I wanted to add a small debug UI to my OpenGL game, which will be updated frequently with various debugging options/output displays. One thing I wanted was a constant counter that shows active objects in each generation of the garbage collector. I don't want names or anything, just a total count; something that I can eyeball when I do certain things within the game.
My problem, however, is that I can't seem to find a way to count the total objects currently alive in the various generations.
I even considered keeping a global static field, which would be incremented within every constructor and decremented within class finalizers. This would require hand-coding said functionality into every class though, and would not solve the problem of a "per-generation total".
Do you know how I could go about doing this?
(Question title:) "Counting total objects queued for garbage collection"
(From the question's body:) "My problem, however, is that I can't seem to find a way to count the total objects currently alive in the various generations."
Remark: Your question's title and body ask for opposite things. In the title, you're asking for the number of objects that can no longer be reached via any GC root, while in the body, you're asking for "live" objects, i.e. those that can still be reached via any GC root.
Let me start by saying that there might not be any way to do this, basically because objects in .NET are not reference-counted, so they cannot be immediately marked as "no longer needed" when the last reference to them disappears or goes out of scope. I believe .NET's mark-and-compact garbage collector only discovers which objects are alive and which can be reclaimed during an actual garbage collection (during the "mark" phase). You however seem to want this information in advance, i.e. before a GC occurs.
That being said, here are perhaps your best options:
Perhaps your best bet in .NET's managed Framework Class Library are performance counters. But it doesn't look like there are any suitable counters available: There are performance counters giving you the number of allocated bytes in the various GC generations, but AFAIK no counters for the number of live/dead objects.
You might also want to take a look at the CLR's (i.e. the runtime's) unmanaged, COM-based Debugging API. Given that you have retrieved an ICorDebugProcess5 interface, these methods might be of interest:
ICorDebugProcess5::EnumerateGCReferences method:
"Gets an enumerator for all objects that are to be garbage-collected in a process."
See also this answer to a similar question on SO.
Note that this is about objects that are to be garbage-collected, not about live objects.
ICorDebugProcess5::GetGCHeapInformation method:
"Provides general information about the garbage collection heap, including whether it is currently enumerable."
If it turns out that the managed heap is enumerable, you could use…
ICorDebugProcess5::EnumerateHeap method:
"Gets an enumerator for the objects on the managed heap."
The objects returned by this enumerator are of this type:
COR_HEAPOBJECT structure:
"Provides information about an object on the managed heap."
You might not be actually interested in these details, but just in the number of objects returned by the enumerator.
(I haven't used this API myself, perhaps there exists a better and more efficient way.)
In Sept 2015, Microsoft published a managed library called clrmd aka Microsoft.Diagnostics.Runtime on GitHub. It is based on the same foundation as the unmanaged debugging API mentioned above. The project includes documentation about enumerating objects in the GC heap.
Btw. there is an extremely informative book out there by Ben Watson, "Writing High-Performance .NET Code", which includes solid tips on how to make .NET memory allocation and GC more efficient.
Garbage Collector doesn't have to collect objects.
... that fact will be discovered when the garbage collector
runs the collector for whatever generation the object was in. (If it
runs at all, which it might not. There is no guarantee that the GC
runs.)
(C) Eric Lippert
If the application performs normally and the memory consumption is not increasing the GC can let it work without interruptions. That means that numbers will differ from run to run.
If I were you I wouldn't spend time on getting generations information, but just the size of used memory.
The simple but not very accurate way is to get it from GC.
// Determine the best available approximation of the number
// of bytes currently allocated in managed memory.
Console.WriteLine("Total Memory: {0}", GC.GetTotalMemory(false));
If you see that used memory increases and decreases often, then you can use existing profilers to figure out where are you allocating too mush, or even where the memory leak is.
Related
I'm currently working on a website that makes large use of cached data to avoid roundtrips.
At startup we get a "large" graph (hundreds of thouthands of different kinds of objects).
Those objects are retrieved over WCF and deserialized (we use protocol buffers for serialization)
I'm using redgate's memory profiler to debug memory issues (the memory didn't seem to fit with how much memory we should need "after" we're done initializing and end up with this report
Now what we can gather from this report is that:
1) Most of the memory .NET allocated is free (it may have been rightfully allocated during deserialisation, but now that it's free, i'd like for it to return to the OS)
2) Memory is fragmented (which is bad, as everytime i refresh the cash i need to redo the memory hungry deserialisation process and this, in turn creates large object that may throw an OutOfMemoryException due to fragmentation)
3) I have no clue why the space is fragmented, because when i look at the large object heap, there are only 30 instances, 15 object[] are directly attached to the GC and totally unrelated to me, 1 is a char array also attached directly to the GC Heap, the remaining 15 are mine but are not the cause of this as i get the same report if i comment them out in code.
So my question is, what can i do to go further with this? I'm not really sure what to look for in debugging / tools as it seems my memory is fragmented, but not by me, and huge amounts of free spaces are allocated by .net , which i can't release.
Also please make sure you understand the question well before answering, i'm not looking for a way to free memory within .net (GC.Collect), but to free memory that is already free in .net , to the system as well as to defragment said memory.
Note that a slow solution is fine, if it's possible to manually defragment the large heap i'd be all for it as i can call it at the end of RefreshCache and it's ok if it takes 1 or 2 second to run.
Thanks for your help!
A few notes i forgot:
1) The project is a .net 2.0 website, i get the same results running it in a .net 4 pool, idem if i run it in a .net 4 pool and convert it to .net 4 and recompile.
2) These are results of a release build, so debug build can not be the issue.
3) And this is probably quite important, i do not get these issues at all in the webdev server, only in IIS, in the webdev i get memory consumption rather close to my actual consumption (well more, but not 5-10X more!)
Objects allocated on the large object heap (objects >= 85,000 bytes, normally arrays) are not compacted by the garbage collector. Microsoft decided that the cost of moving those objects around would be too high.
The recommendation is to reuse large objects if possible to avoid
fragmentation on the managed heap and the VM space.
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
I'm assuming that your large objects are temporary byte arrays created by your deserialization library. If the library allows you to supply your own byte arrays, you could preallocate them at the start of the program and then reuse them.
I know this isn't the answer you'd like to hear, but you can't forcefully release the memory back to the OS. However, for what reason do you want to do so? .NET will free its heap back to the OS once you're running low on physical memory. But if there's an ample amount of free physical memory, .NET will keep its heap to make future allocation of objects faster. If you really wanted to force .NET to release its heap back to the OS, I suppose you could write a C program which just mallocs until it runs out of memory. This should cause the OS to signal .NET to free its unused portion of the heap.
It's better that unused memory be reseved for .NET so that your application will have better allocation performance (since the runtime knows what memory is free and what isn't, allocation can just use the free memory without having to syscall into the OS to get more memory).
The garbage collector is in charge of defragmenting the heap. Every so often (usually during collection runs), it will move objects around the heap if it determines this needs to be done. (This is why C++/CLI has the pin_ptr construct for "pinning" objects).
Fragmentation usually isn't a big issue though with memory, since it provides fast random access.
As for your OutOfMemoryException, I don't have a good answer for. Ordinarily I'd suspect that your old object graph isn't being collected (some object somewhere is holding a reference onto it, a "memory leak"). But since you're using a profiler, I don't know then.
As of .NET 4.5.1 you can set a one-time flag to compact LOH before issuing a call to GC collect, i.e.
Runtime.GCSettings.LargeObjectHeapCompactionMode = System.Runtime.GCLargeObjectHeapCompactionMode.CompactOnce;
GC.Collect(); // This will cause the LOH to be compacted (once).
Some testing and some C++ later, i've found the reason why i get so much free memory, it's because of IIS instancing the CLR via VM Hoarding (providing a dll to instantiate it without VM Hoarding takes up as much initial memory, but does release most of it as time goes which is the behavior i expect).
So this does fix my reported memory issue, however i still get about 100mb free memory no matter what, and i still think this is due to fragmentation and fragments only being released at once, because the profiler still reports memory fragmentation. So not marking my own answer as an answer in hope someone can shed some light on this or direct me to tools that can either fix this or help me debug the root cause.
It's intriguing that it works differently on the WebDevServer as to IIS...
Is it possible that IIS is using the server garbage-collector, and the WebDev server the workstation garbage collector? The method of garbage collection can affect fragmentation. It'll probably be set in your aspnet.config file. See: http://support.microsoft.com/kb/911716
If you havent found your answer I think the following clues can help you :
Back to the basics : we sometimes forget that the objects can be explicitly set free, call explicitly the Dispose method of the objects (because you didnt mention it, I suppose you do an "object = null" instruction instead).
Use the inherited method, you dont need to implement one, unless your class doesnt have it, which I doubt it.
MSDN Help states about this method :
... There is no performance benefit in implementing the Dispose
method on types that use only managed resources (such as arrays)
because they are automatically reclaimed by the garbage collector. Use
the Dispose method primarily on managed objects that use native
resources and on COM objects that are exposed to the .NET
Framework. ...
Because it says that "they are automatically reclaimed by garbage collector" we can infer that when the method is called does the "releasing thing" (Again Im trying only to give you clues).
Besides I found this interesting article (I suppose ... I didn read it ...completely) : Garbage Collection: Automatic Memory Management in the Microsoft .NET Framework (http://msdn.microsoft.com/en-us/magazine/bb985010.aspx) which states the following in the "Forcing an Object to Clean Up" section :
..., it is also recommended that you add an additional method to
the type that allows a user of the type to explicitly clean up the
object when they want. By convention, this method should be called
Close or Dispose ....
Maybe the answer lies in this article if you read it carefully or just keep investigating in this direction.
I'm converting a C# project to C++ and have a question about deleting objects after use. In C# the GC of course takes care of deleting objects, but in C++ it has to be done explicitly using the delete keyword.
My question is, is it ok to just follow each object's usage throughout a method and then delete it as soon as it goes out of scope (ie method end/re-assignment)?
I know though that the GC waits for a certain size of garbage (~1MB) before deleting; does it do this because there is an overhead when using delete?
As this is a game I am creating there will potentially be lots of objects being created and deleted every second, so would it be better to keep track of pointers that go out of scope, and once that size reachs 1MB to then delete the pointers?
(as a side note: later when the game is optimised, objects will be loaded once at startup so there is not much to delete during gameplay)
Your problem is that you are using pointers in C++.
This is a fundamental problem that you must fix, then all your problems go away. As chance would have it, I got so fed up with this general trend that I created a set of presentation slides on this issue. – (CC BY, so feel free to use them).
Have a look at the slides. While they are certainly not entirely serious, the fundamental message is still true: Don’t use pointers. But more accurately, the message should read: Don’t use delete.
In your particular situation you might find yourself with a lot of long-lived small objects. This is indeed a situation which a modern GC handles quite well, and which reference-counting smart pointers (shared_ptr) handle less efficiently. If (and only if!) this becomes a performance problem, consider switching to a small object allocator library.
You should be using RAII as much as possible in C++ so you do not have to explicitly deleteanything anytime.
Once you use RAII through smart pointers and your own resource managing classes every dynamic allocation you make will exist only till there are any possible references to it, You do not have to manage any resources explicitly.
Memory management in C# and C++ is completely different. You shouldn't try to mimic the behavior of .NET's GC in C++. In .NET allocating memory is super fast (basically moving a pointer) whereas freeing it is the heavy task. In C++ allocating memory isn't that lightweight for several reasons, mainly because a large enough chunk of memory has to be found. When memory chunks of different sizes are allocated and freed many times during the execution of the program the heap can get fragmented, containing many small "holes" of free memory. In .NET this won't happen because the GC will compact the heap. Freeing memory in C++ is quite fast, though.
Best practices in .NET don't necessarily work in C++. For example, pooling and reusing objects in .NET isn't recommended most of the time, because the objects get promoted to higher generations by the GC. The GC works best for short lived objects. On the other hand, pooling objects in C++ can be very useful to avoid heap fragmentation. Also, allocating a larger chunk of memory and using placement new can work great for many smaller objects that need to be allocated and freed frequently, as it can occur in games. Read up on general memory management techniques in C++ such as RAII or placement new.
Also, I'd recommend getting the books "Effective C++" and "More effective C++".
Well, the simplest solution might be to just use garbage collection in
C++. The Boehm collector works well, for example. Still, there are
pros and cons (but porting code originally written in C# would be a
likely candidate for a case where the pros largely outweigh the cons.)
Otherwise, if you convert the code to idiomatic C++, there shouldn't be
that many dynamically allocated objects to worry about. Unlike C#, C++
has value semantics by default, and most of your short lived objects
should be simply local variables, possibly copied if they are returned,
but not allocated dynamically. In C++, dynamic allocation is normally
only used for entity objects, whose lifetime depends on external events;
e.g. a Monster is created at some random time, with a probability
depending on the game state, and is deleted at some later time, in
reaction to events which change the game state. In this case, you
delete the object when the monster ceases to be part of the game. In
C#, you probably have a dispose function, or something similar, for
such objects, since they typically have concrete actions which must be
carried out when they cease to exist—things like deregistering as
an Observer, if that's one of the patterns you're using. In C++, this
sort of thing is typically handled by the destructor, and instead of
calling dispose, you call delete the object.
Substituting a shared_ptr in every instance that you use a reference in C# would get you the closest approximation at probably the lowest effort input when converting the code.
However you specifically mention following an objects use through a method and deleteing at the end - a better approach is not to new up the object at all but simply instantiate it inline/on the stack. In fact if you take this approach even for returned objects with the new copy semantics being introduced this becomes an efficient way to deal with returned objects also - so there is no need to use pointers in almost every scenario.
There are a lot more things to take into considerations when deallocating objects than just calling delete whenever it goes out of scope. You have to make sure that you only call delete once and only call it once all pointers to that object have gone out of scope. The garbage collector in .NET handles all of that for you.
The construct that is mostly corresponding to that in C++ is tr1::shared_ptr<> which keeps a reference counter to the object and deallocates when it drops to zero. A first approach to get things running would be to make all C# references in to C++ tr1::shared_ptr<>. Then you can go into those places where it is a performance bottleneck (only after you've verified with a profile that it is an actual bottleneck) and change to more efficient memory handling.
GC feature of c++ has been discussed a lot in SO.
Try Reading through this!!
Garbage Collection in C++
Ok so I understand about the stack and the heap (values live on the Stack, references on the Heap).
When I declare a new instance of a Class, this lives on the heap, with a reference to this point in memory on the stack. I also know that C# does it's own Garbage Collection (ie. It determines when an instanciated class is no longer in use and reclaims the memory).
I have 2 questions:
Is my understanding of Garbage Collection correct?
Can I do my own? If so is there any real benefit to doing this myself or should I just leave it.
I ask because I have a method in a For loop. Every time I go through a loop, I create a new instance of my Class. In my head I visualise all of these classes lying around in a heap, not doing anything but taking up memory and I want to get rid of them as quickly as I can to keep things neat and tidy!
Am I understanding this correctly or am I missing something?
Ok so I understand about the stack and the heap (values live on the Stack, references on the Heap
I don't think you understand about the stack and the heap. If values live on the stack then where does an array of integers live? Integers are values. Are you telling me that an array of integers keeps its integers on the stack? When you return an array of integers from a method, say, with ten thousand integers in it, are you telling me that those ten thousand integers are copied onto the stack?
Values live on the stack when they live on the stack, and live on the heap when they live on the heap. The idea that the type of a thing has to do with the lifetime of its storage is nonsense. Storage locations that are short lived go on the stack; storage locations that are long lived go on the heap, and that is independent of their type. A long-lived int has to go on the heap, same as a long-lived instance of a class.
When I declare a new instance of a Class, this lives on the heap, with a reference to this point in memory on the stack.
Why does the reference have to go on the stack? Again, the lifetime of the storage of the reference has nothing to do with its type. If the storage of the reference is long-lived then the reference goes on the heap.
I also know that C# does it's own Garbage Collection (ie. It determines when an instanciated class is no longer in use and reclaims the memory).
The C# language does not do so; the CLR does so.
Is my understanding of Garbage Collection correct?
You seem to believe a lot of lies about the stack and the heap, so odds are good no, it's not.
Can I do my own?
Not in C#, no.
I ask because I have a method in a For loop. Every time I go through a loop, I create a new instance of my Class. In my head I visualise all of these classes lying around in a heap, not doing anything but taking up memory and I want to get rid of them as quickly as I can to keep things neat and tidy!
The whole point of garbage collection is to free you from worrying about tidying up. That's why its called "automatic garbage collection". It tidies for you.
If you are worried that your loops are creating collection pressure, and you wish to avoid collection pressure for performance reasons then I advise that you pursue a pooling strategy. It would be wise to start with an explicit pooling strategy; that is:
while(whatever)
{
Frob f = FrobPool.FetchFromPool();
f.Blah();
FrobPool.ReturnToPool(f);
}
rather than attempting to do automatic pooling using a resurrecting finalizer. I advise against both finalizers and object resurrection in general unless you are an expert on finalization semantics.
The pool of course allocates a new Frob if there is not one in the pool. If there is one in the pool, then it hands it out and removes it from the pool until it is put back in. (If you forget to put a Frob back in the pool, the GC will get to it eventually.) By pursuing a pooling strategy you cause the GC to eventually move all the Frobs to the generation 2 heap, instead of creating lots of collection pressure in the generation 0 heap. The collection pressure then disappears because no new Frobs are allocated. If something else is producing collection pressure, the Frobs are all safely in the gen 2 heap where they are rarely visited.
This of course is the exact opposite of the strategy you described; the whole point of the pooling strategy is to cause objects to hang around forever. Objects hanging around forever is a good thing if you're going to use them.
Of course, do not make these sorts of changes before you know via profiling that you have a performance problem due to collection pressure! It is rare to have such a problem on the desktop CLR; it is rather more common on the compact CLR.
More generally, if you are the kind of person who feels uncomfortable having a memory manager clean up for you on its schedule, then C# is not the right language for you. Consider C instead.
values live on the Stack, references on the Heap
This is an implementation detail. There is nothing to stop a .NET Framework from storing both on the stack.
I also know that C# does it's own Garbage Collection
C# has nothing to do with this. This is a service provided by the CLR. VB.NET, F#, etc all still have garbage collection.
The CLR will remove an object from memory if it has no strong roots. For example, when your class instance goes out of scope in your for loop. There will be a few lying around, but they will get collected eventually, either by garbage collection or the program terminating.
Can I do my own? If so is there any real benefit to doing this myself or should I just leave it?
You can use GC.Collect to force a collection. You should not do it because it is an expensive operation. More expensive than letting a few objects occupy memory a little bit longer than they are absolutely needed. The GC is incredibly good at what it does on its own. You will also force short lived objects to promote to generations they wouldn't get normally.
First off, to Erics seminal post about The truth about value types
Secondly on Garbage collection, the collector knows far more about your running program than you do, don't try to second guess it unless you're in the incredibly unlikely situation that you have a memory leak.
So to your second question, no don't try to "help" the GC.
I'll find a post to this effect on the CG and update this answer.
Can I do my own? If so is there any real benefit to doing this myself or should I just leave it.
Yes you can with GC.Collect but you shouldn't. The GC is optimized for variables that are short lived, ones in a method, and variables that are long lived, ones that generally stick around for the life time of the application.
Variables that are in-between aren't as common and aren't really optimum for the GC.
By forcing a GC.Collect you're more likely to cause variables in scope to be in forced into that in-between state which is the opposite from you are trying to accomplish.
Also from the MSDN article Writing High-Performance Managed Applications : A Primer
The GC is self-tuning and will adjust itself according to applications
memory requirements. In most cases programmatically invoking a GC will
hinder that tuning. "Helping" the GC by calling GC.Collect will more
than likely not improve your applications performance
Your understanding of Garbage Collection is good enough. Essentially, an unreferenced instance is deemed as being out-of-scope and no longer needed. Having determined this, the collector will remove an unreferenced object at some future point.
There's no way to force the Garbage Collector to collect just a specific instance. You can ask it to do its normal "collect everything possible" operation GC.Collect(), but you shouldn't.; the garbage-collector is efficient and effective if you just leave it to its own devices.
In particular it excels at collecting objects which have a short lifespan, just like those that are created as temporary objects. You shouldn't have to worry about creating loads of objects in a loop, unless they have a long lifespan that prevents immediate collection.
Please see this related question with regard to the Stack and Heap.
In your specific scenario, agreed, if you new up objects in a for-loop then you're going to have sub-optimal performance. Are the objects stored (or otherwise used) within the loop, or are they discarded? If the latter, can you optimize this by newing up one object outside the loop and re-using it?
With regard to can you implement your own GC, there is no explicit delete keyword in C#, you have to leave it to the CLR. You can however give it hints such as when to collect, or what to ignore during collection, however I'd leave that unless absolutely necessary.
Best regards,
Read the following article by Microsoft to get a level of knowledge about Garbage Collection in C#. I'm sure it'll help anyone who need information regarding this matter.
Memory Management and Garbage Collection in the .NET Framework
If you are interested in performance of some areas in your code when writing C#, you can write unsafe code. You will have a plus of performance, and also, in your fixed block, the garbage collector most likely will not occur.
Garbage collection is basically reference tracking. I can't think of any good reason why you would want to change it. Are you having some sort of problem where you find that memory isn't being freed? Or maybe you are looking for the dispose pattern
Edit:
Replaced "reference counting" with "reference tracking" to not be confused with the Increment/Decrement Counter on object Reference/Dereference (eg from Python).
I thought it was pretty common to refer to the object graph generation as "Counting" like in this answer:
Why no Reference Counting + Garbage Collection in C#?
But I will not pick up the glove of (the) Eric Lippert :)
I have a C# application that loops through a datatable, and pushes these into some locations such as Sage and a SQL table.
While it used to work fine, I'm inexplicably now getting Out of Memory exceptions after an hour or so of running it. I've noticed in the task manager, the memory usage rises by anbout 1mb every second, and keeps on going!
I was under the impression garbage collection would take of anything, but to be sure I ensure I dispose any objects after using them. I know without code it's hard to diagnose, but there's a lot of it and I'm looking more for general advice.
but to be sure I ensure I dispose any objects after using them
Dispose() is not directly related to memory management or leaks.
You'll have to look for unused objects that are still 'reachable'. Use a memory-profiler to find out.
You can start with the free CLR-Profiler.
There are a couple of potential problems that spring to mind:
There is a large pool of objects that are left inelegible for garbage collection (i.e. they are still "reachable"). For example if you add an object to an list in every loop then the list will grown unboundedly and each element in the list will remain inelegible for garbage collection as long as that list is still reachable. I'm not claiming that this is what is happening, this is just an example of how memory might be allocated and then left without being collected.
For some reason the garbage collector isn't doing a collection.
The high memory use is actually due to an unmanaged component that you are using in your application (e.g. via P/Invoke or COM interop).
Without seeing any code its tricky to give specific advice on how to fix your problem however reading through Investigating Memory Issues should give you some pointers on how to diagnose the memory problem yourself. In particular my first step would probably be to examine performance counters to see if the garbage collector is actually running, and to check the various heap sizes.
Note that Dispose and the IDisposable interface is unrelated to memory use - its important to dispose of objects like database connections once you are done with them as it frees up any associated resources (e.g. handles) however disposing of objects that implement IDisposable is very unlikely to have an impact on memory use.
Garbage collection can only get rid of objects that are no longer referenced from anything else. In addition it can only get rid of managed objects - it has no control about memory created from native code you may be interfacing with. These therefore are the two root causes for memory leaks in C# code.
The first thing to look at is perfmon. Get the counters for the private bytes and the .net heap size for the process. If the heap size remains flat (or rises and drops) but private bytes keeps increasing you've got some native code allocating memory and not releasing it.
If the heap size just keeps growing then the leak is in your managed code and you'll need a profiler like ANTS, DotTrace or even WinDbg (with SOS extension) to inspect the heap and see what objects are lying about.
The most popular "memory leak" on .Net platform is forgotten collection that repeatetly added in some infinite loop.
When you new something for temporary memory use.
Always use following way, it ensures calling dispose.
using (Someclass A = new Someclass())
{
....something about A
}
Someclass is a class implemented interface IDisposable
GC won't save you if there some part of unsafe code is involved(P/Invoke, Com etc..), and if there still a reference some where exists.
If you find memory leaking, use WinDbg will see what is in the heap.
This article may give you some help.
http://www.codeproject.com/KB/dotnet/Memory_Leak_Detection.aspx
I need to dispose of an object so it can release everything it owns, but it doesn't implement the IDisposable so I can't use it in a using block. How can I make the garbage collector collect it?
You can force a collection with GC.Collect(). Be very careful using this, since a full collection can take some time. The best-practice is to just let the GC determine when the best time to collect is.
Does the object contain unmanaged resources but does not implement IDisposable? If so, it's a bug.
If it doesn't, it shouldn't matter if it gets released right away, the garbage collector should do the right thing.
If it "owns" anything other than memory, you need to fix the object to use IDisposable. If it's not an object you control this is something worth picking a different vendor over, because it speaks to the core of how well your vendor really understands .Net.
If it does just own memory, even a lot of it, all you have to do is make sure the object goes out of scope. Don't call GC.Collect() — it's one of those things that if you have to ask, you shouldn't do it.
You can't perform garbage collection on a single object. You could request a garbage collection by calling GC.Collect() but this will effect all objects subject to cleanup. It is also highly discouraged as it can have a negative effect on the performance of later collections.
Also, calling Dispose on an object does not clean up it's memory. It only allows the object to remove references to unmanaged resources. For example, calling Dispose on a StreamWriter closes the stream and releases the Windows file handle. The memory for the object on the managed heap does not get reclaimed until a subsequent garbage collection.
Chris Sells also discussed this on .NET Rocks. I think it was during his first appearance but the subject might have been revisited in later interviews.
http://www.dotnetrocks.com/default.aspx?showNum=10
This article by Francesco Balena is also a good reference:
When and How to Use Dispose and Finalize in C#
http://www.devx.com/dotnet/Article/33167/0/page/1
Garbage collection in .NET is non deterministic, meaning you can't really control when it happens. You can suggest, but that doesn't mean it will listen.
Tells us a little bit more about the object and why you want to do this. We can make some suggestions based off of that. Code always helps. And depending on the object, there might be a Close method or something similar. Maybe the useage is to call that. If there is no Close or Dispose type of method, you probably don't want to rely on that object, as you will probably get memory leaks if in fact it does contain resourses which will need to be released.
If the object goes out of scope and it have no external references it will be collected rather fast (likely on the next collection).
BEWARE: of f ra gm enta tion in many cases, GC.Collect() or some IDisposal is not very helpful, especially for large objects (LOH is for objects ~80kb+, performs no compaction and is subject to high levels of fragmentation for many common use cases) which will then lead to out of memory (OOM) issues even with potentially hundreds of MB free. As time marches on, things get bigger, though perhaps not this size (80 something kb) for LOH relegated objects, high degrees of parallelism exasperates this issue due simply due to more objects in less time (and likely varying in size) being instantiated/released.
Array’s are the usual suspects for this problem (it’s also often hard to identify due to non-specific exceptions and assertions from the runtime, something like “high % of large object heap fragmentation” would be swell), the prognosis for code suffering from this problem is to implement an aggressive re-use strategy.
A class in Systems.Collections.Concurrent.ObjectPool from the parallel extensions beta1 samples helps (unfortunately there is not a simple ubiquitous pattern which I have seen, like maybe some attached property/extension methods?), it is simple enough to drop in or re-implement for most projects, you assign a generator Func<> and use Get/Put helper methods to re-use your previous object’s and forgo usual garbage collection. It is usually sufficient to focus on array’s and not the individual array elements.
It would be nice if .NET 4 updated all of the .ToArray() methods everywhere to include .ToArray(T target).
Getting the hang of using SOS/windbg (.loadby sos mscoreei for CLRv4) to analyze this class of issue can help. Thinking about it, the current garbage collection system is more like garbage re-cycling (using the same physical memory again), ObjectPool is analogous to garbage re-using. If anybody remembers the 3 R’s, reducing your memory use is a good idea too, for performance sakes ;)