I use Visual Studio with Resharper and NUnit test framework.
Sometimes a small change in business logic code breaks a lot of unittests. It's OK, you know that the results of unittests would be different and new values are valid now. Is there a way to quick-fix all of them?
You can use the various refactor tools which come with VS to make (small) changes to your code that are not a result of a change in business logic. Examples of this are renaming variables and functions or moving code to a different namespace.
Especially when you use ReSharper, there are lots of options that will help you to refactor code. (Resharper menu > Refactor).
If you are changing the business logic of your application then the software requirements must have changed. Therefore the unit tests that apply to that logic should fail and there is no way to automagically correct this.
Actually there is no solution for quick-fix expected values. If your changes break a lot of integration tests, you have to manually correct all of tests.
The only hint is to minimize distance between copy-paste operations of expected values.
Related
I am working on unit testing a code generator. A unit test's basic flow is:
The Unit Test calls the appropriate method and code is generated. Easy enough.
The Unit Test compiles the generated c# code (of step #1). If code compliles, proceed to step 3, else stop everything.
If step#2 suceeded, the Unit Test then runs other, pre-written unit tests on the generated compiled code of step 2. For this I will utilize the solution described here: Running individual NUnit tests programmatically and NUnit API And Running Tests Programmatically .
The approach for step #2 is what this question is about: I am thinking I have two options (1) Run Visual Studio Command Line to compile the solution Or (2) use
CSharpCodeProvider with CompilerParameters. Any recommendations would be greatly appreciated.
I personally use Roslyn on a daily basis, and so I was tempted to go with Kenneth and recommend it, but, in your case, if the only information you want to know is if the code compiled, I would lean more towards the CSharpCodeProvider class, especially if each method that is being unit tested generates a single file of code. If you would have to to any kind of analysis on the generated code or if you , it might be worth using Roslyn, but I doubt this is your case. The only other pro Roslyn might bring you is that you can open up a whole project/solution directly instead of trying to compile every separate file, which might appeal to you (it's a lot simpler to use than you might think).
Besides this advice, all I can say is that if you just have to choose between CSharpCodeProvider and the Command Line option, I would definitely go with the CSharpCodeProvider, since it already wraps and exposes the data and operations relevant to you analysis (Are there any errors ? => let's check if compiledResults.Errors.Count == 0). You don't need to call an external process (the C# compiler) in order to get what you want, which makes it a much simpler option in my opinion, while also having a lot of flexibility (i.e. The CompilerParameters)
I don't know if you have started playing around with it, but you shouldn't have too many problems with this method. Hope this helps.
I have looked into TDD, unfortunately the project has had most of the development completed, and there isn't any point in implementing it now. However, the project has not been deployed, and there will be changes every week to add to the existing code.
Are there any types of tests I can add to the site that I can run daily to ensure my code is always working? In case other people starting development on the site, or any new code is added, or old code is edited?
Of course there are types of tests you can add:
Unit tests - testing classes in isolation (assuming a DI structure to the code)
Integration tests - testing interactions between classes (typically two classes)
UI tests - using automation (selenium for example, to automate the browser) to test the application from UI through to the database
Performance testing
It is best to concentrate on areas of change (bug fixes, feature requests) in order to get the best bang for the buck.
Nitpick: TDD is a design methodology using testing frameworks, not a testing methodology.
If there will be weekly changes, "the project has had most of the development completed" is probably not a true statement. Most of the development, in fact, still lies ahead.
It is still very worth introducing unit tests. I would suggest creating new tests each week that cover the areas of code that undergo maintenance.
Well, you wouldn't be implementing TDD if you are retro fitting tests into a legacy codebase. I would suggest investing time in producing at least unit tests for new code. Hopefully your code will encroach on legacy code which you can then place unit tests around. Baby steps is the key with legacy code. There is no hard and fast way to do this.
Unit tests can always be added, and it's always a good idea to add them. I would suggest NUnit in your case, because it seems to work really well with existing code. It's also really easy to use.
We have a project that is starting to get large, and we need to start applying Unit Tests as we start to refactor. What is the best way to apply unit tests to a project that already exists? I'm (somewhat) used to doing it from the ground up, where I write the tests in conjunction with the first lines of code onward. I'm not sure how to start when the functionality is already in place. Should I just start writing test for each method from the repository up? Or should I start from the Controllers down?
update:
to clarify on the size of the project.. I'm not really sure how to describe this other than to say there's 8 Controllers and about 167 files that have a .cs extension, all done over about 7 developer months..
As you seem to be aware, retrofitting testing into an existing project is not easy. Your method of writing tests as you go is the better way. Your problem is one of both process and technology- tests must be required by everyone or no one will use them.
The recommendation I've heard and agree with is that you should not attempt to wrap tests around an existing codebase all at once. You'll never finish. Start by working testing into your bugfix process- every fixed bug gets a test. This will start to work testing into your existing code over time. New code must always have tests, of course. Eventually, you'll get the coverage up to a reasonable percentage, but it will take time.
One good book I've had recommended to me is Working Effectively With Legacy Code by Michael C. Feathers. The title doesn't really demonstrate it, but working testing into an existing codebase is a major subject of the book.
There are lots of approaches to fitting tests around an existing codebase. Unit tests are not necessarily the most productive way to start. If you have a large amount of code written then you might want to think about functional and integration tests before you work down to the level of unit tests. Those higher level tests will help give you broad assurance that your product continues to work while you make changes to improve the structure and retrofit unit tests.
One of the practices that non-test-first organizations use that I recommend highly in your situation is this: Have someone other than the author of the original code section write the unit tests for that section. This gets you some level of cross-training and sanity checking, and it also helps ensure that you don't preserve assumptions which will do damage to your code overall.
Other than that, I'll second the recommendation for Michael Feathers' book.
For a legacy project with a decently sized code base, unit testing everything may not be a justifiable effort spend due to budgetary constraints etc. Based on my reading on this subject, I would suggest:
Every bug which has been leaked to QA, Release or Production environment is a candidate for writing unit test case(s) along with fixing the bug.
Use source control to find out which sections/files of your code base are changing more frequently than others. Bring those sections/files under unit test coverage.
New story development should have meaningful unit test case written against them.
Keep monitoring the unit test coverage to observe any downward trend in particular area of the code base. This area needs you to zoom-in and review if unit test coverage is loosing its effectiveness or not.
P.S.: I have added Michael Feathers book to my reading list, thanks for suggesting it.
I manage a rather large application (50k+ lines of code) by myself, and it manages some rather critical business actions. To describe the program simple, I would say it's a fancy UI with the ability to display and change data from the database, and it's managing around 1,000 rental units, and about 3k tenants and all the finances.
When I make changes, because it's so large of a code base, I sometimes break something somewhere else. I typically test it by going though the stuff I changed at the functional level (i.e. I run the program and work through the UI), but I can't test for every situation. That is why I want to get started with unit testing.
However, this isn't a true, three tier program with a database tier, a business tier, and a UI tier. A lot of the business logic is performed in the UI classes, and many things are done on events. To complicate things, everything is database driven, and I've not seen (so far) good suggestions on how to unit test database interactions.
How would be a good way to get started with unit testing for this application. Keep in mind. I've never done unit testing or TDD before. Should I rewrite it to remove the business logic from the UI classes (a lot of work)? Or is there a better way?
I would start by using some tool that would test the application through the UI. There are a number of tools that can be used to create test scripts that simulate the user clicking through the application.
I would also suggest that you start adding unit tests as you add pieces of new functionality. It is time consuming to create complete coverage once the appliction is developed, but if you do it incrementally then you distribute the effort.
We test database interactions by having a separate database that is used just for unit tests. In that way we have a static and controllable dataset so that requests and responses can be guaranteed. We then create c# code to simulate various scenarios. We use nUnit for this.
I'd highly recommend reading the article Working Effectively With Legacy Code. It describes a workable strategy for what you're trying to accomplish.
One option is this -- every time a bug comes up, write a test to help you find the bug and solve the problem. Make it such that the test will pass when the bug is fixed. Then, once the bug is resolved you have a tool that'll help you detect future changes that might impact the chunk of code you just fixed. Over time your test coverage will improve, and you can run your ever-growing test suite any time you make a potentially far-reaching change.
TDD implies that you build (and run) unit tests as you go along. For what you are trying to do - add unit tests after the fact - you may consider using something like Typemock (a commercial product).
Also, you may have built a system that does not lend itself to be unit tested, and in this case some (or a lot) of refactoring may be in order.
First, I would recommend reading a good book about unit testing, like The Art Of Unit Testing. In your case, it's a little late to perform Test Driven Development on your existing code, but if you want to write your unit tests around it, then here's what I would recommend:
Isolate the code you want to test into code libraries (if they're not already in libraries).
Write out the most common Use Case scenarios and translate them to an application that uses your code libraries.
Make sure your test program works as you expect it to.
Convert your test program into unit tests using a testing framework.
Get the green light. If not, then your unit tests are faulty (assuming your code libraries work) and you should do some debugging.
Increase the code and scenario coverage of your unit tests: What if you entered unexpected results?
Get the green light again. If the unit test fails, then it's likely that your code library does not support the extended scenario coverage, so it's refactoring time!
And for new code, I would suggest you try it using Test Driven Development.
Good luck (you'll need it!)
I'd recommend picking up the book Working Effectively with Legacy Code by Michael Feathers. This will show you many techniques for gradually increasing the test coverage in your codebase (and improving the design along the way).
Refactoring IS the better way. Even though the process is daunting you should definitely separate the presentation and business logic. You will not be able to write good unit tests against your biz logic until you make that separation. It's as simple as that.
In the refactoring process you will likely find bugs that you didn't even know existed and, by the end, be a much better programmer!
Also, once you refactor your code you'll notice that testing your db interactions will become much easier. You will be able write tests that perform actions like: "add new tenant" which will involve creating a mock tenant object and saving "him" to the db. For you next test you would write "GetTenant" and try and get that tenant that you just created from the db and into your in-memory representation... Then compare your first and second tenant to make sure all fields match values. Etc. etc.
I think it is always a good idea to separate your business logic from UI. There several benefits to this including easier unit testing and expandability. You might also want to refer to pattern based programming. Here is a link http://en.wikipedia.org/wiki/Design_pattern_(computer_science) that will help you understand design patterns.
One thing you could do for now, is within your UI classes isolate all the business logic and different business bases functions and than within each UI constructor or page_load have unit test calls that test each of the business functions. For improved readability you could apply #region tag around the business functions.
For your long term benefit, you should study design patterns. Pick a pattern that suits your project needs and redo your project using the design pattern.
It depends on the language you are using. But in general start with a simple testing class that uses some made up data(but still something 'real') to test your code with. Make it simulate what would happen in the app. If you are making a change in a particular part of the app write something that works before you change the code. Now since you have already written the code getting testing up is going to be quite a challenge when trying to test the entire app. I would suggest start small. But now as you write code, write unit testing first then write your code. You might also considering refactoring but I would weigh the costs of refactoring vs rewriting a little as you go unit testing along the way.
I haven't tried adding test for legacy applications since it is really a difficult chore. If you are planning to move some of the business logic out of the UI and in a separate layer, You may add your initial Test units here(refactoring and TDD). Doing so will give you an introduction for creating unit test for your system. It is really a lot of work but I guess it is the best place to start. Since it is a database driven application, I suggest that you use some mocking tools and DBunit tools while creating your test to simulate the database related issues.
There's no better way to get started unit testing than to try it - it doesn't take long, it's fun and addictive. But only if you're working on testable code.
However, if you try to learn unit testing by fixing an application like the one you've described all at once, you'll probably get frustrated and discouraged - and there's a good chance you'll just think unit testing is a waste of time.
I recommend downloading a unit testing framework, such as NUnit or XUnit.Net.
Most of these frameworks have online documentation that provides a brief introduction, like the NUnit Quick Start. Read that, then choose a simple, self-contained class that:
Has few or no dependencies on other classes - at least not on complex classes.
Has some behavior: a simple container with a bunch of properties won't really show you much about unit testing.
Try writing some tests to get good coverage on that class, then compile and run the tests.
Once you get the hang of that, start looking for opportunities to refactor your existing code, especially when adding new features or fixing bugs. When those refactorings lead to classes that meet the criteria above, write some tests for them. Once you get used to it, you can start by writing tests.
We have a large body of legacy code, several portions of which are scheduled for refactoring or replacement. We wish to optimise parts that currently impact on the user-experience, facilitate reuse in a new product being planned, and hopefully improve maintainability too.
We have quite good/comprehensive functional tests for an existing product. These are a mixture of automated and manually-driven GUI tests, but they can take a developer more than half a day to run fully. The "low-level domain logic" has a good suite of unit tests (NUnit) with good coverage. Unfortunately, the remainder of the code has no unit tests (or, at least, no worthy unit tests).
What I'd like to find is a tool that automatically generates unit tests for specific methods/classes and maybe specific interfaces based on their use and behaviour in the functional tests. These unit tests would be invaluable for refactoring, and would also be run as part of our C.I. system to detect regressions much earlier than is currently happening (and to localise regressions much better than "button X doesn't work.").
Do any such tools exist? Do you have any recommendations for me?
I've come across Parasoft .TEST, which looks like it might do want I want. Do you have any comments on that, with respect to my situation?
I don't think something that just generates test code from a static analysis, ala NStub, is useful here. I suppose it is actually the generation of representative test data that is really important.
Please ignore the merits, or lack of, of automated test generation - it is not something I'd usually advocate. (Not least because you get tests that pass for broken code!)
Try Pex:
Right from the Visual Studio code editor, Pex finds interesting input-output values of your methods, which you can save as a small test suite with high code coverage. Pex performs a systematic analysis, hunting for boundary conditions, exceptions and assertion failures, which you can debug right away. Pex enables Parameterized Unit Testing, an extension of Unit Testing that reduces test maintenance costs.
Well, you could look at PEX - but I believe that invents its own data (it doesn't watch your existing tests, AFAIK).