Keeping a service alive throughout the lifetime of the application - c#

I have a simple service interface I am using to synchronize data with a server via HTTP. The service interface has a method to start and stop the synchronization process. The idea is to start the synchronization process after the user signs in, and stop the synchronization at the end of the application before the user signs out. The synchronization service will check for new messages every few minutes, and then notify the ViewModel(s) of new/changed data using the MvxMessenger plugin.
What is the recommended way to ensure the synchronization service lives for the duration of the app? I am currently using a custom IMvxAppStart which registers the service interface as a singleton, and then holds a static reference to the service interface. Is that enough to keep the service alive for the lifetime of the app, or is there a better way?
public class App : MvxApplication
{
public override void Initialize()
{
...
RegisterAppStart(new CustomAppStart());
}
}
public class CustomAppStart : MvxNavigatingObject, IMvxAppStart
{
public static ISyncClient SynchronizationClient { get; set; }
public void Start(object hint = null)
{
SynchronizationClient = Mvx.Resolve<ISyncClient>();
ShowViewModel<SignInViewModel>();
}
}
public interface ISyncClient
{
void StartSync();
void StopSync();
bool IsSyncActive { get; }
}

You don't need a static property for this. When you register the Interface as a singleton, the IoC do the work for you. Example: In one of our apps wee need a state-property with important data for the whole lifetime of the app.
The models who need this state, just uses following code snippet:
protected IApplicationState AppState
{
get { return _appstate ?? (_appstate = Mvx.GetSingleton<IApplicationState>()); }
}
private IApplicationState _appstate;
But: You can do it also with a static property. But in this case you don't need a singleton-value in the IoC.

Related

Provide user information from signalr request in business logic layer using autofac

I have an ASP.NET MVC 5 Application with a SignalR 2 hub and using autofac for the DI.
The entire business logic is encapsulated in manager classes in their own layer. Some manager methods need informations about the current logged in user (UserId, TenantId, ..).
I solved this problem by injecting an AuthorizationProvider into each manager class that needs the user information.
public interface IAuthorizationProvider
{
long? GetUserId();
long? GteTenantId();
}
public class MyManager : IMyManager
{
private IAuthorizationProvider _authorizationProvider;
public MyManager(IAuthorizationProvider authorizationProvider)
{
_authorizationProvider = authorizationProvider;
}
public void MyMethod()
{
// Getting the User information here is pretty simple
long userId = _authorizationProvider.GetUserId();
}
}
Normally I can get the user information from the HttpContext and from the session. So I wrote a SessionAuthorizationProvider:
public class SessionAuthorizationProvider{
public long? GetUserId()
{
HttpContext.Current?.Session?[SessionKeys.User]?.Id;
}
public long? GteTenantId() { ... }
}
But now I have a new method in the SignalR hub that use the same mechanism.
[HubName("myHub")]
public class MyHub : Hub
{
private IMyManager _myManager;
public MyHub(IMyManager myManager)
{
_myManager = myManager;
}
[HubMethodName("myHubMethod")]
public void MyHubMethod(long userId, long tenantId)
{
_myManager.MyMethod();
}
}
The problem is that a SignalR request doesn't have a session. Therefore I have also set the required user information in the hub method as parameters postet from the client.
So I thought it is the best solution for this problem to write a new AuthorizationProvider for SignalR and adapt the depdendency resolver. But I can't get the current user in the new SignalrAuthorizationProvider.
public class SignalrAuthorizationProvider{
public long? GetUserId()
{
// How to get the user information here???
}
public long? GteTenantId() { /* and here??? */ }
}
Is there a recommended solution to this problem?
Of course, I can extend MyMethod to accept the user information as a parameter. But MyMethod calls another method from another manager and that manager also calls another method. The user information is only needed for the last method call. So I had to change at least 3 methods and many more in the future.
Here is a sketch of the problem
This is a potential solution. But it's very bad
Session is not supported by SignalR by default and you should avoid using it. See No access to the Session information through SignalR Hub. Is my design is wrong?. But you still can use cookie or querystring to get the desired value.
In both case you need to have access to the HubCallerContext of the underlying hub, the one that is accessible through the Context property of the Hub.
In a ideal word you should just have to had the dependency to the SignalAuthorizationProvider
ie :
public class SignalrAuthorizationProvider {
public SignalrAuthorizationProvider(HubCallerContext context){
this._context = context;
}
private readonly HubCallerContext _context;
public long? GetUserId() {
return this._context.Request.QueryString["UserId"]
}
}
But due to SignalR design it is not possible. Context property is assigned after construction of the Hub and AFAIK there is no way to change it.
Source code here : HubDispatcher.cs
One possible solution would be to inject a mutable dependency inside the Hub and alter the object in the OnConnected, OnReconnected methods.
public class SignalrAuthorizationProvider : IAuthorizationProvider
{
private Boolean _isInitialized;
private String _userId;
public String UserId
{
get
{
if (!_isInitialized)
{
throw new Exception("SignalR hack not initialized");
}
return this._userId;
}
}
public void OnConnected(HubCallerContext context)
{
this.Initialize(context);
}
public void OnReconnected(HubCallerContext context)
{
this.Initialize(context);
}
private void Initialize(HubCallerContext context) {
this._userId = context.QueryString["UserId"];
this._isInitialized = true;
}
}
and the Hub
public abstract class CustomHub : Hub
{
public CustomHub(IAuthorizationProvider authorizationProvider)
{
this._authorizationProvider = authorizationProvider;
}
private readonly IAuthorizationProvider _authorizationProvider;
public override Task OnConnected()
{
this._authorizationProvider.OnConnected(this.Context);
return base.OnConnected();
}
public override Task OnReconnected()
{
this._authorizationProvider.OnReconnected(this.Context);
return base.OnReconnected();
}
}
Having a mutable dependency is not the best design but I can't see any other way to have access to IRequest or HubCallerContext.
Instead of having an abstract Hub class which is not a perfect solution. You can change the RegisterHubs autofac method to use AOP with Castle.Core and let the interceptor calls the methods for you.

Dependency Injection Architectural Design - Service classes circular references

I have the following service classes:
public class JobService {
private UserService us;
public JobService (UserService us) {
this.us = us;
}
public void addJob(Job job) {
// needs to make a call to user service to update some user info
// similar dependency to the deleteUser method
}
}
public class UserService {
private JobService js;
public UserService(JobService js) {
this.js = js;
}
public void deleteUser(User u) {
using (TransactionScope scope = new TransactionScope()) {
List<IJob> jobs = jobService.findAllByUser(u.Id);
foreach (IJob job in jobs) {
js.deleteJob(job);
}
userDao.delete(user);
scope.Complete();
}
}
}
Each of these service classes is getting instantiated by IoC container, and there is not a functional problem, but this to me feels like there is a potential design flaw in this approach and I'm wondering if there's an alternative approach that makes more sense.
As someone already pointed out, the problem is not with limitations to the DI container but with your design.
I see the reason that you have a separate UserService and a JobService which contain a reference to each other. This is because both UserService and JobService contain some logic that needs the other service as a reference (adding a job requires adding a user, etc.). However, I think that you should NOT reference one service from the other. Rather, you should have another layer of abstraction behind the services which the services will use for the common logic. So, the services will contain the logic which can't(shouldn't) be reused and the helpers will contain the shared logic.
For example:
public class UserHelper{
//add all your common methods here
}
public class JobService {
private UserHelper us;
public JobService (UserHelper us) {
this.us = us;
}
public void addJob(Job job) {
// calls helper class
}
}
public class UserService {
public UserService(UserHelper js) {
this.js = js;
}
public void deleteUser(User u) {
// calls helper class
}
}
In this way, you won't have any issues with circular references and you will have one place which contains the logic which needs to be reused by different services.
Also, I prefer having services which are completely isolated from one another.
The problem you are having has in fact nothing to do with the limitations of your DI container, but it is a general problem. Even without any container, it will be impossible to create those types:
var job = new JobService([what goes here???]);
var user = new UserService(job);
The general answer is therefore to promote one of the dependencies to a property. This will break the dependency cycle:
var job = new JobService();
var user = new UserService(job);
// Use property injection
job.User = user;
Prevent however from using more properties than strictly needed. These dependency cycles should be pretty rare and makes it much harder to either wire your types together, or to validate the DI configuration for correctness. Constructor injection makes this much more easy.
You can decouple the services by using events. Instead of calling a dependent method of another service when an action has been performed, an event is raised. An integrator can then wire up the services through the events. A service does not even know the existence of the other service.
public class JobService
{
public event Action<User, Job> JobAdded;
public void AddJob(User user, Job job)
{
//TODO: Add job.
// Fire event
if (JobAdded != null) JobAdded(user, job);
}
internal void DeleteJobs(int userID)
{
//TODO: Delete jobs
}
}
public class UserService
{
public event Action<User> UserDeleted;
public void DeleteUser(User u)
{
//TODO: Delete User.
// Fire event
if (UserDeleted != null) UserDeleted(u);
}
public void UpdateUser(User user, Job job)
{
//TODO: Update user
}
}
The integrator wires up the services
public static class Services
{
public static JobService JobService { get; private set; }
public static UserService UserService { get; private set; }
static Services( )
{
JobService = new JobService();
UserService = new UserService();
JobService.JobAdded += JobService_JobAdded;
UserService.UserDeleted += UserService_UserDeleted;
}
private static void UserService_UserDeleted(User user)
{
JobService.DeleteJobs(user.ID);
}
private static void JobService_JobAdded(User user, Job job)
{
UserService.UpdateUser(user, job);
}
}
(Note: I simplified event raising a bit. It's not thread safe like this. But you can assume that the events are subscribed in advance and will not be changed later.)
This wont work in Autofac. See circular dependencies section of the documentation.
Constructor/Constructor Dependencies Two types with circular
constructor dependencies are not supported. You will get an exception
when you try to resolve types registered in this manner.
You could potentially use relationship types (Func<>, Lazy<>) to break the cycle.
Your code is a bit too generic to come up with a proper solution but you should consider changing the direction of dependencies regardless of what IoC container you use.
public class JobService {
private UserService us;
public JobService (UserService us) {
this.us = us;
}
public void addJob(Job job) {
// needs to make a call to user service to update some user info
}
}
public class UserService {
private JobService js;
public UserService(Func<JobService> jsFactory) {
this.js = jsFactory(this);
}
public void deleteUser(User u) {
// needs to call the job service to delete all the user's jobs
}
}
Alternatively, In the case of your example you could move deleteUser and create a method, delete all jobs on the job service and instead of refering to the user use an id. this breaks the dependency by using the id.
Another alternative is to pass the job service as a parameter to deleteUser.

How to specify the implementation you want to inject

I'm in the process of implementing a notification service. Essentially, customers can get notified in a number of ways, such as via email, text message, fax etc. Below is a rough implementation that is not wired together.
public class NotificationService
{
private readonly INotification _notification;
private readonly INotificationFormatter _formatter;
public NotificationService(
INotificationMethod notification,
INotificationFormatter formatter)
{
_notification = notification;
_formatter = formatter;
}
public void Notify(SomeParameterObject obj)
{
var formattedMessage = _formatter.Format(obj);
_notification.SendNotification(formattedMessage);
}
}
public interface INotificationFormatter
{
NotificationMessage Format(SomeParameterObject obj);
}
public interface INotification
{
void SendNotification();
}
public EmailNotification : INotification
{
public void SendNotification(NotificationMessage message)
{
// Use Exchange Web Services to send email
}
}
The NotificationService class essentially takes in a method of notification and a formatter. Obviously, each method of notification requires different formatting.
Based on business criteria, how do I select which implementation of INotification and NotificationFormatter I wish to use? Note that within the lifetime of the user using the application each notification will most likely be used. I say this because it's not as simple as instructing my container to inject implementation Foobar as it will change while the user is using the application.
I've thought of creating some sort of class that could handle pairs because it seems to makes sense to me that you wouldn't want use a text message notification formatter for a fax notification. However, I can't seem to wrap my head around a decent implementation of this.
I also own the book Dependency Injection in .NET by Mark Seemann. Did I perhaps miss something obvious?
Thank you.
How is it that you decide what kind of notification a user wants? If it can change while they're using your app, it seems like the NotificationService for that user msut be created anew for each notification you want to send them. That's ok - just use some sort of lookup to select a INotification impelmentation with an IoC container.
IoC's (I use AutoFac) let you use string-indexes to select a specific implementation. That string could come from a DB or whatever to represent the user's preference. Then you'd pass it to your IoC asking for an INotification 'decorated' with your string-choice. Upon startup, all the various implementations are registered with thier choice-strings.
I think you may be on to something with your 'pairs' comment - if INotificationFormat is closely tied to INotification and there is a possiblity of mixing them up then perhaps the INotification implementation itself should select its formatter.
What you need to do is to provide some kind of configuration infrastructure. For example, assuming that you want to keep the service just the way you've defined it, I would implement a factory returning an instance of NotificationService according to your model:
public struct NotificaitonSettings<T>
{
public Predicate<T> Predicate;
public NotificationService Service;
}
public class NotificationServiceFactory<T> : INotificationServiceFactory<T>
{
protected static List<NotificaitonSettings<T>> settings = new List<NotificaitonSettings<T>>();
static NotificationServiceFactory()
{
settings.Add(new NotificaitonSettings<T>
{
Predicate = m => !String.IsNullOrEmpty(m.Email),
Service = new NotificationService(new EmailNotification(), new EmailFormatter())
});
settings.Add(new NotificaitonSettings<T>
{
Predicate = m => !String.IsNullOrEmpty(m.Fax),
Service = new NotificationService(new FaxNotification(), new FaxFormatter())
});
}
public NotificationService Create(T model)
{
return settings.FirstOrDefault(s => s.Predicate(model)).Service;
}
}
This implementation configures the factory using static list, you could use a IoC container if it supports this kind of operations.

Async WCF: wait for another call

We have an old Silverlight UserControl + WCF component in our framework and we would like to increase the reusability of this feature. The component should work with basic functionality by default, but we would like to extend it based on the current project (without modifying the original, so more of this control can appear in the full system with different functionality).
So we made a plan, where everything looks great, except one thing. Here is a short summary:
Silverlight UserControl can be extended and manipulated via ContentPresenter at the UI and ViewModel inheritance, events and messaging in the client logic.
Back-end business logic can be manipulated with module loading.
This gonna be okay I think. For example you can disable/remove fields from the UI with overriden ViewModel properties, and at the back-end you can avoid some action with custom modules.
The interesting part is when you add new fields via the ContentPresenter. Ok, you add new properties to the inherited ViewModel, then you can bind to them. You have the additional data. When you save base data, you know it's succeeded, then you can start saving your additional data (additional data can be anything, in a different table at back-end for example). Fine, we extended our UserControl and the back-end logic and the original userControl still doesn't know anything about our extension.
But we lost transaction. For example we can save base data, but additional data saving throws an exception, we have the updated base data but nothing in the additional table. We really doesn't want this possibility, so I came up with this idea:
One WCF call should wait for the other at the back-end, and if both arrived, we can begin cross thread communication between them, and of course, we can handle the base and the additional data in the same transaction, and the base component still doesn't know anything about the other (it just provide a feature to do something with it, but it doesn't know who gonna do it).
I made a very simplified proof of concept solution, this is the output:
1 send begins
Press return to send the second piece
2 send begins
2 send completed, returned: 1
1 send completed, returned: 2
Service
namespace MyService
{
[ServiceContract]
[ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple)]
public class Service1
{
protected bool _sameArrived;
protected Piece _same;
[OperationContract]
public Piece SendPiece(Piece piece)
{
_sameArrived = false;
Mediator.Instance.WaitFor(piece, sameArrived);
while (!_sameArrived)
{
Thread.Sleep(100);
}
return _same;
}
protected void sameArrived(Piece piece)
{
_same = piece;
_sameArrived = true;
}
}
}
Piece (entity)
namespace MyService
{
[DataContract]
public class Piece
{
[DataMember]
public long ID { get; set; }
[DataMember]
public string SameIdentifier { get; set; }
}
}
Mediator
namespace MyService
{
public sealed class Mediator
{
private static Mediator _instance;
private static object syncRoot = new Object();
private List<Tuple<Piece, Action<Piece>>> _waitsFor;
private Mediator()
{
_waitsFor = new List<Tuple<Piece, Action<Piece>>>();
}
public static Mediator Instance
{
get
{
if (_instance == null)
{
lock (syncRoot)
{
_instance = new Mediator();
}
}
return _instance;
}
}
public void WaitFor(Piece piece, Action<Piece> callback)
{
lock (_waitsFor)
{
var waiter = _waitsFor.Where(i => i.Item1.SameIdentifier == piece.SameIdentifier).FirstOrDefault();
if (waiter != null)
{
_waitsFor.Remove(waiter);
waiter.Item2(piece);
callback(waiter.Item1);
}
else
{
_waitsFor.Add(new Tuple<Piece, Action<Piece>>(piece, callback));
}
}
}
}
}
And the client side code
namespace MyClient
{
class Program
{
static void Main(string[] args)
{
Client c1 = new Client(new Piece()
{
ID = 1,
SameIdentifier = "customIdentifier"
});
Client c2 = new Client(new Piece()
{
ID = 2,
SameIdentifier = "customIdentifier"
});
c1.SendPiece();
Console.WriteLine("Press return to send the second piece");
Console.ReadLine();
c2.SendPiece();
Console.ReadLine();
}
}
class Client
{
protected Piece _piece;
protected Service1Client _service;
public Client(Piece piece)
{
_piece = piece;
_service = new Service1Client();
}
public void SendPiece()
{
Console.WriteLine("{0} send begins", _piece.ID);
_service.BeginSendPiece(_piece, new AsyncCallback(sendPieceCallback), null);
}
protected void sendPieceCallback(IAsyncResult result)
{
Piece returnedPiece = _service.EndSendPiece(result);
Console.WriteLine("{0} send completed, returned: {1}", _piece.ID, returnedPiece.ID);
}
}
}
So is it a good idea to wait for another WCF call (which may or may not be invoked, so in a real example it would be more complex), and process them together with cross threading communication? Or not and I should look for another solution?
Thanks in advance,
negra
If you want to extend your application without changing any existing code, you can use MEF that is Microsoft Extensibility Framework.
For using MEF with silverlight see: http://development-guides.silverbaylabs.org/Video/Silverlight-MEF
I would not wait for 2 WCF calls from Silverlight, for the following reasons:
You are making your code more complex and less maintainable
You are storing business knowledge, that two services should be called together, in the client
I would call a single service that aggreagated the two services.
It doesn't feel like a great idea to me, to be honest. I think it would be neater if you could package up both "partial" requests in a single "full" request, and wait for that. Unfortunately I don't know the best way of doing that within WCF. It's possible that there's a generalized mechanism for this, but I don't know about it. Basically you'd need some loosely typed service layer where you could represent a generalized request and a generalized response, routing the requests appropriately in the server. You could then represent a collection of requests and responses easily.
That's the approach I'd look at, personally - but I don't know how neatly it will turn out in WCF.

How to pass Current User Information to all Layers in DDD

Similar questions have been asked before but not quite the same (unless I missed it)
I want to pass IUserInfo class instance through my Service, Domain , Domain Events, Domain Event Handlers...
Whats is the best way to do it.
Should I
Inject it using IoC by registering it
against instance of Httpcontext.Current.session["CurrentUser"];
Add the data to Current Thread.
Any other way
I am stuck at Domain Event Handlers where I want to use the data for auditing as well as sending emails.
I want to be able to use the CurrentUser information from almost anywhere in my application.
With threading as threads are pooled I am skeptical if the reuse of threads will reset the data. If not please shopw me how to use threading to pass IUser instance.
Regards,
Mar
My approach might not be ideal, but I find it working quite well. Thing what I did - I decided not to use dependency injection pass current user everywhere directly because that was getting too cumbersome and switched to static context. Problem with contexts - they are a bit difficult to manage.
This one is defined in my domain:
public static class UserContext{
private static Func<User> _getCurrentUser;
private static bool _initialized;
public static User Current{
get{
if(!_initialized)
throw new Exception("Can i haz getCurrentUser delegate?");
var user=_getCurrentUser();
return user??User.Anonymous;
}
}
public static void Initialize(Func<User> getCurrentUser){
_getCurrentUser=getCurrentUser;
_initialized=true;
}
}
Note that delegate is static - for whole app only one at a time. And I'm not 100% sure about it's life cycle, possible memory leaks or whatnot.
Client application is responsible to initialize context. My web application does that on every request:
public class UserContextTask:BootstrapperTask{
private readonly IUserSession _userSession;
public UserContextTask(IUserSession userSession){
Guard.AgainstNull(userSession);
_userSession=userSession;
}
public override TaskContinuation Execute(){
UserContext.Initialize(()=>_userSession.GetCurrentUser());
return TaskContinuation.Continue;
}
}
Using mvcextensions library to stream-line bootstrapping tasks. You can just subscribe for according events in global.asax for that.
In client side (web app), I implement application service named IUserSession:
public User GetCurrentUser(){
if(HttpContext.Current.User==null) return null;
var identity=HttpContext.Current.User.Identity;
if(!identity.IsAuthenticated) return null;
var user=_repository.ByUserName(identity.Name);
if(user==null) throw new Exception("User not found. It should be. Looks bad.");
return user;
}
There is some more lame code necessary in order to use forms auth with roles w/o membership provider and role provider. But that's not the point of this question.
At domain level - I'm explicitly describing permissions that users might have like this one:
public class AcceptApplications:IUserRights{
public bool IsSatisfiedBy(User u){
return u.IsInAnyRole(Role.JTS,Role.Secretary);
}
public void CheckRightsFor(User u){
if(!IsSatisfiedBy(u)) throw new ApplicationException
("User is not authorized to accept applications.");
}
}
Cool thing is - those permissions can be made more sophisticated. E.g.:
public class FillQualityAssessment:IUserRights{
private readonly Application _application;
public FillQualityAssessment(Application application){
Guard.AgainstNull(application,
"User rights check failed. Application not specified.");
_application=application;
}
public bool IsSatisfiedBy(User u){
return u.IsInRole(Role.Assessor)&&_application.Assessors.Contains(u);
}
public void CheckRightsFor(User u){
if(!IsSatisfiedBy(u))
throw new ApplicationException
("User is not authorized to fill quality assessment.");
}
}
Permissions can be checked vica versa too - User has these fellas:
public virtual bool HasRightsTo<T>(T authorizationSpec) where T:IUserRights{
return authorizationSpec.IsSatisfiedBy(this);
}
public virtual void CheckRightsFor<T>(T authorizationSpec) where T:IUserRights{
authorizationSpec.CheckRightsFor(this);
}
Here's my aggregate root base class:
public class Root:Entity,IRoot{
public virtual void Authorize(IUserRights rights){
UserContext.Current.CheckRightsFor(rights);
}
}
And here's how I check permissions:
public class Application{
public virtual void Accept(){
Authorize(new AcceptApplications());
OpeningStatus=OpeningStatus.Accepted;
}
}
I hope that helps...
I've done this kind of thing before using IoC. The benefit of this is that it's very testable -- you can stub out your user info for testing -- and reasonably readable and easy to follow.

Categories