NUnit TestFixture with no-arg constructors - c#

How do you get around the scenario where the TestFixture you are trying to define needs to reference types that do not have a no-arg constructor?
I'm trying to test an interface that has multiple implementations. From the NUnit documentation it showed how this could be setup with generics like this (where I can define multiple implementation types):
[TestFixture(typeof(Impl1MyInterface))]
[TestFixture(typeof(Impl2MyInterface))]
[TestFixture(typeof(Impl3MyInterface))]
public class TesterOfIMyInterface<T> where T : IMyInterface, new() {
public IMyInterface _impl;
[SetUp]
public void CreateIMyInterfaceImpl() {
_impl = new T();
}
}
The problem arises because Impl1MyInterface, Impl2MyInterface, etc do not have no-arg constructors so when NUnit tries to discover the available test cases I get this error (and the tests do not show up in VS):
Exception System.ArgumentException, Exception thrown discovering tests
in XYZ.dll
Is there a way to work around this? It doesn't make sense to define no-arg constructors because my code needs those values to work.

Instead of using new T() to instantiate your objects, you could use a dependency injection container to instantiate them for you. Here's an example using Microsoft's Unity:
[SetUp]
public void CreateIMyInterfaceImpl() {
var container = new UnityContainer();
// Register the Types that implement the interfaces needed by
// the Type we're testing.
// Ideally for Unit Tests these should be Test Doubles.
container.RegisterType<IDependencyOne, DependencyOneStub>();
container.RegisterType<IDependencyTwo, DependencyTwoMock>();
// Have Unity create an instance of T for us, using all
// the required dependencies we just registered
_impl = container.Resolve<T>();
}

As #Steve Lillis has said in his answer, you need to stop using new T(). When you do this, you don't need to use the new constraint on your generic. One option would be to use an IOC container, like Castle Windsor / Unity as Steve suggested to resolve the dependencies in your Setup.
You haven't said what parameters your implementation's constructors take, but if they're all the same, then an alternate would be to use Activator.CreateInstance instead. So, if your constructors all took an integer and a string, your code would look like this:
[TestFixture(typeof(Impl1MyInterface))]
[TestFixture(typeof(Impl2MyInterface))]
[TestFixture(typeof(Impl3MyInterface))]
public class TesterOfIMyInterface<T> where T : IMyInterface {
public IMyInterface _impl;
[SetUp]
public void CreateIMyInterfaceImpl() {
int someInt1 = 5;
string someString = "some value";
_impl = (T)Activator.CreateInstance(typeof(T), new object[] { someInt1, someString });
}
}

Related

Why doesn't AutoFixture return injected services when the services are of type object (even though they have an actual type)?

Due to the way that I'm trying to integrate AutoFixture with BUnit to run some Blazor tests, I need to create an IServiceProvider that will have an internal Fixture, and I can inject objects into that fixture to have those same objects returned when AutoFixture is request to create an object of that type.
My IServiceProvider looks like this
public class MockServiceProvider : IServiceProvider
{
private readonly Fixture fixture;
public MockServiceProvider()
{
this.fixture = new Fixture();
this.fixture.Customize(new AutoMoqCustomization { ConfigureMembers = true });
}
public void RegisterServices(params object[] serviceInstances)
{
foreach (object serviceInstance in serviceInstances)
{
this.fixture.Inject(serviceInstance);
}
}
public object GetService(Type serviceType)
{
return this.fixture.Create(serviceType, new SpecimenContext(this.fixture));
}
}
Then I register my service instances like this:
[Theory, AutoDomainData]
public void TestSomething(
IMyFirstService firstService,
IMySecondService secondService,
MockServiceProvider serviceProvider)
{
serviceProvider.RegisterServices(firstService, secondService);
// test stuff
}
The problem is that any time GetService is called, the fixture returns a new service instance instead of the one I injected.
I think that the problem is that since I'm passing my service instances to RegisterServices as objects, AutoFixture doesn't register them as the type that they actually are.
I can fix the problem by registering each service instance one at a time like this...
public void RegisterService<T>(T serviceInstance)
{
this.fixture.Inject(serviceInstance);
}
... but I'm curious as to why the first method doesn't work. Even though the parameters are an object array, shouldn't AutoFixture still know their actual type? I've tried this using RegisterServices(params dynamic[] serviceInstances) as well, but that doesn't work either.
The reason why Inject<T> doesn't infer the type of the instance but rather relies on the generic parameter is because it needs to enable scenarios where it is necessary to register values for base types or interfaces fixture.Inject<AbstractBaseType>(instance).
The way Inject works behind the scenes is that it delegates the registration to Register<T>(Func<T> creator) which then delegates it to a fixture.Customize<T>(c => c.FromFactory(creator).OmitAutoProperties()). So you can see how it wouldn't work when you need type inference.
You could as you said, make registrations one by one, or you could implement your own injection. Note the implementation below is a lighter implementation of the builder that would be normally generated by AutoFixture, and should cover most scenarios. If you find that some features are not working, like seeded requests, you might need a more complete implementation of the injection.
public static void InjectAsReflectedType(this IFixture fixture, object instance)
{
var builder = new FilteringSpecimenBuilder(
new FixedBuilder(instance),
new ExactTypeSpecification(instance.GetType()));
fixture.Customizations.Insert(0, builder);
}
Alternatively you could always invoke the Inject method through a wrapper non-generic method that calls the target method via reflection.

Castle Windsor Abstract Factory

I'm trying to understand how to use TypedFactoryFacility to create an abstract factory, and I have it working at a basic level, however I don't fully understand how to scale it with runtime dependencies
Suppose I have a service that needs to be created at runtime:
public interface IRuntimeService {
void DoThing();
}
with the following implementation
public class RuntimeService : IRuntimeService {
public void DoThing() {
// Do some work
}
}
To create my IRuntimeService, I've created an abstract factory
public interface IRuntimeServiceFactory {
IRuntimeService CreateService();
}
In my Castle installer, I'm using the TypedFactoryFacility to register my class and abstract factory.
public class TypeInstaller : IWindsorInstaller {
public void Install(IWindsorContainer container, IConfigurationStore store) {
container.AddFacility<TypedFactoryFacility>();
container.Register(Component.For<IRuntimeService>().ImplementedBy<RuntimeService>());
container.Register(Component.For<IRuntimeServiceFactory>().AsFactory());
}
Then in my class that will be using the service, I can use the factory to create new service instances at runtime.
var myService = m_ServiceFactory.CreateService();
Everything above works perfectly, however I'm running into a problem when my RuntimeService class needs to be injected with a dependency chain itself that include runtime parameters.
To expand the example above, suppose I have a new runtime dependency
public interface IRuntimeDependency {
void DoWork();
}
implemented by a class that takes a runtime string value through the constructor
public class RuntimeDependency : IRuntimeDependency {
private readonly string m_Param;
public RuntimeDependency(string param) {
m_Param = param;
}
public void DoWork() {
// Do work involving the param
}
}
And the previously defined service class now needs a reference to the dependency
public class RuntimeService : IRuntimeService {
private readonly IRuntimeDependency m_Dep;
public RuntimeService(IRuntimeDependency dep) {
m_Dep = dep;
}
public void DoThing() {
// Do some work involving the dependency
m_Dep.DoWork();
}
}
How do I now I create instances of my service using the TypedFactoryFacility?
I would expect do just be able to change my factory method to look like
IRuntimeService CreateService(string param);
but Windsor throws an error 'Could not resolve non-optional dependency for parameter 'param' type 'System.String'.
Windsor knows how to create an IRuntimeDependency if I give it a string, and it knows how to create a IRuntimeService if I give it the dependency, so why can't it directly create a IRuntimeService with the string param?
I can make it work by having two distinct factory methods
IRuntimeService CreateService(IRuntimeDependency dep);
IRuntimeDependency CreateDependency(string param);
and creating the dependency, manually myself
var dep = m_ServiceFactory.CreateDependency(param);
var myService = m_ServiceFactory.CreateService(dep );
^^^This works, but the whole point of using a container is so that it will take care of assembling new objects for me. This is a relatively simple example involving only one dependency, but it would easily grow out of control with a more complex object graph.
I could of course create my own factory implementations, but that also nullifies the benefit of using the TypedFactoryFacility which is supposed to create the abstract factory implementations for you. I have a hard time believing there's not an existing solution to this problem but the Windsor examples don't contain any chained run-time dependencies.
I don't think using a FactoryComponentSelector is the correct approach because there's only one possible path to create the RuntimeService instance. It should be able to auto-resolve.
In many or most cases, an object resolved by the container depends on implementations of other interfaces which are also resolved by the container. So as long as all of the interfaces have registered implementations, the container can resolve the entire dependency chain.
But in this case RuntimeDependency depends on a string, which isn't something the container can resolve.
public RuntimeDependency(string param) {
m_Param = param;
}
In this case you can use the DependsOn method to explicitly provide a value to fulfill that dependency.
container.Register(Component.For<IRuntimeDependency, RuntimeDependency>()
.DependsOn(Dependency.OnValue("param","whatEverTheValueIs")));
That value can, of course, come from configuration or wherever else. I use this a lot with SQL connection strings.
It is possible using DynamicParameters.
container.Register(Component.For<IRuntimeService>()
.ImplementedBy<RuntimeService>()
.LifestyleTransient()
.DynamicParameters((k, d) => {
d["dep"] = new RuntimeDependency((string)d["param"]);
}));
Keep in mind that the dictionary keys have to match the parameter names in the CreateService method and RuntimeService constructor.
Edit: You should also make it LifestyleTransient if you intend to create a new instance each time the factory method is called. (The default is singleton)
It seems that what I am asking for is not possible by design.
See this other SO answer.
https://stackoverflow.com/a/3905496/2029835

How to mock a generic factory with dependency injection

Using Ninject, I have a factory registered like this:
kernel.Bind<IMyFactory>().ToFactory();
Where IMyFactory looks something like this:
public interface IMyFactory
{
T CreateInstance<T> where T : MyBaseClass;
}
The reason for this is that classes derived from MyBaseClass have their own dependencies and I needed to be able to create instances of those classes from their types which I do like this:
MethodInfo mi = factory.GetType().GetMethod("CreateFoo");
MethodInfo generic = mi.MakeGenericMethod(type);
var param = (MyBaseClass)generic.Invoke(factory, null);
Where factory is the instance of IMyFactory created by Ninject and type is the type of MyBaseClass derived class I want to create. This all works really well.
The problem is that I'd like to be able to unit test this using the testing framework in Visual Studio and Moq, but I can't figure out a good way to mock IMyFactory.
Currently I have this:
myFactory = new Mock<IMyFactory>();
myFactory.Setup(d => d.CreateFoo<MyFirstClass>()).Returns(new MyFirstClass(userService.Object));
myFactory.Setup(d => d.CreateFoo<MySecondClass>()).Returns(new MySecondClass(userService.Object, someOtherServiceMock.Object));
// repeat for as many classes as would usually be handled by IMyFactory
Obviously this is really tedious (I have a few dozen classes to do). Is there a better way to do it?
This is kind of fiddly, and I'm not sure that it's the right strategy for testing anyway, but here's one approach that seems to work. I created a function in my test class like this:
private Dictionary<Type, Mock> mocks;
private void SetupCreateFoo<T>(Mock<IMyFactory> myFactory) where T: MyBaseClass
{
var t = typeof(T);
var constructors = from constructor in t.GetConstructors()
let parameters = constructor.GetParameters()
where parameters.Length > 0
select new { constructor, parameters };
// Note: there should only be one constructor anyway
foreach (var c in constructors)
{
List<object> parameters = new List<object>();
foreach (var p in c.parameters)
{
parameters.Add(mocks[p.ParameterType].Object);
}
myFactory.Setup(d => d.CreateAnalytic<T>()).Returns((T)c.constructor.Invoke(parameters.ToArray()));
}
}
Where the dictionary mocks is a collection of mocked services that might be needed by classes derived from MyBaseClass.
Now where I setup my test class, I can do this:
[TestInitialize]
public void Setup()
{
userService = new Mock<IUserService>();
//... setup userService
someOtherServiceMock = new Mock<ISomeOtherService>();
//... setup someOtherService
mocks = new Dictionary<Type, Mock>()
{
{ typeof(IUserService), userService },
{ typeof(ISomeOtherService), someOtherServiceMock}
};
myFactory= new Mock<IMyFactory>();
SetupCreateFoo<MyFirstClass>(myFactory);
SetupCreateFoo<MySecondClass>(myFactory);
// ... etc
finderService = new FinderService(userService.Object, myFactory.Object);
}
And I think I could potentially set up a List<Type> and call SetupCreateFoo<T> in a loop to further reduce the repetition, but it would require some reflection again to call a generic method with the Type.
It's still unclear to me why you need to mock IMyFactory, but to answer your core question: no, Moq offers now way to setup a generic method for any generic type parameter. I contribute to an open source project which integrates with Moq and I've faced this limitation before.
But you should only be setting up the method for the generic type parameters that are relevant to the test. If your test needs the factory to be setup with a hand full of type parameters, then that sounds like either a code smell or an exotic edge case.

NUnit Mocking not working for Singleton Method

Bear with me, I'm new to NUnit. I come from the land of Rails, so some of this is new to me.
I have a line of code that looks like this:
var code = WebSiteConfiguration.Instance.getCodeByCodeNameAndType("CATALOG_Brands_MinQty", item.Catalog);
I'm trying to mock it, like this (assume code is already initialized):
var _websiteConfigurationMock = new DynamicMock(typeof(WebSiteConfiguration));
_websiteConfigurationMock.ExpectAndReturn("getCodeByCodeNameAndType", code);
When I debug the test, getCodeByCodeNameAndType is returning null, instead of the expected code. What am I doing wrong?
NUnit version: 2.2.8
I'm sorry, but I've never used NUnit.Mocks - but I do have some experience with NMock and Moq [which, by the way, I highly recommend]. Typically, you use a mocking library to generate proxies for Interface definitions, and I presume NUnit.Mocks operates the same way.
Therefore, if you would like to mock your singleton, you will likely have to do the following,
a. Create an interface, say
// All methods you would like to mock from this class, should
// be members of this interface
public interface IWebSiteConfiguration
{
// Should match signature of method you are mocking
CodeType getCodeByCodeNameAndType (
string codeString,
CatalogType catalogType);
}
b. "Implement" interface
// You've already written the method, interface matches signature,
// should be as easy as slapping interface on class declaration
public class WebSiteConfiguration : IWebSiteConfiguration { }
c. Consume interface
alright, so step c. is where most of your work will be. Logically, if you are mocking your singleton, you are actually unit testing the consumer [which you have left out of your sample]. For c. simply add a parameter to the consumer's ctor, or add a publicly accessible property of Type 'IWebSiteConfiguration', and then internally, reference the instance member and invoke your methods against this new interface. Consider this,
was
public class MyClass
{
public MyClass () { }
public void DoSomething ()
{
// bad singleton! bad boy! static references are bad! you
// can't change them! convenient but bad!
code = WebSiteConfiguration.Instance.getCodeByCodeNameAndType (
"some.string",
someCatalog)
}
}
becomes
public class MyClass
{
private readonly IWebSiteConfiguration _config = null;
// just so you don't break any other code, you can default
// to your static singleton on a default ctor
public MyClass () : this (WebSiteConfiguration.Instance) { }
// new constructor permits you to swap in any implementation
// including your mock!
public MyClass (IWebSiteConfiguration config)
{
_config = config;
}
public void DoSomething ()
{
// huzzah!
code = _config.getCodeByCodeNameAndType ("some.string", someCatalog)
}
}
In your unit test, create the mock, pass a reference of the mock to the consumer, and test the consumer.
[Test]
public void Test ()
{
IWebSiteConfiguration mockConfig = null;
// setup mock instance and expectation via
// NUnit.Mocks, NMock, or Moq
MyClass myClass = new MyClass (mockConfig);
myClass.DoSomething ();
// verify results
}
This also serves as a practical introduction to Dependency Injection [DI]. It's simply the practice of passing, or "injecting", references of services [eg your web site configuration class] to the consumer, rather than having the consumer invoke the service directly [eg via static singleton class].
Hope this helps :)
A DynamicMock creates a new object in-memory that represents the interface, or marshallable (inherits from MarshalByRef) class you want to mock.
Try this:
var _websiteConfigurationMock = new DynamicMock(typeof(WebSiteConfiguration));
_websiteConfigurationMock.ExpectAndReturn("getCodeByCodeNameAndType", code);
WebSiteConfiguration conf = (WebSiteConfiguration)_websiteConfigurationMock.MockInstance;
var x = conf.getCodeByCodeNameAndType("CATALOG_Brands_MinQty", item.Catalog);
Note that the third line there will not work unless WebSiteConfiguration inherits from MarshalByRef.
What you typically do is mock an interface and get a new object that implements this interface, but behaves the way you've configured it to do, without having to go and make a concrete type for it, so I'm not entirely sure what you're doing is going to work unless you employ a better isolation framework, like TypeMock that can intercept calls to static methods/properties in existing objects.
Seems there is a kind of solution for this using reflection, or maybe I totally misunderstood this.
It is discussed here:
http://www.geekbeing.com/2010/05/23/how-to-unit-test-singleton-hack-in-c
Could it really works?
public class TestableSingleton : SingletonClass
{
public TestableSingleton ()
{
FieldInfo fieldInfo = typeof(SingletonClass)
.GetField("_instance",
BindingFlags.Static | BindingFlags.NonPublic);
fieldInfo.SetValue(Instance, this);
}
}
Project availabe on https://github.com/rbabreu/TestableSingleton
Actually I could not compile it on Visual Studio since the SingletonClass would have a private constructor. If someone get it to work would be great to avoid the overhead of adapter pattern.

What is the design pattern in this code?

Say I have a singleton-ish, factory-ish, reflection-ish class that receives some input, and spits back a new instance of a concrete implementation of some interface. What kind of design is this? Is there a better way to do what I want?
Here's some code to illustrate the point:
using System;
using System.Collections.Generic;
// static factory class
public static class ArticleFactory
{
// given an SKU, store the Type object for an IArticle object
private static Dictionary<string, Type> articleRegistry = new Dictionary<string, Type>();
// allow public registration of SKU-to-Type object relationships
public static bool Register(string sku, Type typeInfo)
{
if(!articleRegistry.ContainsKey(sku))
{
articleRegistry.Add(sku, typeInfo);
return true;
}
return false;
}
// given a SKU, give me an instance of the related IArticle object
public static IArticle NewArticle(string sku)
{
if(articleRegistry.ContainsKey(sku))
{
// use reflection to invoke the default constructor
return articleRegistry[sku].GetConstructor(Types.EmptyTypes).Invoke(null) as IArticle;
}
return null;
}
}
// example concrete-implementation of an IArticle
public class Jeans : IArticle
{
public decimal GetPrice() { return SomeDecimal(); }
}
// WHERE DO I CALL THIS LINE?
ArticleFactory.Register("0929-291", typeof(Jeans));
// Later on, if another group needs to write the class for Snowboards,
// how can they self-register their class, without changing any "Main()"
// or "Page_Init()" function?
Looks like you've already identified the pattern. It's the Factory Method Pattern. Or rather, a somewhat half-baked implementation of one. A slightly better approach would be to first make it an interface:
public interface IArticleFactory
{
IArticle CreateArticle(string sku);
}
Then implement the factory without any Reflection at all:
public class MyArticleFactory
{
private Dictionary<string, Func<IArticle>> instantiators =
new Dictionary<string, Func<Iarticle>>();
public MyArticleFactory()
{
Register("Jeans", () => new Jeans());
Register("Shirt", () => new Shirt());
// etc.
}
public IArticle CreateArticle(string sku)
{
Func<IArticle> instantiator;
if (creators.TryGetValue(sku, out instantiator))
return instantiator();
throw new UnknownSkuException(sku);
}
protected void Register(string sku, Func<IArticle> instantiator)
{
creators.Add(sku, instantiator);
}
}
A few important differences:
Registration isn't public, nor should it be. Registration usually either resides in a configuration file somewhere or is private.
Does not require the IArticle concrete types to have a default parameterless constructor. This can easily register articles with parameterized constructors (as long as it knows what parameters to use).
Throws an exception on duplicate registrations. I don't like the idea of simply returning false; if you try to register the same factory method twice, that ought to be considered a bug.
It's not static. You can replace this factory with a different factory. You can unit-test it.
Of course, an even better approach would just be to use any of the myriad of existing .NET Dependency Injection/Inversion of Control Frameworks, such as Ninject or AutoFac.
I don't know if it has a "name" as such, but it looks like some kind of manual service resolver. The problem I can see (from experience, sadly) is that it is inflexible in real terms, in that:
the registration only has a single configuration
it is hard to unit test
Personally I'd look at an IoC container if I was doing this in a new system; the IoC can handle this relationship, and provide a lot more capabilities for free (lifetimes, enrichment, extra setup, etc), and solve many associated problems.
BTW, it may be easier to:
return Activator.CreateInstance(articleRegistry[sku]);
I think what you're doing here is basically Dependency Injection (or Inversion of Control is what the cool kids call it). Have a look at these links:
Explanation from Wikipedia: http://en.wikipedia.org/wiki/Dependency_Injection
Two DI .Net frameworks:
StructureMap: http://structuremap.sourceforge.net/QuickStart.htm
Castle Windsor: http://www.castleproject.org/container/index.html
It's just a factory pattern that happens to use reflection in its implementation. Rather than using reflection, though, it would probably be more efficient to simply put instances of factory classes directly in the dictionary, though this might require some boilerplate code.

Categories