Is it safe to override GetHashCode and get it from string property? - c#

I have a class:
public class Item
{
public string Name { get; set; }
public override int GetHashCode()
{
return Name.GetHashCode();
}
}
The purpose of overriding GetHashCode is that I want to have only one occurence of an object with specified name in Dictionary.
But is it safe to get hash code from string?
In other words, is there any chance that two objects with different values of property Name would return the same hash code?

But is it safe to get hash code from string?
Yes, it is safe. But, what you're doing isn't. You're using a mutable string field to generate your hash code. Let's imagine that you inserted an Item as a key for a given value. Then, someone changes the Name string to something else. You now are no longer able to find the same Item inside your Dictionary, HashSet, or whichever structure you use.
More-so, you should be relying on immutable types only. I'd also advise you to implement IEquatable<T> as well:
public class Item : IEquatable<Item>
{
public Item(string name)
{
Name = name;
}
public string Name { get; }
public bool Equals(Item other)
{
if (ReferenceEquals(null, other)) return false;
if (ReferenceEquals(this, other)) return true;
return string.Equals(Name, other.Name);
}
public override bool Equals(object obj)
{
if (ReferenceEquals(null, obj)) return false;
if (ReferenceEquals(this, obj)) return true;
if (obj.GetType() != this.GetType()) return false;
return Equals((Item) obj);
}
public static bool operator ==(Item left, Item right)
{
return Equals(left, right);
}
public static bool operator !=(Item left, Item right)
{
return !Equals(left, right);
}
public override int GetHashCode()
{
return (Name != null ? Name.GetHashCode() : 0);
}
}
is there any chance that two objects with different values of property
Name would return the same hash code?
Yes, there is a statistical chance that such a thing will happen. Hash codes do not guarantee uniqueness. They strive for uni-formal distribution. Why? because your upper boundary is Int32, which is 32bits. Given the Pigenhole Principle, you may happen at end up with two different strings containing the same hash code.

Your class is buggy, because you have a GetHashCode override, but no Equals override. You also don't consider the case where Name is null.
The rule for GetHashCode is simple:
If a.Equals(b) then it must be the case that a.GetHashCode() == b.GetHashCode().
The more cases where if !a.Equals(b) then a.GetHashCode() != b.GetHashCode() the better, indeed the more cases where !a.Equals(b) then a.GetHashCode() % SomeValue != b.GetHashCode() % SomeValue the better, for any given SomeValue (you can't predict it) so we like to have a good mix of bits in the results. But the vital thing is that two objects considered equal must have equal GetHashCode() results.
Right now this isn't the case, because you've only overridden one of these. However the following is sensible:
public class Item
{
public string Name { get; set; }
public override int GetHashCode()
{
return Name == null ? 0 : Name.GetHashCode();
}
public override bool Equals(object obj)
{
var asItem = obj as Item;
return asItem != null && Name == obj.Name;
}
}
The following is even better, because it allows for faster strongly-typed equality comparisons:
public class Item : IEquatable<Item>
{
public string Name { get; set; }
public override int GetHashCode()
{
return Name == null ? 0 : Name.GetHashCode();
}
public bool Equals(Item other)
{
return other != null && Name == other.Name;
}
public override bool Equals(object obj)
{
return Equals(obj as Item);
}
}
In other words, is there any chance that two objects with different values of property Name would return the same hash code?
Yes, this can happen, but it won't happen often, so that's fine. The hash-based collections like Dictionary and HashSet can handle a few collisions; indeed there'll be collisions even if the hash codes are all different because they're modulo'd down to a smaller index. It's only if this happens a lot that it impacts performance.
Another danger is that you'll be using a mutable value as a key. There's a myth that you shouldn't use mutable values for hash-codes, which isn't true; if a mutable object has a mutable property that affects what it is considered equal with then it must result in a change to the hash-code.
The real danger is mutating an object that is a key to a hash collection at all. If you are defining equality based on Name and you have such an object as the key to a dictionary then you must not change Name while it is used as such a key. The easiest way to ensure that is to have Name be immutable, so that is definitely a good idea if possible. If it is not possible though, you need to be careful just when you allow Name to be changed.
From a comment:
So, even if there is a collision in hash codes, when Equals will return false (because the names are different), the Dictionary will handle propertly?
Yes, it will handle it, though it's not ideal. We can test this with a class like this:
public class SuckyHashCode : IEquatable<SuckyHashCode>
{
public int Value { get; set; }
public bool Equals(SuckyHashCode other)
{
return other != null && other.Value == Value;
}
public override bool Equals(object obj)
{
return Equals(obj as SuckyHashCode);
}
public override int GetHashCode()
{
return 0;
}
}
Now if we use this, it works:
var dict = Enumerable.Range(0, 1000).Select(i => new SuckyHashCode{Value = i}).ToDictionary(shc => shc);
Console.WriteLine(dict.ContainsKey(new SuckyHashCode{Value = 3})); // True
Console.WriteLine(dict.ContainsKey(new SuckyHashCode{Value = -1})); // False
However, as the name suggests, it isn't ideal. Dictionaries and other hash-based collections all have means to deal with collisions, but those means mean that we no longer have the great nearly O(1) look-up, but rather as the percentage of collisions gets greater the look-up approaches O(n). In the case above where the GetHashCode is as bad as it could be without actually throwing an exception, the look-up would be O(n) which is the same as just putting all the items into an unordered collection and then finding them by looking at every one to see if it matches (indeed, due to differences in overheads, it's actually worse than that).
So for this reason we always want to avoid collisions as much as possible. Indeed, to not just avoid collisions, but to avoid collisions after the result has been modulo'd down to make a smaller hash code (because that's what happens internally to the dictionary).
In your case though because string.GetHashCode() is reasonably good at avoiding collisions, and because that one string is the only thing that equality is defined by, your code would in turn be reasonably good at avoiding collisions. More collision-resistant code is certainly possible, but comes at a cost to performance in the the code itself* and/or is more work than can be justified.
*(Though see https://www.nuget.org/packages/SpookilySharp/ for code of mine that is faster than string.GetHashCode() on large strings on 64-bit .NET and more collision-resistant, though it is slower to produce those hash codes on 32-bit .NET or when the string is short).

Instead of using GetHashCode to prevent duplicates to be added to a dictionary, which is risky in your case as explained already, I would recommend to use a (custom) equality comparer for your dictionary.
If the key is an object, you should create an own equality comparer that compares the string Name value. If the key is the string itself, you can use StringComparer.CurrentCulture for example.
Also in this case it is key to make the string immutable, since else you might invalidate your dictionary by changing the Name.

Related

How can I access a Dictionary through a key hashcode?

I have a dictionary like that:
Dictionary<MyCompositeKey, int>
Clearly MyCompositeKey is a class I designed which implements IEqualityComparer and thus has a GetHashCode method.
As far as I know, dictionary uses the key's hash to access the value, so here's my question:
While I can easily access the value via dict.TryGetValue(new MyCompositeKey(params)), I wanted to get rid off the new overhead on each access.
For this reason I was wondering if there's a way to access the value directly from key's hash (which I can compute with a very lower overhead).
There is no way to do that.
Note that hash collisions may occur, so there could be many keys in the Dictionary<,> matching the given hash. We need Equals to find out which (if any) is correct.
You talk about new overhead. Are you sure it is significant in your case?
If it is, you could consider making MyCompositeKey an immutable struct instead of a class. It might be faster in some cases, eliminating the need for the garbage collector to remove all those "loose" keys from memory.
If MyCompositeKey is a struct, the expression new MyCompositeKey(params) only loads all the params onto the call stack (or CPU registers or whatever the run-time figures is best).
Addition: If you go for a struct, consider implementing IEquatable<>. It will look like this:
struct MyCompositeKey : IEquatable<MyCompositeKey>
{
// readonly fields/properties
public override bool Equals(object obj)
{
if (obj is MyCompositeKey)
return Equals((MyCompositeKey)obj); // unbox and go to below overload
return false;
}
public bool Equals(MyCompositeKey other) // implements interface, can avoid boxing
{
// equality logic here
}
public override int GetHashCode()
{
// hash logic here
}
}
You can't do that.
A Dictionary<TKey, TValue> uses an internal buckets collection which you cannot access from outside the class - it is private.
As you can see in the source code, the access method first determines the bucket (according to the hash code) and then accesses the item by index:
public bool TryGetValue(TKey key, out TValue value)
{
int i = FindEntry(key);
if (i >= 0)
{
value = entries[i].value;
return true;
}
value = default(TValue);
return false;
}
private int FindEntry(TKey key)
{
if (buckets != null)
{
int hashCode = comparer.GetHashCode(key) & 0x7FFFFFFF;
for (int i = buckets[hashCode % buckets.Length]; i >= 0; i = entries[i].next)
{
if (entries[i].hashCode == hashCode && comparer.Equals(entries[i].key, key))
return i;
}
}
return -1;
}

Dictionary.ContainsKey() - How does it work?

I've read the MSDN documentation on how Dictionary.ContainsKey() works, but I was wondering how it actually makes the equality comparison? Basically, I have a dictionary keyed to a reference type* and I want the ContainsKey() method to check a certain property of that reference type as its basis for determining if the key exists or not. For example, if I had a Dictionary(MyObject, int) and MyObject has a public property (of int) called "TypeID", could I get ContainsKey(MyObject myObject) to check to see if one of the keys has a TypeID that is equal to myObject? Could I just overload the == operator?
The reference type is an object called "Duration" which holds a value (double Length); "Duration" is a base type used in my music program to denote how long a particular sound lasts. I derive classes from it which incorporate more sophisticated timing concepts, like Western musical time signatures, but want all of them to be comparable in terms of their length.
EDIT: As suggested, I implemented IEquitable on my object like so:
public class Duration : IEquatable<Duration>
{
protected double _length;
/// <summary>
/// Gets or Sets the duration in Miliseconds.
/// </summary>
public virtual double Length
{
get
{
return _length;
}
set
{
_length = value;
}
}
// removed all the other code that as it was irrelevant
public override bool Equals(object obj)
{
Duration otherDuration = (Duration)obj;
if (otherDuration._length == _length)
{
return true;
}
else
{
return false
}
}
}
Is this all I need to do?
EDIT: here is code for your updated example. Note: I find it a little odd that you expose the field as protected, and also have a virtual property that exposes the member. Under this scheme something could override Length resulting in equality that looks at _lenght to not behave as expected.
public class Duration : IEquatable<Duration>
{
protected double _length;
/// <summary>
/// Gets or Sets the duration in Miliseconds.
/// </summary>
public virtual double Length
{
get { return _length; }
set { _length = value; }
}
// removed all the other code that as it was irrelevant
public bool Equals(Duration other)
{
// First two lines are just optimizations
if (ReferenceEquals(null, other)) return false;
if (ReferenceEquals(this, other)) return true;
return _length.Equals(other._length);
}
public override bool Equals(object obj)
{
// Again just optimization
if (ReferenceEquals(null, obj)) return false;
if (ReferenceEquals(this, obj)) return true;
// Actually check the type, should not throw exception from Equals override
if (obj.GetType() != this.GetType()) return false;
// Call the implementation from IEquatable
return Equals((Duration) obj);
}
public override int GetHashCode()
{
// Constant because equals tests mutable member.
// This will give poor hash performance, but will prevent bugs.
return 0;
}
}
See EqualityComparer.Default for information on the default IEqualityComparer used by the Dictionary class.
If you do not want to generally override GetHashCode and Equals on the class, or if you are unable to. There is an overload of the Dictionary constructor in which you can provide the specific IEqualityComparer to use.
It is a simple interface to implement, but you do need to be careful that you respect the contract for GetHashCode or you can end up with unexpected behavior.
public class MyObjectEqualityComparer : IEqualityComparer<MyObject>
{
public bool Equals(MyObject x, MyObject y)
{
return x.TypeID == y.TypeID;
}
public int GetHashCode(MyObject obj)
{
return obj.TypeID; //Already an int
}
}
to use it just go
new Dictionary<MyObject, int>(new MyObjectEqualityComparer());
If you want to use the default IEqualityComparer you need to provide roughly the same methods on MyObjectEqualityComparer. You can avoid overriding object.Equals() if you implement IEquatable. However I would strongly discourage it because doing so can create some surprising behavior. You are better of overriding Equals so that you have consistent behavior for all calls to Equals and have hashing that properly matches Equals. I have had to fix a bug in inherited code caused by a past developer only implementing IEquatable.
Internally Dictionary uses EqualityComparer. Firstly it will check whether key implements IEquatable. If key doesn't implement this interface, it will call Equals method.

Please explain the technique used in this code to test Object Equality and Identity

Please explain the technique used in this code to test Object Equality and Identity.
Better, if you can supply me any web-link/book-reference for detailed discussion.
[Serializable]
public abstract class BusinessObject<T> : IBusinessObject where T : BusinessObject<T>
{
private int? requestedHashCode;
public virtual int ID { get; set; }
public virtual bool Equals(IBusinessObject other)
{
if (null == other || !GetType().IsInstanceOfType(other))
{
return false;
}
if (ReferenceEquals(this, other))
{
return true;
}
bool otherIsTransient = Equals(other.ID, default(T));
bool thisIsTransient = IsTransient();
if (otherIsTransient && thisIsTransient)
{
return ReferenceEquals(other, this);
}
return other.ID.Equals(ID);
}
protected bool IsTransient()
{
return Equals(ID, default(T));
}
public override bool Equals(object obj)
{
var that = obj as IBusinessObject;
return Equals(that);
}
public override int GetHashCode()
{
if (!requestedHashCode.HasValue)
{
requestedHashCode = IsTransient() ? base.GetHashCode() : ID.GetHashCode();
}
return requestedHashCode.Value;
}
}
What is a transient object?
it first checks if other is an instance of the same type as the current object. If not, they're not equal
it then performs a reference equality to check if other and the current object are the same instance. If they are, obviously they are equal
If both other and the current object are transient (i.e. not yet persisted), they don't have an ID, so they can't be compared by ID. Instead, they are compared by reference. (as noted by Marc Gravell in the comments, the test to check if the object is transient is broken; it doesn't make sense to compare an int to default(T))
Eventually, their IDs are compared; the objects are considered equal if they have the same ID
I think what the code is trying to do is say "has it got an ID yet", i.e. a "transient" object might (if I read the code's intent correctly) be one that is not yet saved to the DB. Then equality is defined as:
if it has an ID, does it match? (even for different instances of the same type)
if it doesn't have an ID, is it the same object instance (reference)
unfortunately the implementation looks completely broken, as Equals(ID, default(T)) is meaningless when T is something completely different (a BusinessObject<T>) - hence default(T) will always be null and ID will never be null (it is not nullable). So nothing will ever report as transient.
Additionally, this code:
if (null == other || !GetType().IsInstanceOfType(other))
is hugely inefficient. I suspect something involving as would be far preferable, but again: the code looks so... tortured... that I'm loathe to second-guess the intent.

Comparing objects

I have a class it contains some string members, some double members and some array objects.
I create two objects of this class, is there any simplest, efficient way of comparing these objects and say their equal? Any suggestions?
I know how to write a compare function, but will it be time consuming.
The only way you can really do this is to override bool Object.Equals(object other) to return true when your conditions for equality are met, and return false otherwise. You must also override int Object.GetHashCode() to return an int computed from all of the data that you consider when overriding Equals().
As an aside, note that the contract for GetHashCode() specifies that the return value must be equal for two objects when Equals() would return true when comparing them. This means that return 0; is a valid implementation of GetHashCode() but it will cause inefficiencies when objects of your class are used as dictionary keys, or stored in a HashSet<T>.
The way I implement equality is like this:
public class Foo : IEquatable<Foo>
{
public bool Equals(Foo other)
{
if (other == null)
return false;
if (other == this)
return true; // Same object reference.
// Compare this to other and return true/false as appropriate.
}
public override bool Equals(Object other)
{
return Equals(other as Foo);
}
public override int GetHashCode()
{
// Compute and return hash code.
}
}
A simple way of implementing GetHashCode() is to XOR together the hash codes of all of the data you consider for equality in Equals(). So if, for example, the properties you compare for equality are string FirstName; string LastName; int Id;, your implementation might look like:
public override int GetHashCode()
{
return (FirstName != null ? FirstName.GetHashCode() : 0) ^
(LastName != null ? LastName.GetHashCode() : 0) ^
Id; // Primitives of <= 4 bytes are their own hash codes
}
I typically do not override the equality operators, as most of the time I'm concerned with equality only for the purposes of dictionary keys or collections. I would only consider overriding the equality operators if you are likely to do more comparisons by value than by reference, as it is syntactically less verbose. However, you have to remember to change all places where you use == or != on your object (including in your implementation of Equals()!) to use Object.ReferenceEquals(), or to cast both operands to object. This nasty gotcha (which can cause infinite recursion in your equality test if you are not careful) is one of the primary reasons I rarely override these operators.
The 'proper' way to do it in .NET is to implement the IEquatable interface for your class:
public class SomeClass : IEquatable<SomeClass>
{
public string Name { get; set; }
public double Value { get; set; }
public int[] NumberList { get; set; }
public bool Equals(SomeClass other)
{
// whatever your custom equality logic is
return other.Name == Name &&
other.Value == Value &&
other.NumberList == NumberList;
}
}
However, if you really want to do it right, this isn't all you should do. You should also override the Equals(object, object) and GetHashCode(object) methods so that, no matter how your calling code is comparing equality (perhaps in a Dictionary or perhaps in some loosely-typed collection), your code and not reference-type equality will be the determining factor:
public class SomeClass : IEquatable<SomeClass>
{
public string Name { get; set; }
public double Value { get; set; }
public int[] NumberList { get; set; }
/// <summary>
/// Explicitly implemented IEquatable method.
/// </summary>
public bool IEquatable<SomeClass>.Equals(SomeClass other)
{
return other.Name == Name &&
other.Value == Value &&
other.NumberList == NumberList;
}
public override bool Equals(object obj)
{
var other = obj as SomeClass;
if (other == null)
return false;
return ((IEquatable<SomeClass>)(this)).Equals(other);
}
public override int GetHashCode()
{
// Determine some consistent way of generating a hash code, such as...
return Name.GetHashCode() ^ Value.GetHashCode() ^ NumberList.GetHashCode();
}
}
Just spent the whole day writing an extension method looping through reflecting over properties of an object with various complex bits of logic to deal with different property type and actually got it close to good, then at 16:55 it dawned on me that if you serialize the two object, you simply need compare the two strings ... duh
So here is a simple serializer extension method that even works on Dictionaries
public static class TExtensions
{
public static string Serialize<T>(this T thisT)
{
var serializer = new DataContractSerializer(thisT.GetType());
using (var writer = new StringWriter())
using (var stm = new XmlTextWriter(writer))
{
serializer.WriteObject(stm, thisT);
return writer.ToString();
}
}
}
Now your test can be as simple as
Asset.AreEqual(objA.Serialise(), objB.Serialise())
Haven't done extensive testing yet, but looks promising and more importantly, simple. Either way still a useful method to have in your utility set right ?
The best answer is to implement IEquatable for your class - it may not be the answer you want to hear, but that's the best way to implement value equivalence in .NET.
Another option would be computing a unique hash of all of the members of your class and then doing value comparisons against those, but that's even more work than writing a comparison function ;)
Since these are objects my guess is that you will have to override the Equals method for objects. Otherwise the Equals method will give you ok only if both objects refering to the same object.
I know this is not the answer you want. But since there is little number of properties in your class you can easily override the method.

Complex object comparison in C# [duplicate]

This question already has answers here:
C# implementation of deep/recursive object comparison in .net 3.5
(6 answers)
Closed 8 years ago.
I have two complex objects of the same type. I want to compare both the objects to determine if they have the exact same values. What is the efficient way of doing this ?
sample class structure given below:
class Package
{
public List<GroupList> groupList;
}
class GroupList
{
public List<Feature> featurelist;
}
class Feature
{
public int qty;
}
Okay, so you want deep unordered structural comparison. The "unordered" part is tricky, and in fact it is a strong hint that your classes are not designed right: List<T> is inherently ordered, so perhaps you would rather want to use a HashSet<T> there (if you don't expect to have any duplicates). Doing so would make the comparison both easier to implement, and faster (though insertions would be slower):
class Package
{
public HashSet<GroupList> groupList;
public override bool Equals(object o)
{
Package p = o as Package;
if (p == null) return false;
return groupList.SetEquals(p.groupList);
}
public override int GetHashCode()
{
return groupList.Aggregate(0, (hash, g) => hash ^ g.GetHashCode());
}
}
class GroupList
{
public HashSet<Feature> featureList;
public override bool Equals(object o)
{
GroupList g = o as GroupList;
if (g == null) return false;
return featureList.SetEquals(g.featureList);
}
public override int GetHashCode()
{
return featureList.Aggregate(0, (hash, f) => hash ^ f.GetHashCode());
}
}
class Feature
{
public int qty;
public override bool Equals(object o)
{
Feature f = o as Feature;
if (f == null) return false;
return qty == f.qty;
}
public override int GetHashCode()
{
return qty.GetHashCode();
}
}
If you want to keep using List<T>, you'll need to use LINQ set operations - note, however, that those are significantly slower:
class Package
{
public List<GroupList> groupList;
public override bool Equals(object o)
{
Package p = o as Package;
if (p == null) return false;
return !groupList.Except(p.groupList).Any();
}
}
class GroupList
{
public List<Feature> featureList;
public override bool Equals(object o)
{
GroupList g = o as GroupList;
if (g == null) return false;
return !featureList.Except(f.featureList).Any();
}
}
For complex objects, I would consider operator overloading.
On the overloaded operator, I would define my condition for equality.
http://msdn.microsoft.com/en-us/library/aa288467%28VS.71%29.aspx
We always just end up writing a method on the class that goes through everything and compares it. You could implement this as IComparable, or override Equals.
As the comment said, depends on how "exact" you want to measure.
You could just override equality and implement a GetHashCode method, however this does not guarantee they are exact matches. Will however ensure they are "very likely" an exact match.
Next thing you could do, is to go through every property/field in the class and compare those hash values. This would be "extremely likely" an exact match.
And to truly get an exact match, you have to compare every field and member in a recursive loop...not recommended.
If I were you, I would implement the IComparable Interface on the two types:
http://msdn.microsoft.com/en-us/library/system.icomparable.aspx
From there you can use .CompareTo, and implement the exact comparisons required under your circumstances. This is a general best practice within .NET and I think applies well to your case.
Depends on what you what you want to do with comparison. Like others have pointed out IComparer is a good choice. If you are planning on using lambdas and LINQ, I would go with IEqualityComparer
http://msdn.microsoft.com/en-us/library/system.collections.iequalitycomparer.aspx
In general, you need a method to check the two, regardless of whether or not you overload equals, or use IComparer.
You asked how to do it most efficiently, here are some tips:
Your equality method should try to give up quickly, e.g. check if the size of the lists are the same, if they are not then return false right away
If you could implement an efficient hashCode, you could compare the hashes first, if they are not equal then the objects are not equal, if they are equal, then you need to compare the objects to see if the objects are equal
So in general, do the fastest comparisons first to try to return false.
Here is a somewhat simplified way to do it, using reflection. You will probably need to add other checks of datatypes for specific comparisons or loop through lists etc, but this should get you started.
void Mymethod(){
Class1 class1 = new Class1();
//define properties for class1
Class1 class2 = new Class1();
//define properties for class2
PropertyInfo[] properties = class1.GetType().GetProperties();
bool bClassesEqual = true;
foreach (PropertyInfo property in properties)
{
Console.WriteLine(property.Name.ToString());
if (property.GetValue(class1, null) != property.GetValue(class2, null))
{
bClassesEqual = false;
break;
}
}
}

Categories