How to use Expression Tree to safely access path of nullable objects? - c#

When I get deserialized XML result into xsd-generated tree of objects and want to use some deep object inside that tree a.b.c.d.e.f, it will give me exception if any node on that query path is missing.
if(a.b.c.d.e.f != null)
Console.Write("ok");
I want to avoid checking for null for each level like this:
if(a != null)
if(a.b != null)
if(a.b.c != null)
if(a.b.c.d != null)
if(a.b.c.d.e != null)
if(a.b.c.d.e.f != null)
Console.Write("ok");
First solution is to implement Get extension method that allows this:
if(a.Get(o=>o.b).Get(o=>o.c).Get(o=>o.d).Get(o=>o.e).Get(o=>o.f) != null)
Console.Write("ok");
Second solution is to implement Get(string) extension method and use reflection to get result looking like this:
if(a.Get("b.c.d.e.f") != null)
Console.Write("ok");
Third solution, could be to implement ExpandoObject and use dynamic type to get result looking like this:
dynamic da = new SafeExpando(a);
if(da.b.c.d.e.f != null)
Console.Write("ok");
But last 2 solutions do not give benefits of strong typing and IntelliSense.
I think the best could be fourth solution that can be implemented with Expression Trees:
if(Get(a.b.c.d.e.f) != null)
Console.Write("ok");
or
if(a.Get(a=>a.b.c.d.e.f) != null)
Console.Write("ok");
I already implemented 1st and 2nd solutions.
Here is how 1st solution looks like:
[DebuggerStepThrough]
public static To Get<From,To>(this From #this, Func<From,To> get)
{
var ret = default(To);
if(#this != null && !#this.Equals(default(From)))
ret = get(#this);
if(ret == null && typeof(To).IsArray)
ret = (To)Activator.CreateInstance(typeof(To), 0);
return ret;
}
How to implement 4th solution if possible ?
Also it would be interesting to see how to implement 3rd solution if possible.

So the starting place is creating an expression visitor. This lets us find all of the member accesses within a particular expression. This leaves us with the question of what to do for each member access.
So the first thing is to recursively visit on the expression that the member is being accessed on. From there, we can use Expression.Condition to create a conditional block that compares that processed underlying expression to null, and returns null if true an the original starting expression if it's not.
Note that we need to provide implementations for both Members and method calls, but the process for each is basically identical.
We'll also add in a check so that of the underlying expression is null (which is to say, there is no instance and it's a static member) or if it's a non-nullable type, that we just use the base behavior instead.
public class MemberNullPropogationVisitor : ExpressionVisitor
{
protected override Expression VisitMember(MemberExpression node)
{
if (node.Expression == null || !IsNullable(node.Expression.Type))
return base.VisitMember(node);
var expression = base.Visit(node.Expression);
var nullBaseExpression = Expression.Constant(null, expression.Type);
var test = Expression.Equal(expression, nullBaseExpression);
var memberAccess = Expression.MakeMemberAccess(expression, node.Member);
var nullMemberExpression = Expression.Constant(null, node.Type);
return Expression.Condition(test, nullMemberExpression, node);
}
protected override Expression VisitMethodCall(MethodCallExpression node)
{
if (node.Object == null || !IsNullable(node.Object.Type))
return base.VisitMethodCall(node);
var expression = base.Visit(node.Object);
var nullBaseExpression = Expression.Constant(null, expression.Type);
var test = Expression.Equal(expression, nullBaseExpression);
var memberAccess = Expression.Call(expression, node.Method);
var nullMemberExpression = Expression.Constant(null, MakeNullable(node.Type));
return Expression.Condition(test, nullMemberExpression, node);
}
private static Type MakeNullable(Type type)
{
if (IsNullable(type))
return type;
return typeof(Nullable<>).MakeGenericType(type);
}
private static bool IsNullable(Type type)
{
if (type.IsClass)
return true;
return type.IsGenericType &&
type.GetGenericTypeDefinition() == typeof(Nullable<>);
}
}
We can then create an extension method to make calling it easier:
public static Expression PropogateNull(this Expression expression)
{
return new MemberNullPropogationVisitor().Visit(expression);
}
As well as one that accepts a lambda, rather than any expression, and can return a compiled delegate:
public static Func<T> PropogateNull<T>(this Expression<Func<T>> expression)
{
var defaultValue = Expression.Constant(default(T));
var body = expression.Body.PropogateNull();
if (body.Type != typeof(T))
body = Expression.Coalesce(body, defaultValue);
return Expression.Lambda<Func<T>>(body, expression.Parameters)
.Compile();
}
Note that, to support cases where the accessed member resolves to a non-nullable value, we're changing the type of those expressions to lift them to be nullable, using MakeNullable. This is a problem with this final expression, as it needs to be a Func<T>, and it won't match if T isn't also lifted. Thus, while it's very much non-ideal (ideally you'd never call this method with a non-nullable T, but there's no good way to support this in C#) we coalesce the final value using the default value for that type, if necessary.
(You can trivially modify this to accept a lambda accepting a parameter, and pass in a value, but you can just as easily close over that parameter instead, so I see no real reason to.)
It's also worth pointing out that in C# 6.0, when it's actually released, we'll have an actual null propogation operator (?.), making all of this very unnecessary. You'll be able to write:
if(a?.b?.c?.d?.e?.f != null)
Console.Write("ok");
and have exactly the semantics you're looking for.

Related

Syntactic sugar for "If this parameter is null, automatically return null"

Is there any case for syntactic sugar that returns null when a specific parameter is null? Does this exist?
public DataObj GetMyData(DataSource source?null, User currentUser?null, string path) {
// Code starts here. source and currentUser are not null.
}
or this
public DataObj GetMyData(DataSource source!, User currentUser!, string path) {
// Code starts here. source and currentUser are not null.
}
So the above would return null if either the source or currentUser were null without having to execute the method, but it would execute if only the path was null.
public DataObj GetMyData(DataSource source, User currentUser, string path) {
if (source == null || currentUser == null)
{
return null;
}
// The rest of your code here
}
You could also use ArgumentNullExceptions, but then you are creating additional exception handling work elsewhere especially if null parameters are ok, but you don't get a value from it.
C# 6 is proposing a null propagation operator ? that will turn:
double? minPrice = null;
if (product != null
&& product.PriceBreaks != null
&& product.PriceBreaks[0] != null)
{
minPrice = product.PriceBreaks[0].Price;
}
into:
var minPrice = product?.PriceBreaks?[0]?.Price;
No, there is no syntactic sugar to return null.
I think the closest thing that exist is operations on nullable values:
int? Add(int? l, int? r)
{
return l + r;
}
Will give you "HasValue = false" if either operand does not have value.
You may also want to read about "Maybe monad" which is very close to what you are looking for - i.e. Marvels of Monads tries to explain one in C# (nullable values is example on one, but apply only to value types).
If it is something you find yourself doing a few times, it would make sense to put it into a generic method. That method can do the checks and it will use a function that will do the actual operation after checking for the nulls on the arguments.
public T OperateIfNotNull<T, V1, V2>(V1 arg1, V2 arg2, string path, Func<V1, V2, string, T> operation) where T : class
{
if ((arg1 == null) || (arg2 == null) || string.IsNullOrWhiteSpace(path))
return null;
return operation(arg1, arg2, path);
}

Serialize an expression with an variable

I wrote some classes to serialize System.Linq.Expressions to DataContracts to be able to send via WCF. It works quite good nice. the problem is when i want to serialize an expression that has a variable in it. here is an example to explain the problem:
public class Foo
{
public string Name { get; set; }
}
// CASE 1
Expression<Func<Foo, bool>> lambda = foo => foo.Name == "Test";
Console.WriteLine(lambda);
// OUTPUT: foo => (foo.Name == "Test")
// CASE 2
var variable = "Test";
lambda = foo => foo.Name == variable;
this.AssertExpression(lambda, "Class Lambda expression with variable.");
// OUTPUT: foo => (foo.Name == value(MyTest+<>c__DisplayClass0).variable)
i am not having trouble to serialize the CASE 2 expression, but the the data i serialize is useless, since on the service side, there is nothing to resolve value(MyTest+<>c__DisplayClass0).variable
so i need to resolve the variables before i serialize that expression so that the CASE 2 expression serializes to same result as CASE1
Sorry for the VB, but the following extract is the bit of code I meant in my comment. I don't think it covers all the bases (i.e. it may not be drilling down far enough so make sure you test it) but for simple most examples it works:
The code is based on this MSDN Expression Visitor example:
class CustomExpressionWalker<TSource> : ExpressionVisitor
{
protected override Expression VisitMemberAccess(MemberExpression m)
{
if (m.Member.DeclaringType != typeof(TSource))
{
// We are accessing a member/variable on a class
// We need to descend the tree through the navigation properties and eventually derive a constant expression
return this.VisitMemberAccess(m, m.Type);
}
throw new NotImplementedException();
}
protected Expression VisitMemberAccess(MemberExpression m, Type expectedType)
{
if (m.Expression.NodeType == ExpressionType.Constant)
{
// We are at the end of the member expression
// i.e. MyClass.Something.Something.Value <-- we're at the Value part now
ConstantExpression constant = (ConstantExpression)m.Expression;
return Expression.Constant(m.Expression.Type.GetFields().Single(n => n.FieldType == expectedType && m.Member.Name.Contains(n.Name)).GetValue(constant.Value));
}
else if (m.Member.DeclaringType == typeof(TSource))
{
// I'm unsure of your current implementation but the original Member access
// regarding serializing the expression, but if the code reaches here a nested
// MemberAccess has landed on a Property/variable of type TSource, so you'll need
// to decide whether to serialize here or not. For example, if TSource was of
// type "myClass", it could be
// (myOtherClass x) => x.myClass
throw new NotImplementedException();
}
else if (m.Member.DeclaringType == typeof(Nullable))
{
// never got round to implementing this as we don't need it yet
// if you want to deal with Nullable<T> you're going to have to
// examine the logic here
throw new NotImplementedException();
}
else
{
// continue walking the member access until we derive the constant
return this.VisitMemberAccess((MemberExpression)m.Expression, expectedType);
}
}
}
Hope this helps!
EDIT: The original issue I had was that I didn't continue walking the tree when the MemberAccess was a non TSource class, the above logic should actually recursively root those cases out so ignore my original comment. I've left in the Nullable<T> clause (on the else if) statement as I don't think the existing logic will cover those cases, it may also struggle with Generic classes.
That said, this should put you in good stead. If you're not using the Expression Visitor, can you provide some more details/code?
Good luck!

Get actual return type from a Expression<Func<T, object>> instance

I have a method that accepts a Expression<Func<T, object>> instance. I want to get at the actual data type being returned by a specific expression instance, rather than object.
I can get it to work for direct property references, so if I pass in the expression x => x.IntegerProperty I can get a Type reference for an integer. This approach requires converting it to a MemberExpression.
However, I can't get it to work for arbitrary expressions. For instance, if the expression is x => x.IntegerProperty.ToString() I want to get a Type reference for a string. I can't compile this to a MemberExpression, and if I just .Compile() it and check the return type I get "object".
How can I look at the specific expression instance and derive the actual return type?
Something like this might do the trick. It probably doesn't cover every possibility, but it's a start.
public static Type GetObjectType<T>(Expression<Func<T, object>> expr)
{
if ((expr.Body.NodeType == ExpressionType.Convert) ||
(expr.Body.NodeType == ExpressionType.ConvertChecked))
{
var unary = expr.Body as UnaryExpression;
if (unary != null)
return unary.Operand.Type;
}
return expr.Body.Type;
}
While not impossible, this is particularly difficult. It would require walking the expression tree and doing some potentially complex logic. For example, what would you want to see if I passed in the following expression?
Func<bool, object> expr = switch => switch ? 1 : "False";
This method could either return an int or a string.
Now, you might be able to make more headway by offloading some of this logic on the compiler. You could change your method parameter from Func<T, object> to Func<T, TReturn> and use typeof(TReturn) within the method to determine what the compiler decided the return type of the expression was.
Of course, in the case of my example, you'll still be working against object. But, your example of x => x.IntegerProperty.ToString() will yield string, which is what you're looking for.
Bit of a cheeky way (and it involves actually invoking the Func), but you can do this:
using System;
class Program
{
static Func<T,object> MakeFunc<T>()
{
return x => 23;
}
static Type GetReturnType<T>(Func<T,object> f)
{
return f(default(T)).GetType();
}
static void Main(string[] args)
{
Type t = GetReturnType(MakeFunc<string>());
Console.WriteLine(t);
}
}
It's not guaranteed to work in all situations, I should add - particularly if the default(T) isn't a valid parameter to the Func. But it's a potential starting point at least.

Deep null checking, is there a better way?

Note: This question was asked before the introduction of the .? operator in C# 6 / Visual Studio 2015.
We've all been there, we have some deep property like cake.frosting.berries.loader that we need to check if it's null so there's no exception. The way to do is is to use a short-circuiting if statement
if (cake != null && cake.frosting != null && cake.frosting.berries != null) ...
This is not exactly elegant, and there should perhaps be an easier way to check the entire chain and see if it comes up against a null variable/property.
Is it possible using some extension method or would it be a language feature, or is it just a bad idea?
We have considered adding a new operation "?." to the language that has the semantics you want. (And it has been added now; see below.) That is, you'd say
cake?.frosting?.berries?.loader
and the compiler would generate all the short-circuiting checks for you.
It didn't make the bar for C# 4. Perhaps for a hypothetical future version of the language.
Update (2014):
The ?. operator is now planned for the next Roslyn compiler release. Note that there is still some debate over the exact syntactic and semantic analysis of the operator.
Update (July 2015): Visual Studio 2015 has been released and ships with a C# compiler that supports the null-conditional operators ?. and ?[].
I got inspired by this question to try and find out how this kind of deep null checking can be done with an easier / prettier syntax using expression trees. While I do agree with the answers stating that it might be a bad design if you often need to access instances deep in the hierarchy, I also do think that in some cases, such as data presentation, it can be very useful.
So I created an extension method, that will allow you to write:
var berries = cake.IfNotNull(c => c.Frosting.Berries);
This will return the Berries if no part of the expression is null. If null is encountered, null is returned. There are some caveats though, in the current version it will only work with simple member access, and it only works on .NET Framework 4, because it uses the MemberExpression.Update method, which is new in v4. This is the code for the IfNotNull extension method:
using System;
using System.Collections.Generic;
using System.Linq.Expressions;
namespace dr.IfNotNullOperator.PoC
{
public static class ObjectExtensions
{
public static TResult IfNotNull<TArg,TResult>(this TArg arg, Expression<Func<TArg,TResult>> expression)
{
if (expression == null)
throw new ArgumentNullException("expression");
if (ReferenceEquals(arg, null))
return default(TResult);
var stack = new Stack<MemberExpression>();
var expr = expression.Body as MemberExpression;
while(expr != null)
{
stack.Push(expr);
expr = expr.Expression as MemberExpression;
}
if (stack.Count == 0 || !(stack.Peek().Expression is ParameterExpression))
throw new ApplicationException(String.Format("The expression '{0}' contains unsupported constructs.",
expression));
object a = arg;
while(stack.Count > 0)
{
expr = stack.Pop();
var p = expr.Expression as ParameterExpression;
if (p == null)
{
p = Expression.Parameter(a.GetType(), "x");
expr = expr.Update(p);
}
var lambda = Expression.Lambda(expr, p);
Delegate t = lambda.Compile();
a = t.DynamicInvoke(a);
if (ReferenceEquals(a, null))
return default(TResult);
}
return (TResult)a;
}
}
}
It works by examining the expression tree representing your expression, and evaluating the parts one after the other; each time checking that the result is not null.
I am sure this could be extended so that other expressions than MemberExpression is supported. Consider this as proof-of-concept code, and please keep in mind that there will be a performance penalty by using it (which will probably not matter in many cases, but don't use it in a tight loop :-) )
I've found this extension to be quite useful for deep nesting scenarios.
public static R Coal<T, R>(this T obj, Func<T, R> f)
where T : class
{
return obj != null ? f(obj) : default(R);
}
It's an idea I derrived from the null coalescing operator in C# and T-SQL. The nice thing is that the return type is always the return type of the inner property.
That way you can do this:
var berries = cake.Coal(x => x.frosting).Coal(x => x.berries);
...or a slight variation of the above:
var berries = cake.Coal(x => x.frosting, x => x.berries);
It's not the best syntax I know, but it does work.
Besides violating the Law of Demeter, as Mehrdad Afshari has already pointed out, it seems to me you need "deep null checking" for decision logic.
This is most often the case when you want to replace empty objects with default values. In this case you should consider implementing the Null Object Pattern. It acts as a stand-in for a real object, providing default values and "non-action" methods.
Update: Starting with Visual Studio 2015, the C# compiler (language version 6) now recognizes the ?. operator, which makes "deep null checking" a breeze. See this answer for details.
Apart from re-designing your code, like
this deleted answer suggested,
another (albeit terrible) option would be to use a try…catch block to see if a NullReferenceException occurs sometime during that deep property lookup.
try
{
var x = cake.frosting.berries.loader;
...
}
catch (NullReferenceException ex)
{
// either one of cake, frosting, or berries was null
...
}
I personally wouldn't do this for the following reasons:
It doesn't look nice.
It uses exception handling, which should target exceptional situations and not something that you expect to happen often during the normal course of operation.
NullReferenceExceptions should probably never be caught explicitly. (See this question.)
So is it possible using some extension method or would it be a language feature, [...]
This would almost certainly have to be a language feature (which is available in C# 6 in the form of the .? and ?[] operators), unless C# already had more sophisticated lazy evaluation, or unless you want to use reflection (which probably also isn't a good idea for reasons of performance and type-safety).
Since there's no way to simply pass cake.frosting.berries.loader to a function (it would be evaluated and throw a null reference exception), you would have to implement a general look-up method in the following way: It takes in an objects and the names of properties to look up:
static object LookupProperty( object startingPoint, params string[] lookupChain )
{
// 1. if 'startingPoint' is null, return null, or throw an exception.
// 2. recursively look up one property/field after the other from 'lookupChain',
// using reflection.
// 3. if one lookup is not possible, return null, or throw an exception.
// 3. return the last property/field's value.
}
...
var x = LookupProperty( cake, "frosting", "berries", "loader" );
(Note: code edited.)
You quickly see several problems with such an approach. First, you don't get any type safety and possible boxing of property values of a simple type. Second, you can either return null if something goes wrong, and you will have to check for this in your calling function, or you throw an exception, and you're back to where you started. Third, it might be slow. Fourth, it looks uglier than what you started with.
[...], or is it just a bad idea?
I'd either stay with:
if (cake != null && cake.frosting != null && ...) ...
or go with the above answer by Mehrdad Afshari.
P.S.: Back when I wrote this answer, I obviously didn't consider expression trees for lambda functions; see e.g. #driis' answer for a solution in this direction. It's also based on a kind of reflection and thus might not perform quite as well as a simpler solution (if (… != null & … != null) …), but it may be judged nicer from a syntax point-of-view.
While driis' answer is interesting, I think it's a bit too expensive performance wise. Rather than compiling many delegates, I'd prefer to compile one lambda per property path, cache it and then reinvoke it many types.
NullCoalesce below does just that, it returns a new lambda expression with null checks and a return of default(TResult) in case any path is null.
Example:
NullCoalesce((Process p) => p.StartInfo.FileName)
Will return an expression
(Process p) => (p != null && p.StartInfo != null ? p.StartInfo.FileName : default(string));
Code:
static void Main(string[] args)
{
var converted = NullCoalesce((MethodInfo p) => p.DeclaringType.Assembly.Evidence.Locked);
var converted2 = NullCoalesce((string[] s) => s.Length);
}
private static Expression<Func<TSource, TResult>> NullCoalesce<TSource, TResult>(Expression<Func<TSource, TResult>> lambdaExpression)
{
var test = GetTest(lambdaExpression.Body);
if (test != null)
{
return Expression.Lambda<Func<TSource, TResult>>(
Expression.Condition(
test,
lambdaExpression.Body,
Expression.Default(
typeof(TResult)
)
),
lambdaExpression.Parameters
);
}
return lambdaExpression;
}
private static Expression GetTest(Expression expression)
{
Expression container;
switch (expression.NodeType)
{
case ExpressionType.ArrayLength:
container = ((UnaryExpression)expression).Operand;
break;
case ExpressionType.MemberAccess:
if ((container = ((MemberExpression)expression).Expression) == null)
{
return null;
}
break;
default:
return null;
}
var baseTest = GetTest(container);
if (!container.Type.IsValueType)
{
var containerNotNull = Expression.NotEqual(
container,
Expression.Default(
container.Type
)
);
return (baseTest == null ?
containerNotNull :
Expression.AndAlso(
baseTest,
containerNotNull
)
);
}
return baseTest;
}
One option is to use the Null Object Patten, so instead of having null when you don’t have a cake, you have a NullCake that returns a NullFosting etc. Sorry I am not very good at explaining this but other people are, see
An example of the Null Object Patten usage
The wikipedai write up on the Null Object Patten
I too have often wished for a simpler syntax! It gets especially ugly when you have method-return-values that might be null, because then you need extra variables (for example: cake.frosting.flavors.FirstOrDefault().loader)
However, here's a pretty decent alternative that I use: create an Null-Safe-Chain helper method. I realize that this is pretty similar to #John's answer above (with the Coal extension method) but I find it's more straightforward and less typing. Here's what it looks like:
var loader = NullSafe.Chain(cake, c=>c.frosting, f=>f.berries, b=>b.loader);
Here's the implementation:
public static TResult Chain<TA,TB,TC,TResult>(TA a, Func<TA,TB> b, Func<TB,TC> c, Func<TC,TResult> r)
where TA:class where TB:class where TC:class {
if (a == null) return default(TResult);
var B = b(a);
if (B == null) return default(TResult);
var C = c(B);
if (C == null) return default(TResult);
return r(C);
}
I also created several overloads (with 2 to 6 parameters), as well as overloads that allow the chain to end with a value-type or default. This works really well for me!
There is Maybe codeplex project that Implements
Maybe or IfNotNull using lambdas for deep expressions in C#
Example of use:
int? CityId= employee.Maybe(e=>e.Person.Address.City);
The link was suggested in a similar question How to check for nulls in a deep lambda expression?
As suggested in John Leidegren's answer, one approach to work-around this is to use extension methods and delegates. Using them could look something like this:
int? numberOfBerries = cake
.NullOr(c => c.Frosting)
.NullOr(f => f.Berries)
.NullOr(b => b.Count());
The implementation is messy because you need to get it to work for value types, reference types and nullable value types. You can find a complete implementation in Timwi's answer to What is the proper way to check for null values?.
Or you may use reflection :)
Reflection function:
public Object GetPropValue(String name, Object obj)
{
foreach (String part in name.Split('.'))
{
if (obj == null) { return null; }
Type type = obj.GetType();
PropertyInfo info = type.GetProperty(part);
if (info == null) { return null; }
obj = info.GetValue(obj, null);
}
return obj;
}
Usage:
object test1 = GetPropValue("PropertyA.PropertyB.PropertyC",obj);
My Case(return DBNull.Value instead of null in reflection function):
cmd.Parameters.AddWithValue("CustomerContactEmail", GetPropValue("AccountingCustomerParty.Party.Contact.ElectronicMail.Value", eInvoiceType));
Try this code:
/// <summary>
/// check deep property
/// </summary>
/// <param name="obj">instance</param>
/// <param name="property">deep property not include instance name example "A.B.C.D.E"</param>
/// <returns>if null return true else return false</returns>
public static bool IsNull(this object obj, string property)
{
if (string.IsNullOrEmpty(property) || string.IsNullOrEmpty(property.Trim())) throw new Exception("Parameter : property is empty");
if (obj != null)
{
string[] deep = property.Split('.');
object instance = obj;
Type objType = instance.GetType();
PropertyInfo propertyInfo;
foreach (string p in deep)
{
propertyInfo = objType.GetProperty(p);
if (propertyInfo == null) throw new Exception("No property : " + p);
instance = propertyInfo.GetValue(instance, null);
if (instance != null)
objType = instance.GetType();
else
return true;
}
return false;
}
else
return true;
}
I posted this last night and then a friend pointed me to this question. Hope it helps. You can then do something like this:
var color = Dis.OrDat<string>(() => cake.frosting.berries.color, "blue");
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Linq.Expressions;
namespace DeepNullCoalescence
{
public static class Dis
{
public static T OrDat<T>(Expression<Func><T>> expr, T dat)
{
try
{
var func = expr.Compile();
var result = func.Invoke();
return result ?? dat; //now we can coalesce
}
catch (NullReferenceException)
{
return dat;
}
}
}
}
Read the full blog post here.
The same friend also suggested that you watch this.
I slightly modified the code from here to make it work for the question asked:
public static class GetValueOrDefaultExtension
{
public static TResult GetValueOrDefault<TSource, TResult>(this TSource source, Func<TSource, TResult> selector)
{
try { return selector(source); }
catch { return default(TResult); }
}
}
And yes, this is probably not the optimal solution due to try/catch performance implications but it works :>
Usage:
var val = cake.GetValueOrDefault(x => x.frosting.berries.loader);
Where you need to achieve this, do this:
Usage
Color color = someOrder.ComplexGet(x => x.Customer.LastOrder.Product.Color);
or
Color color = Complex.Get(() => someOrder.Customer.LastOrder.Product.Color);
Helper class implementation
public static class Complex
{
public static T1 ComplexGet<T1, T2>(this T2 root, Func<T2, T1> func)
{
return Get(() => func(root));
}
public static T Get<T>(Func<T> func)
{
try
{
return func();
}
catch (Exception)
{
return default(T);
}
}
}
I like approach taken by Objective-C:
"The Objective-C language takes another approach to this problem and does not invoke methods on nil but instead returns nil for all such invocations."
if (cake.frosting.berries != null)
{
var str = cake.frosting.berries...;
}

What's the best way to define & access selected properties in C#?

From my recent question, I try to centralize the domain model by including some silly logic in domain interface. However, I found some problem that need to include or exclude some properties from validating.
Basically, I can use expression tree like the following code. Nevertheless, I do not like it because I need to define local variable ("u") each time when I create lambda expression. Do you have any source code that is shorter than me? Moreover, I need some method to quickly access selected properties.
public void IncludeProperties<T>(params Expression<Func<IUser,object>>[] selectedProperties)
{
// some logic to store parameter
}
IncludeProperties<IUser>
(
u => u.ID,
u => u.LogOnName,
u => u.HashedPassword
);
Thanks,
Lambdas are great for many scenarios - but if you don't want them, perhaps simply don't use them? I hate to say it, but simple strings are tried and tested, especially for scenarios like data binding. If you want fast access, you could look at HyperDescriptor, or there are ways of compiling a delegate to the property accessors, or you can build an Expression from the string and compile it (including a cast to object if you want a known signature, rather than calling the (much slower) DynamicInvoke).
Of course, in most cases even crude reflection is fast enough, and isn't the bottleneck.
I suggest starting with the simplest code, and check it is actually too slow before worrying about it being fast. If it isn't too slow, don't change it. Any of the above options would work otherwise.
Another thought; if you are using Expression, you could do something like:
public void IncludeProperties<T>(
Expression<Func<T,object>> selectedProperties)
{
// some logic to store parameter
}
IncludeProperties<IUser>( u => new { u.ID, u.LogOnName, u.HashedPassword });
and then take the expression apart? A bit tidier, at least... here's some sample code showing the deconstruction:
public static void IncludeProperties<T>(
Expression<Func<T, object>> selectedProperties)
{
NewExpression ne = selectedProperties.Body as NewExpression;
if (ne == null) throw new InvalidOperationException(
"Object constructor expected");
foreach (Expression arg in ne.Arguments)
{
MemberExpression me = arg as MemberExpression;
if (me == null || me.Expression != selectedProperties.Parameters[0])
throw new InvalidOperationException(
"Object constructor argument should be a direct member");
Console.WriteLine("Accessing: " + me.Member.Name);
}
}
static void Main()
{
IncludeProperties<IUser>(u => new { u.ID, u.LogOnName, u.HashedPassword });
}
Once you know the MemberInfos (me.Member in the above), building your own lambdas for individual access should be trivial. For example (including a cast to object to get a single signature):
var param = Expression.Parameter(typeof(T), "x");
var memberAccess = Expression.MakeMemberAccess(param, me.Member);
var body = Expression.Convert(memberAccess, typeof(object));
var lambda = Expression.Lambda<Func<T, object>>(body, param);
var func = lambda.Compile();
Here's the shortest expression I can come up with:
public static void IncludeProperties(Expression<Action<IUser>> selectedProperties)
{
// some logic to store parameter
}
public static void S(params object[] props)
{
// dummy method to get to the params syntax
}
[Test]
public void ParamsTest()
{
IncludeProperties(u => S(
u.Id,
u.Name
));
}

Categories