【Question1】
When in the Client-Activation mode for Remoting:
RemotingConfiguration.RegisterActivatedClientType(
typeof(ServerRemoteObject.ServerObject),
"tcp://localhost:8080/ServiceMessage");
ServerRemoteObject.ServerObject serverObj = new ServerRemoteObject.ServerObject();
Suppose "ServiceRemoteObject" is a class inherited from MarshalByRefObject and it has a default public constructor, and it's referred by the client side application.
So if I say:
ServerRemoteObject.ServerObject serverObj = new ServerRemoteObject.ServerObject();
How does the client application know whether I'm creating the serverObj instance through the Remoting, not directly creating that instance by "new" locally?
【Question 2】
I don't want to refer the ServerRemoteObject from the server side, so I just tricked the server side by creating the same class at the client side:
public class ServerObject:MarshalByRefObject
{
public ServerObj()
{
throw new System.NotImplementedException();
}
public Person GetPersonInfo(string name,string sex,int age)
{
throw new System.NotImplementedException();
}
}
This also works fine, why? Because in my mind, the server-side class's namespaces... aren't the same as the client one, which means I've cheated the server-side. But How it can be converted?
Related
I have a WCF service and a client and I want both to share the same class library so they both have access to the same types. My issue is that one of the classes is a MessageContract because it is an object that is used to upload files to the server via streaming. The class is as follows:
[MessageContract]
public class RemoteFileInfo : IDisposable
{
private string fileName;
private long length;
private System.IO.Stream fileByteStream;
public string FileName
{
set { this.fileName = value; }
get { return this.fileName; }
}
public long Length
{
set { this.length = value; }
get { return this.length; }
}
[MessageBodyMember(Order = 1)]
public System.IO.Stream FileByteStream
{
set { this.fileByteStream = value; }
get { return this.fileByteStream; }
}
public void Dispose()
{
if (fileByteStream != null)
{
fileByteStream.Dispose();
fileByteStream = null;
}
}
}
This class is contained in a library that is shared between the server and the client. If I comment out the line that says [MessageContract] and then update the service reference, I am able to successfully share the type with the client and the service reference does not try to re-implement the type on its own. However, in order for streaming to work I need to make sure that this class is indeed a MessageContract so that the WCF service knows to only expect a single body member in the message and to deal with it appropriately.
If I uncomment the line that says [MessageContract] and update the service reference on the client side, it tries to re-implement RemoteFileInfo via the service reference instead of reusing the RemoteFileInfo that already exists in the library that both the service and the client are sharing. This means I end up with two of the same classes, MyClientProject.Shared.RemoteFileInfo and ServiceReference.RemoteFileInfo, which is ambiguous and causes the code to throw tons of errors.
I can get around it (sloppily) by commenting out the [MessageContract] line, updating the service reference, and then uncommenting the line on the service side before starting the service, so the client side thinks that it is just a normal class but the WCF service thinks its a MessageContract. This seems very silly to have to do and I am convinced theres a better way to do it. Any ideas?
Since you're already sharing all your data contracts, what's the point of not sharing your service contract interface as well, and simply avoid doing code generation at all? That would make far more sense.
I have an application(say App1) which is connected to another application (App2) via .net remoting. App2 acts as a server.. If App2 goes down App1 will not be able to pull data from App2. We are planning to run an instance of App2(say App2a) in another machine so that if App2 goes down App1 automatically takes the data from App2a. When App2 runs again.. App1 will need to take the data from App2. The fail over mechanism is not implemented yet... Please suggest a design pattern so that in future any number of server instances can be added for App1 to pull data.
Thanks
The closest design pattern that I can think of is the Chain of Responsibility pattern.
The idea is that:
You build a chain of objects (servers)
Let the object (server) handle the request
If it is unable to do so, pass the request down the chain
Code:
// Server interface
public interface IServer
{
object FetchData(object param);
}
public class ServerProxyBase: IServer
{
// Successor.
// Alternate server to contact if the current instance fails.
public ServerBase AlternateServerProxy { get; set; }
// Interface
public virtual object FetchData(object param)
{
if (AlternateServerProxy != null)
{
return AlternateServerProxy.FetchData(param);
}
throw new NotImplementedException("Unable to recover");
}
}
// Server implementation
public class ServerProxy : ServerProxyBase
{
// Interface implementation
public override object FetchData(object param)
{
try
{
// Contact actual server and return data
// Remoting/WCF code in here...
}
catch
{
// If fail to contact server,
// run base method (attempt to recover)
return base.FetchData(param);
}
}
}
public class Client
{
private IServer _serverProxy;
public Client()
{
// Wire up main server, and its failover/retry servers
_serverProxy = new ServerProxy("mainserver:2712")
{
AlternateServerProxy = new ServerProxy("failover1:2712")
{
AlternateServerProxy = new ServerProxy("failover2:2712")
}
};
}
}
This example wires up a chain of 3 servers (mainserver, failover1, failover2).
The call the FetchData() will always attempt to go to mainserver.
When it fails, it'll then attempt failover1, followed by failover2, before finally throwing an exception.
If it were up to me, I wouldn't mind using something quick and dirty such as:
public class FailoverServerProxy: IServer
{
private readonly List<ServerProxy> _servers;
public FailoverServerProxy RegisterServer(Server server)
{
_servers.Add(server);
return this;
}
// Implement interface
public object FetchData(object param)
{
foreach(var server in _servers)
{
try
{
return server.FetchData(param);
}
catch
{
// Failed. Continue to next server in list
continue;
}
}
// No more servers to try. No longer able to recover
throw new Exception("Unable to fetch data");
}
}
public class Client
{
private IServer _serverProxy;
public Client()
{
// Wire up main server, and its failover/retry servers
_serverProxy = new FailoverServerProxy()
.RegisterServer("mainserver:2712")
.RegisterServer("failover1:2712")
.RegisterServer("failover2:2712");
}
}
I think it borrows ideas from other patterns such as Facade, Strategy and Proxy.
But my motivations are simply to:
Make the least impact on existing classes (ie, No extra property in the Server class)
Separation of concerns:
Central class for the server's failover/recovery logic.
Keep the failover/recovery's implementation hidden from the Client/Server.
We have an old Silverlight UserControl + WCF component in our framework and we would like to increase the reusability of this feature. The component should work with basic functionality by default, but we would like to extend it based on the current project (without modifying the original, so more of this control can appear in the full system with different functionality).
So we made a plan, where everything looks great, except one thing. Here is a short summary:
Silverlight UserControl can be extended and manipulated via ContentPresenter at the UI and ViewModel inheritance, events and messaging in the client logic.
Back-end business logic can be manipulated with module loading.
This gonna be okay I think. For example you can disable/remove fields from the UI with overriden ViewModel properties, and at the back-end you can avoid some action with custom modules.
The interesting part is when you add new fields via the ContentPresenter. Ok, you add new properties to the inherited ViewModel, then you can bind to them. You have the additional data. When you save base data, you know it's succeeded, then you can start saving your additional data (additional data can be anything, in a different table at back-end for example). Fine, we extended our UserControl and the back-end logic and the original userControl still doesn't know anything about our extension.
But we lost transaction. For example we can save base data, but additional data saving throws an exception, we have the updated base data but nothing in the additional table. We really doesn't want this possibility, so I came up with this idea:
One WCF call should wait for the other at the back-end, and if both arrived, we can begin cross thread communication between them, and of course, we can handle the base and the additional data in the same transaction, and the base component still doesn't know anything about the other (it just provide a feature to do something with it, but it doesn't know who gonna do it).
I made a very simplified proof of concept solution, this is the output:
1 send begins
Press return to send the second piece
2 send begins
2 send completed, returned: 1
1 send completed, returned: 2
Service
namespace MyService
{
[ServiceContract]
[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple)]
public class Service1
{
protected bool _sameArrived;
protected Piece _same;
[OperationContract]
public Piece SendPiece(Piece piece)
{
_sameArrived = false;
Mediator.Instance.WaitFor(piece, sameArrived);
while (!_sameArrived)
{
Thread.Sleep(100);
}
return _same;
}
protected void sameArrived(Piece piece)
{
_same = piece;
_sameArrived = true;
}
}
}
Piece (entity)
namespace MyService
{
[DataContract]
public class Piece
{
[DataMember]
public long ID { get; set; }
[DataMember]
public string SameIdentifier { get; set; }
}
}
Mediator
namespace MyService
{
public sealed class Mediator
{
private static Mediator _instance;
private static object syncRoot = new Object();
private List<Tuple<Piece, Action<Piece>>> _waitsFor;
private Mediator()
{
_waitsFor = new List<Tuple<Piece, Action<Piece>>>();
}
public static Mediator Instance
{
get
{
if (_instance == null)
{
lock (syncRoot)
{
_instance = new Mediator();
}
}
return _instance;
}
}
public void WaitFor(Piece piece, Action<Piece> callback)
{
lock (_waitsFor)
{
var waiter = _waitsFor.Where(i => i.Item1.SameIdentifier == piece.SameIdentifier).FirstOrDefault();
if (waiter != null)
{
_waitsFor.Remove(waiter);
waiter.Item2(piece);
callback(waiter.Item1);
}
else
{
_waitsFor.Add(new Tuple<Piece, Action<Piece>>(piece, callback));
}
}
}
}
}
And the client side code
namespace MyClient
{
class Program
{
static void Main(string[] args)
{
Client c1 = new Client(new Piece()
{
ID = 1,
SameIdentifier = "customIdentifier"
});
Client c2 = new Client(new Piece()
{
ID = 2,
SameIdentifier = "customIdentifier"
});
c1.SendPiece();
Console.WriteLine("Press return to send the second piece");
Console.ReadLine();
c2.SendPiece();
Console.ReadLine();
}
}
class Client
{
protected Piece _piece;
protected Service1Client _service;
public Client(Piece piece)
{
_piece = piece;
_service = new Service1Client();
}
public void SendPiece()
{
Console.WriteLine("{0} send begins", _piece.ID);
_service.BeginSendPiece(_piece, new AsyncCallback(sendPieceCallback), null);
}
protected void sendPieceCallback(IAsyncResult result)
{
Piece returnedPiece = _service.EndSendPiece(result);
Console.WriteLine("{0} send completed, returned: {1}", _piece.ID, returnedPiece.ID);
}
}
}
So is it a good idea to wait for another WCF call (which may or may not be invoked, so in a real example it would be more complex), and process them together with cross threading communication? Or not and I should look for another solution?
Thanks in advance,
negra
If you want to extend your application without changing any existing code, you can use MEF that is Microsoft Extensibility Framework.
For using MEF with silverlight see: http://development-guides.silverbaylabs.org/Video/Silverlight-MEF
I would not wait for 2 WCF calls from Silverlight, for the following reasons:
You are making your code more complex and less maintainable
You are storing business knowledge, that two services should be called together, in the client
I would call a single service that aggreagated the two services.
It doesn't feel like a great idea to me, to be honest. I think it would be neater if you could package up both "partial" requests in a single "full" request, and wait for that. Unfortunately I don't know the best way of doing that within WCF. It's possible that there's a generalized mechanism for this, but I don't know about it. Basically you'd need some loosely typed service layer where you could represent a generalized request and a generalized response, routing the requests appropriately in the server. You could then represent a collection of requests and responses easily.
That's the approach I'd look at, personally - but I don't know how neatly it will turn out in WCF.
I have a class Server that implements interface IServer that is accessible using .net remoting (i have no chioce on the matter JICYAW).
internally this server uses other classes to implement logic and data access.
this server class has constructor injected dependencies that it needs to do its job.
when a client calls in (per call) the remoting framework will instatiate a Server instance using a parameterless constructor and not (of course) using Ninject.
how can i get Ninject to be the one in charge for new'ing up the class ?
i have seen this similar SO question but this isnt relevant for Ninject.
thanks for your help
You can create a service facade that will be called by the client. This facade will internally call your container to resolve the real service. For instance:
public class ServiceFacade : IService
{
private readonly IService service;
// default constructor
public ServiceFacade()
{
this.service = YourContainer.Current.Resolve<IService>();
}
void IService.ServiceOperation()
{
this.service.ServiceOperation();
}
}
What might work is to intercept the calls to those objects using a proxy and forward the calls to the real object. Note that I'm not very experienced with this, so I'm not sure if this actually works, but here goes:
public class DependencyInjectionProxy : RealProxy
{
private object realInstance;
public DependencyInjectionProxy(Type classToProxy,
object realInstance) : base(classToProxy)
{
this.realInstance = realInstance;
}
public static T MakeProxy<T>(T realInstance)
{
return (T)(new DependencyInjectionProxy(typeof(T),
realInstance).GetTransparentProxy());
}
public override IMessage Invoke(IMessage msg)
{
if (msg is IMethodCallMessage)
{
var message = (IMethodCallMessage)msg;
object value = message.MethodBase.Invoke(
this.realInstance, message.Args);
Console.WriteLine(value);
return new ReturnMessage(value, null, 0, null, message);
}
return msg;
}
}
This works when you do something like this:
var container = new YourContainer();
container.RegisterSingle<IService, Service>();
IService proxy = DependencyInjectionProxy.MakeProxy<IService>(
container.Resolve<IService>());
proxy.SomeMethod();
This works great, but to be honest, I have no idea how to configure this in a way that you can intercept incoming calls this way. Somewhere you need to register your DependencyInjectionProxy, but that's where my experience with remoting stops :-)
I am trying to migrate my .net remoting code to wcf but I'm finding it difficult. Can someone help me migrate this simple Remoting based program below to use WCF? The program implements a simple publisher/subscriber pattern where we have a single TemperatureProviderProgram that publishers to many TemperatureSubcriberPrograms that subcribe to the TemperatureProvider.
To run the programs:
Copy the TemperatureProviderProgram and TemperatureSubcriberProgram into seperate console application projects.
Copying to remaining classes and interfaces into a common Class Library project then add a reference to System.Runtime.Remoting library
Add a reference to the Class Library project from the console app projects.
Complie and run 1 TemperatureProviderProgram and multiple TemperatureSubcriberProgram.
Please note no IIS or xml should be used. Thanks in advance.
public interface ITemperatureProvider
{
void Subcribe(ObjRef temperatureSubcriber);
}
[Serializable]
public sealed class TemperatureProvider : MarshalByRefObject, ITemperatureProvider
{
private readonly List<ITemperatureSubcriber> _temperatureSubcribers = new List<ITemperatureSubcriber>();
private readonly Random randomTemperature = new Random();
public void Subcribe(ObjRef temperatureSubcriber)
{
ITemperatureSubcriber tempSubcriber = (ITemperatureSubcriber)RemotingServices.Unmarshal(temperatureSubcriber);
lock (_temperatureSubcribers)
{
_temperatureSubcribers.Add(tempSubcriber);
}
}
public void Start()
{
Console.WriteLine("TemperatureProvider started...");
BinaryServerFormatterSinkProvider provider = new BinaryServerFormatterSinkProvider();
provider.TypeFilterLevel = System.Runtime.Serialization.Formatters.TypeFilterLevel.Full;
TcpServerChannel tcpChannel = new TcpServerChannel("TemperatureProviderChannel", 5001, provider);
ChannelServices.RegisterChannel(tcpChannel, false);
RemotingServices.Marshal(this, "TemperatureProvider", typeof(ITemperatureProvider));
while (true)
{
double nextTemp = randomTemperature.NextDouble();
lock (_temperatureSubcribers)
{
foreach (var item in _temperatureSubcribers)
{
try
{
item.OnTemperature(nextTemp);
}
catch (SocketException)
{}
catch(RemotingException)
{}
}
}
Thread.Sleep(200);
}
}
}
public interface ITemperatureSubcriber
{
void OnTemperature(double temperature);
}
[Serializable]
public sealed class TemperatureSubcriber : MarshalByRefObject, ITemperatureSubcriber
{
private ObjRef _clientRef;
private readonly Random portGen = new Random();
public void OnTemperature(double temperature)
{
Console.WriteLine(temperature);
}
public override object InitializeLifetimeService()
{
return null;
}
public void Start()
{
BinaryServerFormatterSinkProvider provider = new BinaryServerFormatterSinkProvider();
provider.TypeFilterLevel = System.Runtime.Serialization.Formatters.TypeFilterLevel.Full;
int port = portGen.Next(1, 65535);
TcpServerChannel tcpChannel = new TcpServerChannel(string.Format("TemperatureSubcriber_{0}", Guid.NewGuid()), port, provider);
ChannelServices.RegisterChannel(tcpChannel, false);
ITemperatureProvider p1 = (ITemperatureProvider)RemotingServices.Connect(typeof(ITemperatureProvider), "tcp://localhost:5001/TemperatureProvider");
_clientRef = RemotingServices.Marshal(this, string.Format("TemperatureSubcriber_{0}_{1}.rem", Environment.MachineName, Guid.NewGuid()));
p1.Subcribe(_clientRef);
}
}
public class TemperatureProviderProgram
{
static void Main(string[] args)
{
TemperatureProvider tp = new TemperatureProvider();
tp.Start();
}
}
public class TemperatureSubcriberProgram
{
static void Main(string[] args)
{
Console.WriteLine("Press any key to start TemperatureSubcriber.");
Console.ReadLine();
TemperatureSubcriber ts = new TemperatureSubcriber();
ts.Start();
Console.ReadLine();
}
}
In WCF, with a "push" from the server you're really talking about duplex comms; the MarshalByRefObject is largely redundant here (AFAIK). The page here discusses various scenarios, including duplex/callbacks.
If the issue is xml (for some philosophical reason), then simply using NetDataContractSerializer rather than DataContractSerializer might help.
The other approach is to have the clients "pull" data periodically; this works well if you need to support basic http, etc.
What it sounds like you want to do is use WCF NetTcpBinding with Callbacks.
Take a look at this: http://www.codeproject.com/KB/WCF/publisher_subscriber.aspx
"Learning WCF" by Michele Bustamante is also very good. You can get Chpt1 for VS2008 at her website along with the code for the book. Chpt1 will explain/demo setting up connections and such. She also has downloadable sample code. One of the Samples is a DuplexPublishSubscribe.
You will need to modify your logic a bit. If you want to migrate this app to WCF. You will need to have clients pull data from the service at regular intervals.
You will also need a Windows service or application to host the WCF like the console you are using in the previous code.
Well I build real time systems so polling is not an option - I need to push data.
Also I am finding there is no WCF equivalent of System.Runtime.Remoting.ObjRef! This is an extremely useful type that encapsulates a service endpoint and can be serialise and passed around the network to other remoting service.
Think I’ll be sticking with good old remoting until the ObjRef equivalent is introduced.
Yes it is true, just one correction..
ObjRefs are created automatically when any MarshalByRefObject derived object is going outside the appdomain.
So in this case your ITemperatureProvider interface Subscribe method shoud take ITemperatureSubscriber instead of objref.
And then on client side just call p1.Subscribe(this) and the remoting layer will generate ObjRef from the object that will be serialized and sent. (sending b reference)