service will work:
public void SomeMethode()
{
if (ConnectionIsOpen())
{
m_Service.Dummy();
// Connection is lost here
m_Service.SomeMethode();
}
}
To get around this problem, we implemented a system that automatically re-executes any failed service calls which generate a channel fault after the connection has been restored.
The best and asured way to confirm the Communication state is Open or not is to call the Faulted event like below :
proxyInstance.InnerChannel.Faulted -= new EventHandler(ProxyChannelFaulted);
But this works only with those bindings that support ReliableMessaging like WsHttpBinding.
For detail refer the link : WCF Proxy Client taking time to create, any cache or singleton solution for it
Thanks,
Jai Kumar
The fact that you are getting completely different results on windows 7 is not surprising. Microsoft completely re-engineered the TCP stack with windows vista, so the functionality is quite different from xp in the core networking functionality.
The first thing that I would do is use wireshark to see what is actually going across the wire. See if your TCP connection actually terminates when you pull the plug. Windows might be doing some kind of connection persistence / buffering in case the connection comes back quickly.

TcpClient.BeginRead/TcpClient.EndRead doesn't throw exception when internet disconnected

I'm using TcpListener to accept & read from TcpClient.
The problem is that when reading from a TcpClient, TcpClient.BeginRead / TcpClient.EndRead doesn't throw exception when the internet is disconnected. It throws exception only if client's process is ended or connection is closed by server or client.
The system generally has no chance to know that connection is broken. The only reliable way to know this is to attempt to send something. When you do this, the packet is sent, then lost or bounced and your system knows that connection is no longer available, and reports the problem back to you by error code or exception (depending on environment). Reading is usually not enough cause reading only checks the state of input buffer, and doesn't send the packet to the remote side.
As far as I know, low level sockets doesn't notify you in such cases. You should provide your own time out implementation or ping the server periodically.
If you want to know about when the network status changes you can subscribe to the System.Net.NetworkInformation.NetworkChange.NetworkAvailabilityChanged event. This is not specific to the internet, just the local network.
EDIT
Sorry, I misunderstood. The concept of "connected" really doesn't exist the more you think about it. This post does a great job of going into more details about that. There is a Connected property on the TcpClient but MSDN says (emphasis mine):
Because the Connected property only
reflects the state of the connection
as of the most recent operation, you
should attempt to send or receive a
message to determine the current
state. After the message send fails,
this property no longer returns true.
Note that this behavior is by design.
You cannot reliably test the state of
the connection because, in the time
between the test and a send/receive,
the connection could have been lost.
Your code should assume the socket is
connected, and gracefully handle
failed transmissions.
Basically the only way to check for a client connection it to try to send data. If it goes through, you're connected. If it fails, you're not.
I don't think you'd want BeginRead and EndRead throwing exceptions as these should be use in multi threaded scenarios.
You probably need to implement some other mechanism to respond to the dropping of a connection.

Java Socket Disconnect Reporting vs. C# Disconnection

in C# when a sockets connection is terminated the other node is informed of this before terminating the link thus the remaning node can update the connection status.
in Java when i terminate a communication link the other node keeps reporting the connection as valid.
do i need to implement a read cycle (makes sense) that reports the connection as lost when it recieves a -1 during read (in C# this is 0 i think)?
thank you for your insight.
EDIT: thanks to you both. as i suspected and mentioned in my post that an additional check is required to confirm the connected state of a connection.
If the remote side of the connection goes away, normally you'll get an IOException from the InputStream/InputChannel if the disconnection can be detected. If it can't detect the disconnect an IOException will eventually be thrown when the socket read times out. The length of time it waits for a timeout can be adjusted using Socket.setSoTimeout().
In java, you find out about the other end of the socket being closed only when you read/write to/from the socket, or query the input stream state (e.g. InputStream.available()). I don't think there is any asynchronous notification that the other end is closed.
How are you testing that the socket is still open?
You can poll the InputStream.available() method and if that returns -1, you know the socket is closed. Of course, you can also read data, if that fits with your usage.
See InputStream.available()

Categories