Read unknown length by DataReader - c#

I've been working with windows app store programming in c# recently, and I've come across a problem with sockets.
I need to be able to read data with an unknown length from a DataReader().
It sounds simple enough, but I've not been able to find a solution after a few days of searching.
Here's my current receiving code (A little sloppy, need to clean it up after I find a solution to this problem. And yes, a bit of this is from the Microsoft example)
DataReader reader = new DataReader(args.Socket.InputStream);
try
{
while (true)
{
// Read first 4 bytes (length of the subsequent string).
uint sizeFieldCount = await reader.LoadAsync(sizeof(uint));
if (sizeFieldCount != sizeof(uint))
{
// The underlying socket was closed before we were able to read the whole data.
return;
}
reader.InputStreamOptions
// Read the string.
uint stringLength = reader.ReadUInt32();
uint actualStringLength = await reader.LoadAsync(stringLength);
if (stringLength != actualStringLength)
{
// The underlying socket was closed before we were able to read the whole data.
return;
}
// Display the string on the screen. The event is invoked on a non-UI thread, so we need to marshal
// the text back to the UI thread.
//MessageBox.Show("Received data: " + reader.ReadString(actualStringLength));
MessageBox.updateList(reader.ReadString(actualStringLength));
}
}
catch (Exception exception)
{
// If this is an unknown status it means that the error is fatal and retry will likely fail.
if (SocketError.GetStatus(exception.HResult) == SocketErrorStatus.Unknown)
{
throw;
}
MessageBox.Show("Read stream failed with error: " + exception.Message);
}

You are going down the right lines - read the first INT to find out how many bytes are to be sent.
Franky Boyle is correct - without a signalling mechanism it is impossible to ever know the length of a stream. Thats why it is called a stream!
NO socket implementation (including the WinSock) will ever be clever enough to know when a client has finished sending data. The client could be having a cup of tea half way through sending the data!
Your server and its sockets will never know! What are they going to do? Wait forever? I suppose they could wait until the client had 'closed' the connection? But your client could have had a blue screen and the server will never get that TCP close packet, it will just be sitting there thinking it is getting more data one day?
I have never used a DataReader - i have never even heard of that class! Use NetworkStream instead.
From my memory I have written code like this in the past. I am just typing, no checking of syntax.
using(MemoryStream recievedData = new MemoryStream())
{
using(NetworkStream networkStream = new NetworkStream(connectedSocket))
{
int totalBytesToRead = networkStream.ReadByte();
// This is your mechanism to find out how many bytes
// the client wants to send.
byte[] readBuffer = new byte[1024]; // Up to you the length!
int totalBytesRead = 0;
int bytesReadInThisTcpWindow = 0;
// The length of the TCP window of the client is usually
// the number of bytes that will be pushed through
// to your server in one SOCKET.READ method call.
// For example, if the clients TCP window was 777 bytes, a:
// int bytesRead =
// networkStream.Read(readBuffer, 0, int.Max);
// bytesRead would be 777.
// If they were sending a large file, you would have to make
// it up from the many 777s.
// If it were a small file under 777 bytes, your bytesRead
// would be the total small length of say 500.
while
(
(
bytesReadInThisTcpWindow =
networkStream.Read(readBuffer, 0, readBuffer.Length)
) > 0
)
// If the bytesReadInThisTcpWindow = 0 then the client
// has disconnected or failed to send the promised number
// of bytes in your Windows server internals dictated timeout
// (important to kill it here to stop lots of waiting
// threads killing your server)
{
recievedData.Write(readBuffer, 0, bytesReadInThisTcpWindow);
totalBytesToRead = totalBytesToRead + bytesReadInThisTcpWindow;
}
if(totalBytesToRead == totalBytesToRead)
{
// We have our data!
}
}
}

Related

Reading entire response through socket with good performance

I have written some code to get a webpage through a proxy using sockets. In essence, it works but reading the response has some strange behavior that is really tripping me up.
When I go to read the response after sending the GET command it is 0 bytes. It takes a few ticks before there is data to read. I don't want to hard code a delay in here as I am trying to write performant reliable code so I have coded a while loop that keeps reading the response until it more than 0.
This works for the first chunk but trying to read subsequent chunks is a problem. If i instantly try to read the response it will be 0 bytes so I need to check the subsequent reads also if they are greater than 0.
So to read the whole response I tried to check if the response is equal to the size of the buffer. If it is equal to the size of the buffer then I carry on and try to read another chunk. This has a few issues also. Sometimes the response will read less than the size of the buffer but there is still more to come, i guess I am reading it faster than they are sending it because if I add a Thread.Sleep() then the buffer will always be full but I don't think it is good practice to hardcode this because I don't know how fast they will be sending. This code will be used for multiple things and will be running on hundreds of threads so performance is everything.
Also if the last chunk just happens to be the size of my buffer then I think the loop will lock, This whole approach I have taken is horrible but I can't see how I should be reading it. I have seen the asynchronous examples but I think that will add to the overall complexity of my code as I just have 1 set process which I will run in many threads.
How do I efficiently read the response when I can't guarantee the next chunk will have data or be full even if there is more data to come?
Sorry for long text but I wanted to explain my thinking. Here is my code:
// Data buffer for incoming data.
byte[] bytes = new byte[1024];
// Connect to a remote device.
try
{
var proxyIpAddress = IPAddress.Parse("123.123.123.123"); //omitted
IPEndPoint remoteEP = new IPEndPoint(proxyIpAddress, 60099);
// Create a TCP/IP socket.
Socket sender = new Socket(proxyIpAddress.AddressFamily,
SocketType.Stream, ProtocolType.Tcp);
// Connect the socket to the remote endpoint. Catch any errors.
try
{
sender.Connect(remoteEP);
Console.WriteLine("Socket connected to {0}",
sender.RemoteEndPoint.ToString());
sender.Send(Encoding.ASCII.GetBytes($"CONNECT google.com:80 HTTP/1.0\r\n\r\n"));
int bytesRec = 0;
while (bytesRec == 0)
{
// Receive the response from the remote device.
bytesRec = sender.Receive(bytes);
Console.WriteLine("{0}",
Encoding.ASCII.GetString(bytes, 0, bytesRec));
}
//clear buffer
bytes = new byte[1024];
bytesRec = 0;
sender.Send(Encoding.ASCII.GetBytes("GET / HTTP/1.0\r\n\r\n"));
//wait for response
while (bytesRec == 0) //if i dont add this it returns before it actually gets data
{
// Receive the response from the remote device.
bytesRec = sender.Receive(bytes);
Console.WriteLine("{0}",
Encoding.ASCII.GetString(bytes, 0, bytesRec));
}
if(bytes.Length == bytesRec) //full buffer so likely more but maybe not if final packet exactly 1024?
{
while (bytes.Length == bytesRec) //again if i miss this it returns too early
{
int subsequentBytes = 0;
while(subsequentBytes == 0) //this can get stuck if last packet exactly size of buffer i think
{
subsequentBytes = sender.Receive(bytes);
Console.WriteLine("{0}",
Encoding.ASCII.GetString(bytes, 0, subsequentBytes));
//this doesn't work. even when there are subsequent bytes sometimes it reads less
//than the size of the buffer so it exits prematurely. If I add a Thread.Sleep() here
// then it works but I don't want to hardcode the delay. How do I read this buffer properly?
Thread.Sleep(1000);
if (subsequentBytes > 0) bytesRec = subsequentBytes;
}
}
}
// Release the socket.
sender.Shutdown(SocketShutdown.Both);
sender.Close();
}
catch (Exception e)
{
Console.WriteLine("Unexpected exception : {0}", e.ToString());
}
}
catch (Exception e)
{
Console.WriteLine(e.ToString());
}
I understand this is difficult to follow and a lot of writing so if anyone perseveres with this they have my gratitude as the only option I can see is hardcoded pauses which will hurt performance and may still have issues.
EDIT
I have done some experiementing with different servers. If I ping the server then set a Thread.Sleep(pingValue) it works fine but if i set the sleep to lower than ping i get same issue.
Is there some good way with the .net libraries to account for this latency so I am not under/overestimating?

Asynchronous Client Socket, increasing the buffer size

I've implemented an Asynchronous Client Socket extremely similar to this example. Is there any reason why I cannot dramatically increase this buffer size? In this example the buffer size is 256 bytes. In many cases, my application ends up receiving data that is 5,000++ bytes of data. Should I increase the buffer size? Are there any reasons why I should NOT increase the buffer size?
Every once in a long while I'll get some issue where the data comes in out of order or a chunk is missing (yet to be confirmed exactly which it is). For example, one time I received some corrupt data that looks like this
Slice Id="0" layotartX='100'
The attribute called layotartX does not exist in my data, it was supposed to say layout=... but instead the layout got cut off and other data was appended to it later. I counted the bytes and noticed that it was cut off at exactly 256 bytes which just so happens to be my buffer size. It's very possible that increasing my buffer size would prevent this problem from happening (data coming in out of order??). Anyways, as stated in the 1st paragraph, I'm just asking if there is any reason I should NOT increase the buffer size to be say like 5,000 bytes or even 10,000 bytes.
Adding some code. Below is my modified ReceiveCallback function (see the linked example code above for the rest of the classes. When the ReceiveCallback receives data, it calls the "ReceiveSomeData" function which I've also posted below. For some reason every once in a while I get data out of order or pieces missing. The "ReceiveSomeData" function is in a class called "MyChitterChatter" and the "ReceiveCallback" function is in a class called "AsyncClient". So when you see the ReceiveSomeData function locking "this", it's locking the MyChitterChatter class. Is there were my problem could by lying?
private static void ReceiveCallback( IAsyncResult ar )
{
AppDelegate appDel = (AppDelegate)UIApplication.SharedApplication.Delegate;
try {
// Retrieve the state object and the client socket
// from the asynchronous state object.
StateObject state = (StateObject) ar.AsyncState;
Socket client = state.workSocket;
// Read data from the remote device.
int bytesRead = client.EndReceive(ar);
if (bytesRead > 0) {
// There might be more data, so store the data received so far.
string stuffWeReceived = Encoding.ASCII.GetString(state.buffer,0,bytesRead);
string debugString = "~~~~~ReceiveCallback~~~~~~ " + stuffWeReceived + " len = " + stuffWeReceived.Length + " bytesRead = " + bytesRead;
Console.WriteLine(debugString);
// Send this data to be received
appDel.wallInteractionScreen.ChitterChatter.ReceiveSomeData(stuffWeReceived);
// Get the rest of the data.
client.BeginReceive(state.buffer,0,StateObject.BufferSize,0,
new AsyncCallback(ReceiveCallback), state);
} else {
// Signal that all bytes have been received.
receiveDone.Set();
}
}
catch (Exception e) {
Console.WriteLine("Error in AsyncClient ReceiveCallback: ");
Console.WriteLine(e.Message);
Console.WriteLine(e.StackTrace);
}
}
public void ReceiveSomeData ( string data )
{
lock(this)
{
DataList_New.Add(data);
// Update the keepalive when we receive ANY data at all
IsConnected = true;
LastDateTime_KeepAliveReceived = DateTime.Now;
}
}
Yes, you absolutely should increase the buffer size to something much closer to what you expect to get in a single read. 32k or 64k would be fine choice for most uses.
Having said that, data never comes in "out of order" or "missing a chunk" if you're using a TCP/IP socket; if you see something like that, it's a bug in your code, not a bug in the socket. Share your code if you want help.

TcpClient missing data

I am trying to write network part for my game in C# using System.Net.Sockets and TcpClient class.
Each update server is sending information to client.
All information is built into 2kb packets, so in 1 update 1-2-3-5-10 packets can be sent.
Client is checking information and if information has right format - then reading it.
Everything is working fine, until server starts trying to send too many packets.
When it happens client time to time is receiving packets with wrong data 1 of 20-50 packets usually.
For example, 1-2 packets for 1 update usually are received fine, 3-10 packets for update giving wrong data streams.
If I am starting several clients in 1 time, that should get same data streams from server - they get different numbers of success and fail data streams.
What am I doing wrong, and how can I evade this wrong data streams?
Am I just sending too much data in 1 ms and it is needed to send it over time?
This is the sending information:
TcpClient client;
public void SendData(byte[] b)
{
//Try to send the data. If an exception is thrown, disconnect the client
try
{
lock (client.GetStream())
{
client.GetStream().BeginWrite(b, 0, b.Length, null, null);
}
}
catch (Exception ex)
{
MessageBox.Show(ex.Message);
}
}
This is the receiving information:
byte[] readBuffer;
int byfferSize = 2048;
private void StartListening()
{
client.GetStream().BeginRead(readBuffer, 0, bufferSize, StreamReceived, null);
}
private void StreamReceived(IAsyncResult ar)
{
int bytesRead = 0;
try
{
lock (client.GetStream())
{
bytesRead = client.GetStream().EndRead(ar); // просмотр длины сообщения
}
}
catch (Exception ex)
{ MessageBox.Show(ex.Message); }
//An error happened that created bad data
if (bytesRead == 0)
{
Disconnect();
return;
}
//Create the byte array with the number of bytes read
byte[] data = new byte[bytesRead];
//Populate the array
for (int i = 0; i < bytesRead; i++)
data[i] = readBuffer[i];
//Listen for new data
StartListening();
//Call all delegates
if (DataReceived != null)
DataReceived(this, data);
}
It is main network code.
I don't know what you do with the data after you've received it, but it's quite possible that you're not reading all of the data from the connection. You have:
bytesRead = client.GetStream().EndRead(ar);
There's no guarantee that the number of bytes you've read are all of the bytes that the server sent. For example, the server could have sent 2,048 bytes, but when you called Read, there were only 1,024 bytes available. The rest of them are still "in transit." As the documentation for NetworkStream.Read says:
The Read operation reads as much data as is available, up to the number of bytes specified by the size parameter
You could be getting partial packets. If your DataReceived handlers assume that the data buffer contains a complete packet, then you're going to have problems.
To reliably read from a network stream, you need to know how much data you're supposed to read, or you need a record separator. Something has to make sure that if you're expecting a complete packet that you get a complete packet before you try to process it. Your code just checks to see if bytesRead is not 0. If it's anything else, you just pass it on. This is going to be a problem unless your DataReceived handlers know how to buffer partial packets.
On another note, you really don't need to lock the network stream. Unless you can have several threads reading from the same stream. And that would be disastrous. Ditch the lock. You don't need it.

problems about getting repeated sockets which i do not intend

I'm working on a messenger program using c#, and have some issues.
The server, client has three connections(each for chatting, filetrans, cardgames).
For the first, and second connection, it's working just fine.
But the problem occurred on the third one, which handles less amount of packet types compared to the first two sockets.
It's not about not receiving the packet or not getting a connection, but it's getting(or sending)
more then one(which I intend to send) packets at a time. The server log keeps on saying that
on one click, the server receives about 3~20 same packets and sends them to the targeted client.
Before my partial codes for the third connection, I'll explain how this thing is suppose to work.
The difference between connection1,2 and connection3(which is making this issue) is only the time
when I make the connection. The 1,2 makes it's connection on the main form's form_load function, and works fine.
The connection 3 makes connection when I load the gaming form(not the main form). Also, the first
two socket's listening thread are on the main form, and the third has it's listening thread on it's
own form. That's the only difference that I can find. The connections, and listening threads are
the very same. Here are my codes for the gaming form.
public void GPACKET() //A Thread function for receiving packets from the server
{
int read = 0;
while (isGameTcpClientOnline)
{
try
{
read = 0;
read = gameNetStream.Read(greceiveBuffer, 0, 1024 * 4);
if (read == 0)
{
isGameTcpClientOnline = false;
break;
}
}
catch
{
isGameTcpClientOnline = false;
gameNetStream = null;
}
Packet.Packet packet = (Packet.Packet)Packet.Packet.Desirialize(greceiveBuffer);
switch ((int)packet.Type)
{
case (int)PacketType.gameInit:
{
gameinit = (GameInit)Packet.Packet.Desirialize(greceiveBuffer);
//codes for handling the datas from the packet...
break;
}
case (int)PacketType.gamepacket:
{
gp = (GamePacket)Packet.Packet.Desirialize(greceiveBuffer);
//codes for handling the datas from the packet...
break;
}
}
}
}
public void setPacket(bool turn) //makes the packet, and sends it to the server..
{
if (turn)
turnSetting(false);
else
turnSetting(true);
gps = new GamePacket();
gps.Type = (int)PacketType.gamepacket;
gps.isFirstPacket = false;
gps.sym = symbol;
gps.ccapacity = cardCapacity;
gps.currentList = current_list[0].Tag.ToString();
gps.isturn = turn;
gps.opname = opid;
List<string> tempList = new List<string>();
foreach (PictureBox pb in my_list)
{
tempList.Add(pb.Image.Tag.ToString());
}
gps.img_list = tempList;
Packet.Packet.Serialize(gps).CopyTo(this.gsendBuffer, 0);
this.Send();
label5.Text = symbol + ", " + current_list[0].Tag.ToString();
}
public void Send() //actually this part sends the Packet through the netstream.
{
gameNetStream.Write(this.gsendBuffer, 0, this.gsendBuffer.Length);
gameNetStream.Flush();
for (int j = 0; j < 1024 * 4; j++)
{
this.gsendBuffer[j] = 0;
}
}
I really don't know why I'm having this problem.
Is it about the connection point? or is it about the receiving point? Or is it about the sending point? If I establish this connection on the same place to the connection1,2(which is on the main form. If i do this, I should make the "GPACKET" function running on the main form as well)?
This looks like a classic "assume we read an entire packet", where by "packet" here I mean your logical message, not the underlying transport packet. For example:
read = gameNetStream.Read(greceiveBuffer, 0, 1024 * 4);
...
Packet.Packet packet = (Packet.Packet)Packet.Packet.Desirialize(greceiveBuffer);
Firstly, it strikes me as very off that read wouldn't be needed in Desirialize, but: what makes you think we read an entire packet? we could have read:
one entire packet (only)
half of one packet
one byte
three packets
the last 2 bytes of one packet, 1 entire packet, and the first 5 bytes of a third packet
TCP is just a stream; all that Read is guaranteed to give you is "at least 1 byte and at most {count} bytes, or an EOF". It is very unusual that calls to Write would map anything like the calls to Read. It is your job to understand the protocol, and decide how much data to buffer, and then how much of that buffer to treat as one packet vs holding them back for the next packet(s).
See also: How many ways can you mess up IO?, in partuclar "Network packets: what you send is not (usually) what you get".
To fill exactly a 4096 byte buffer:
int expected = 4096, offset = 0, read;
while(expected != 0 &&
(read = gameNetStream.Read(greceiveBuffer, offset, expected)) > 0)
{
offset += read;
expected -= read;
}
if(expected != 0) throw new EndOfStreamException();

Are there well-known patterns for asynchronous network code in C#?

I recently wrote a quick-and-dirty proof-of-concept proxy server in C# as part of an effort to get a Java web application to communicate with a legacy VB6 application residing on another server. It's ridiculously simple:
The proxy server and clients both use the same message format; in the code I use a ProxyMessage class to represent both requests from clients and responses generated by the server:
public class ProxyMessage
{
int Length; // message length (not including the length bytes themselves)
string Body; // an XML string containing a request/response
// writes this message instance in the proper network format to stream
// (helper for response messages)
WriteToStream(Stream stream) { ... }
}
The messages are as simple as could be: the length of the body + the message body.
I have a separate ProxyClient class that represents a connection to a client. It handles all the interaction between the proxy and a single client.
What I'm wondering is are they are design patterns or best practices for simplifying the boilerplate code associated with asynchronous socket programming? For example, you need to take some care to manage the read buffer so that you don't accidentally lose bytes, and you need to keep track of how far along you are in the processing of the current message. In my current code, I do all of this work in my callback function for TcpClient.BeginRead, and manage the state of the buffer and the current message processing state with the help of a few instance variables.
The code for my callback function that I'm passing to BeginRead is below, along with the relevant instance variables for context. The code seems to work fine "as-is", but I'm wondering if it can be refactored a bit to make it clearer (or maybe it already is?).
private enum BufferStates
{
GetMessageLength,
GetMessageBody
}
// The read buffer. Initially 4 bytes because we are initially
// waiting to receive the message length (a 32-bit int) from the client
// on first connecting. By constraining the buffer length to exactly 4 bytes,
// we make the buffer management a bit simpler, because
// we don't have to worry about cases where the buffer might contain
// the message length plus a few bytes of the message body.
// Additional bytes will simply be buffered by the OS until we request them.
byte[] _buffer = new byte[4];
// A count of how many bytes read so far in a particular BufferState.
int _totalBytesRead = 0;
// The state of the our buffer processing. Initially, we want
// to read in the message length, as it's the first thing
// a client will send
BufferStates _bufferState = BufferStates.GetMessageLength;
// ...ADDITIONAL CODE OMITTED FOR BREVITY...
// This is called every time we receive data from
// the client.
private void ReadCallback(IAsyncResult ar)
{
try
{
int bytesRead = _tcpClient.GetStream().EndRead(ar);
if (bytesRead == 0)
{
// No more data/socket was closed.
this.Dispose();
return;
}
// The state passed to BeginRead is used to hold a ProxyMessage
// instance that we use to build to up the message
// as it arrives.
ProxyMessage message = (ProxyMessage)ar.AsyncState;
if(message == null)
message = new ProxyMessage();
switch (_bufferState)
{
case BufferStates.GetMessageLength:
_totalBytesRead += bytesRead;
// if we have the message length (a 32-bit int)
// read it in from the buffer, grow the buffer
// to fit the incoming message, and change
// state so that the next read will start appending
// bytes to the message body
if (_totalBytesRead == 4)
{
int length = BitConverter.ToInt32(_buffer, 0);
message.Length = length;
_totalBytesRead = 0;
_buffer = new byte[message.Length];
_bufferState = BufferStates.GetMessageBody;
}
break;
case BufferStates.GetMessageBody:
string bodySegment = Encoding.ASCII.GetString(_buffer, _totalBytesRead, bytesRead);
_totalBytesRead += bytesRead;
message.Body += bodySegment;
if (_totalBytesRead >= message.Length)
{
// Got a complete message.
// Notify anyone interested.
// Pass a response ProxyMessage object to
// with the event so that receivers of OnReceiveMessage
// can send a response back to the client after processing
// the request.
ProxyMessage response = new ProxyMessage();
OnReceiveMessage(this, new ProxyMessageEventArgs(message, response));
// Send the response to the client
response.WriteToStream(_tcpClient.GetStream());
// Re-initialize our state so that we're
// ready to receive additional requests...
message = new ProxyMessage();
_totalBytesRead = 0;
_buffer = new byte[4]; //message length is 32-bit int (4 bytes)
_bufferState = BufferStates.GetMessageLength;
}
break;
}
// Wait for more data...
_tcpClient.GetStream().BeginRead(_buffer, 0, _buffer.Length, this.ReadCallback, message);
}
catch
{
// do nothing
}
}
So far, my only real thought is to extract the buffer-related stuff into a separate MessageBuffer class and simply have my read callback append new bytes to it as they arrive. The MessageBuffer would then worry about things like the current BufferState and fire an event when it received a complete message, which the ProxyClient could then propagate further up to the main proxy server code, where the request can be processed.
I've had to overcome similar problems. Here's my solution (modified to fit your own example).
We create a wrapper around Stream (a superclass of NetworkStream, which is a superclass of TcpClient or whatever). It monitors reads. When some data is read, it is buffered. When we receive a length indicator (4 bytes) we check if we have a full message (4 bytes + message body length). When we do, we raise a MessageReceived event with the message body, and remove the message from the buffer. This technique automatically handles fragmented messages and multiple-messages-per-packet situations.
public class MessageStream : IMessageStream, IDisposable
{
public MessageStream(Stream stream)
{
if(stream == null)
throw new ArgumentNullException("stream", "Stream must not be null");
if(!stream.CanWrite || !stream.CanRead)
throw new ArgumentException("Stream must be readable and writable", "stream");
this.Stream = stream;
this.readBuffer = new byte[512];
messageBuffer = new List<byte>();
stream.BeginRead(readBuffer, 0, readBuffer.Length, new AsyncCallback(ReadCallback), null);
}
// These belong to the ReadCallback thread only.
private byte[] readBuffer;
private List<byte> messageBuffer;
private void ReadCallback(IAsyncResult result)
{
int bytesRead = Stream.EndRead(result);
messageBuffer.AddRange(readBuffer.Take(bytesRead));
if(messageBuffer.Count >= 4)
{
int length = BitConverter.ToInt32(messageBuffer.Take(4).ToArray(), 0); // 4 bytes per int32
// Keep buffering until we get a full message.
if(messageBuffer.Count >= length + 4)
{
messageBuffer.Skip(4);
OnMessageReceived(new MessageEventArgs(messageBuffer.Take(length)));
messageBuffer.Skip(length);
}
}
// FIXME below is kinda hacky (I don't know the proper way of doing things...)
// Don't bother reading again. We don't have stream access.
if(disposed)
return;
try
{
Stream.BeginRead(readBuffer, 0, readBuffer.Length, new AsyncCallback(ReadCallback), null);
}
catch(ObjectDisposedException)
{
// DO NOTHING
// Ends read loop.
}
}
public Stream Stream
{
get;
private set;
}
public event EventHandler<MessageEventArgs> MessageReceived;
protected virtual void OnMessageReceived(MessageEventArgs e)
{
var messageReceived = MessageReceived;
if(messageReceived != null)
messageReceived(this, e);
}
public virtual void SendMessage(Message message)
{
// Have fun ...
}
// Dispose stuff here
}
I think the design you've used is fine that's roughly how I would and have done the same sort of thing. I don't think you'd gain much by refactoring into additional classes/structs and from what I've seen you'd actually make the solution more complex by doing so.
The only comment I'd have is as to whether the two reads where the first is always the messgae length and the second always being the body is robust enough. I'm always wary of approaches like that as if they somehow get out of sync due to an unforseen circumstance (such as the other end sending the wrong length) it's very difficult to recover. Instead I'd do a single read with a big buffer so that I always get all the available data from the network and then inspect the buffer to extract out complete messages. That way if things do go wrong the current buffer can just be thrown away to get things back to a clean state and only the current messages are lost rather than stopping the whole service.
Actually at the moment you would have a problem if you message body was big and arrived in two seperate receives and the next message in line sent it's length at the same time as the second half of the previous body. If that happened your message length would end up appended to the body of the previous message and you'd been in the situation as desecribed in the previous paragraph.
You can use yield return to automate the generation of a state machine for asynchronous callbacks. Jeffrey Richter promotes this technique through his AsyncEnumerator class, and I've played around with the idea here.
There's nothing wrong with the way you've done it. For me, though, I like to separate the receiving of the data from the processing of it, which is what you seem to be thinking with your proposed MessageBuffer class. I have discussed that in detail here.

Categories