My senior colleague tells me to wrap every method within a try-catch block so they can trace where exceptions occurs to help debug issues quicker. Is it better to wrap every method in a Try Catch such as this to:
Public int foo()
{
try
{
//do something
}catch(Exeception ex)
{
//do something with ex
}
}
Or is it better to catch exceptions where I think they may occur? E.g. doing something with an array may cause the IndexOutOfRangeException will occur.
//wrap this in try catch
int[] array = new int[3];
array[0] = 1;
array[1] = 2;
array[2] = 3;
array[3] = 4;
Thanks.
The try block contains the guarded code that may cause the exception. The block is executed until an exception is thrown or it is completed successfully.
You can have a look on How often should I use try and catch
The basic rule of thumb for catching exceptions is to catch exceptions if and only if you have a meaningful way of handling them.
Don't catch an exception if you're only going to log the exception and throw it up the stack. It serves no meaning and clutters code.
Do catch an exception when you are expecting a failure in a specific part of your code, and if you have a fallback for it.
Of course you always have the case of checked exceptions which require you to use try/catch blocks, in which case you have no other choice. Even with a checked exception, make sure you log properly and handle as cleanly as possible.
Better to use it in critical parts of your code and then:
[STAThread]
static void Main()
{
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.ThreadException += new ThreadExceptionEventHandler(Application_ThreadException);
AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(CurrentDomain_UnhandledException);
ServerForm form = new ServerForm();
Application.Run(form);
}
static void Application_ThreadException(object sender, ThreadExceptionEventArgs e)
{
MessageBox.Show(e.Exception.Message, Program.Name);
}
static void CurrentDomain_UnhandledException(object sender, UnhandledExceptionEventArgs e)
{
MessageBox.Show((e.ExceptionObject as Exception).Message, Program.Name);
}
just in case of unhandled Exception
There is no problem in using Try catch block as it has no overhead (unless if you keep adding it everywhere which might include overhead in readability) while there is often additional IL added for catch and finally blocks,when no exception is thrown there is little difference in behaviour.
However if your code does throw an exception this is where you have a slight performance issue as in such cases an exception must be created,stack crawl marks must be placed and, if the exception is handled and its StackTrace property accessed, a stack walk is incurred. so as a result it might not be good idea to always wrap your code in try catch block alternatively you can place it at a parent level and then inspect the stack trace
Using try-catch depends strongly on the context.
For me there's no rules to tell developer when using or not a try catch block.
Developer code must prevent the evident errors or exceptions due to context like null parameters or file existence or the data coherency.
In case of developing a library used by many other programs, the library catches only some critical exception to allow top level programs have more details about errors and exceptions.
For example, we have a method in library using System.IO.File.WriteAllLines.
void bool DoSomethingWithFile()
{
try
{
// Some code here
System.IO.File.WriteAllLines()
//some code here
return true;
}
catch()
{
LogExeption();
return false;
}
}
How to tell top level program that the PathTooLongException or there's a security exception unless you add throw in the catch block.
Every piece of code where you think an error may occur should be wraped inside try catch block. If you are working on some real time problems and applications you should use it everywhere. It is a good programing practice. If you don't know what exception could occur, just use catch block for general exceptions:
try
{
//your code
}
catch (Exception ex)
{
//exception handling
}
Or you could use:
try
{
//your code
}
catch
{
//your custom message
}
Related
I'm looking at the article C# - Data Transfer Object on serializable DTOs.
The article includes this piece of code:
public static string SerializeDTO(DTO dto) {
try {
XmlSerializer xmlSer = new XmlSerializer(dto.GetType());
StringWriter sWriter = new StringWriter();
xmlSer.Serialize(sWriter, dto);
return sWriter.ToString();
}
catch(Exception ex) {
throw ex;
}
}
The rest of the article looks sane and reasonable (to a noob), but that try-catch-throw throws a WtfException... Isn't this exactly equivalent to not handling exceptions at all?
Ergo:
public static string SerializeDTO(DTO dto) {
XmlSerializer xmlSer = new XmlSerializer(dto.GetType());
StringWriter sWriter = new StringWriter();
xmlSer.Serialize(sWriter, dto);
return sWriter.ToString();
}
Or am I missing something fundamental about error handling in C#? It's pretty much the same as Java (minus checked exceptions), isn't it? ... That is, they both refined C++.
The Stack Overflow question The difference between re-throwing parameter-less catch and not doing anything? seems to support my contention that try-catch-throw is-a no-op.
EDIT:
Just to summarise for anyone who finds this thread in future...
DO NOT
try {
// Do stuff that might throw an exception
}
catch (Exception e) {
throw e; // This destroys the strack trace information!
}
The stack trace information can be crucial to identifying the root cause of the problem!
DO
try {
// Do stuff that might throw an exception
}
catch (SqlException e) {
// Log it
if (e.ErrorCode != NO_ROW_ERROR) { // filter out NoDataFound.
// Do special cleanup, like maybe closing the "dirty" database connection.
throw; // This preserves the stack trace
}
}
catch (IOException e) {
// Log it
throw;
}
catch (Exception e) {
// Log it
throw new DAOException("Excrement occurred", e); // wrapped & chained exceptions (just like java).
}
finally {
// Normal clean goes here (like closing open files).
}
Catch the more specific exceptions before the less specific ones (just like Java).
References:
MSDN - Exception Handling
MSDN - try-catch (C# Reference)
First, the way that the code in the article does it is evil. throw ex will reset the call stack in the exception to the point where this throw statement is losing the information about where the exception actually was created.
Second, if you just catch and re-throw like that, I see no added value. The code example above would be just as good (or, given the throw ex bit, even better) without the try-catch.
However, there are cases where you might want to catch and rethrow an exception. Logging could be one of them:
try
{
// code that may throw exceptions
}
catch(Exception ex)
{
// add error logging here
throw;
}
Don't do this,
try
{
...
}
catch(Exception ex)
{
throw ex;
}
You'll lose the stack trace information...
Either do,
try { ... }
catch { throw; }
OR
try { ... }
catch (Exception ex)
{
throw new Exception("My Custom Error Message", ex);
}
One of the reason you might want to rethrow is if you're handling different exceptions, for
e.g.
try
{
...
}
catch(SQLException sex)
{
//Do Custom Logging
//Don't throw exception - swallow it here
}
catch(OtherException oex)
{
//Do something else
throw new WrappedException("Other Exception occured");
}
catch
{
System.Diagnostics.Debug.WriteLine("Eeep! an error, not to worry, will be handled higher up the call stack");
throw; //Chuck everything else back up the stack
}
C# (before C# 6) doesn't support CIL "filtered exceptions", which VB does, so in C# 1-5 one reason for re-throwing an exception is that you don't have enough information at the time of catch() to determine whether you wanted to actually catch the exception.
For example, in VB you can do
Try
..
Catch Ex As MyException When Ex.ErrorCode = 123
..
End Try
...which would not handle MyExceptions with different ErrorCode values. In C# prior to v6, you would have to catch and re-throw the MyException if the ErrorCode was not 123:
try
{
...
}
catch(MyException ex)
{
if (ex.ErrorCode != 123) throw;
...
}
Since C# 6.0 you can filter just like with VB:
try
{
// Do stuff
}
catch (Exception e) when (e.ErrorCode == 123456) // filter
{
// Handle, other exceptions will be left alone and bubble up
}
My main reason for having code like:
try
{
//Some code
}
catch (Exception e)
{
throw;
}
is so I can have a breakpoint in the catch, that has an instantiated exception object. I do this a lot while developing/debugging. Of course, the compiler gives me a warning on all the unused e's, and ideally they should be removed before a release build.
They are nice during debugging though.
A valid reason for rethrowing exceptions can be that you want to add information to the exception, or perhaps wrap the original exception in one of your own making:
public static string SerializeDTO(DTO dto) {
try {
XmlSerializer xmlSer = new XmlSerializer(dto.GetType());
StringWriter sWriter = new StringWriter();
xmlSer.Serialize(sWriter, dto);
return sWriter.ToString();
}
catch(Exception ex) {
string message =
String.Format("Something went wrong serializing DTO {0}", DTO);
throw new MyLibraryException(message, ex);
}
}
Isn't this exactly equivalent to not
handling exceptions at all?
Not exactly, it isn't the same. It resets the exception's stacktrace.
Though I agree that this probably is a mistake, and thus an example of bad code.
You don't want to throw ex - as this will lose the call stack. See Exception Handling (MSDN).
And yes, the try...catch is doing nothing useful (apart from lose the call stack - so it's actually worse - unless for some reason you didn't want to expose this information).
This can be useful when your programming functions for a library or dll.
This rethrow structure can be used to purposefully reset the call stack so that instead of seeing the exception thrown from an individual function inside the function, you get the exception from the function itself.
I think this is just used so that the thrown exceptions are cleaner and don't go into the "roots" of the library.
A point that people haven't mentioned is that while .NET languages don't really make a proper distinction, the question of whether one should take action when an exception occurs, and whether one will resolve it, are actually distinct questions. There are many cases where one should take action based upon exceptions one has no hope of resolving, and there are some cases where all that is necessary to "resolve" an exception is to unwind the stack to a certain point--no further action required.
Because of the common wisdom that one should only "catch" things one can "handle", a lot of code which should take action when exceptions occur, doesn't. For example, a lot of code will acquire a lock, put the guarded object "temporarily" into a state which violates its invariants, then put it object into a legitimate state, and then release the lock back before anyone else can see the object. If an exception occurs while the object is in a dangerously-invalid state, common practice is to release the lock with the object still in that state. A much better pattern would be to have an exception that occurs while the object is in a "dangerous" condition expressly invalidate the lock so any future attempt to acquire it will immediately fail. Consistent use of such a pattern would greatly improve the safety of so-called "Pokemon" exception handling, which IMHO gets a bad reputation primarily because of code which allows exceptions to percolate up without taking appropriate action first.
In most .NET languages, the only way for code to take action based upon an exception is to catch it (even though it knows it's not going to resolve the exception), perform the action in question and then re-throw). Another possible approach if code doesn't care about what exception is thrown is to use an ok flag with a try/finally block; set the ok flag to false before the block, and to true before the block exits, and before any return that's within the block. Then, within finally, assume that if ok isn't set, an exception must have occurred. Such an approach is semantically better than a catch/throw, but is ugly and is less maintainable than it should be.
While many of the other answers provide good examples of why you might want to catch an rethrow an exception, no one seems to have mentioned a 'finally' scenario.
An example of this is where you have a method in which you set the cursor (for example to a wait cursor), the method has several exit points (e.g. if () return;) and you want to ensure the cursor is reset at the end of the method.
To do this you can wrap all of the code in a try/catch/finally. In the finally set the cursor back to the right cursor. So that you don't bury any valid exceptions, rethrow it in the catch.
try
{
Cursor.Current = Cursors.WaitCursor;
// Test something
if (testResult) return;
// Do something else
}
catch
{
throw;
}
finally
{
Cursor.Current = Cursors.Default;
}
One possible reason to catch-throw is to disable any exception filters deeper up the stack from filtering down (random old link). But of course, if that was the intention, there would be a comment there saying so.
It depends what you are doing in the catch block, and if you are wanting to pass the error on to the calling code or not.
You might say Catch io.FileNotFoundExeption ex and then use an alternative file path or some such, but still throw the error on.
Also doing Throw instead of Throw Ex allows you to keep the full stack trace. Throw ex restarts the stack trace from the throw statement (I hope that makes sense).
In the example in the code you have posted there is, in fact, no point in catching the exception as there is nothing done on the catch it is just re-thown, in fact it does more harm than good as the call stack is lost.
You would, however catch an exception to do some logic (for example closing sql connection of file lock, or just some logging) in the event of an exception the throw it back to the calling code to deal with. This would be more common in a business layer than front end code as you may want the coder implementing your business layer to handle the exception.
To re-iterate though the There is NO point in catching the exception in the example you posted. DON'T do it like that!
Sorry, but many examples as "improved design" still smell horribly or can be extremely misleading. Having try { } catch { log; throw } is just utterly pointless. Exception logging should be done in central place inside the application. exceptions bubble up the stacktrace anyway, why not log them somewhere up and close to the borders of the system?
Caution should be used when you serialize your context (i.e. DTO in one given example) just into the log message. It can easily contain sensitive information one might not want to reach the hands of all the people who can access the log files. And if you don't add any new information to the exception, I really don't see the point of exception wrapping. Good old Java has some point for that, it requires caller to know what kind of exceptions one should expect then calling the code. Since you don't have this in .NET, wrapping doesn't do any good on at least 80% of the cases I've seen.
In addition to what the others have said, see my answer to a related question which shows that catching and rethrowing is not a no-op (it's in VB, but some of the code could be C# invoked from VB).
Most of answers talking about scenario catch-log-rethrow.
Instead of writing it in your code consider to use AOP, in particular Postsharp.Diagnostic.Toolkit with OnExceptionOptions IncludeParameterValue and
IncludeThisArgument
Rethrowing exceptions via throw is useful when you don't have a particular code to handle current exceptions, or in cases when you have a logic to handle specific error cases but want to skip all others.
Example:
string numberText = "";
try
{
Console.Write("Enter an integer: ");
numberText = Console.ReadLine();
var result = int.Parse(numberText);
Console.WriteLine("You entered {0}", result);
}
catch (FormatException)
{
if (numberText.ToLowerInvariant() == "nothing")
{
Console.WriteLine("Please, please don't be lazy and enter a valid number next time.");
}
else
{
throw;
}
}
finally
{
Console.WriteLine("Freed some resources.");
}
Console.ReadKey();
However, there is also another way of doing this, using conditional clauses in catch blocks:
string numberText = "";
try
{
Console.Write("Enter an integer: ");
numberText = Console.ReadLine();
var result = int.Parse(numberText);
Console.WriteLine("You entered {0}", result);
}
catch (FormatException) when (numberText.ToLowerInvariant() == "nothing")
{
Console.WriteLine("Please, please don't be lazy and enter a valid number next time.");
}
finally
{
Console.WriteLine("Freed some resources.");
}
Console.ReadKey();
This mechanism is more efficient than re-throwing an exception because
of the .NET runtime doesn’t have to rebuild the exception object
before re-throwing it.
Scenario
I have a method that does database operation (let's say). If during that operation any exception is raised, I just want to throw that exception to the caller. I don't want to do any specific task in the catch block, assuming caller will do whatever it wants to do with that exception. In this scenario, which one is appropriate exception handling technique?
try
{
// Some work that may generate exception
}
catch(Exception)
{
throw;
}
finally
{
// Some final work
}
Is the above equivalent to the following try/catch/finally?
try
{
// Some work that may generate exception
}
catch
{
throw;
}
finally
{
// Some final work
}
Is the above equivalent to the following try/finally?
try
{
// Some work that may generate exception
}
finally
{
// Some final work
}
Which one is better than the other? Which one should be used?
No, they are not equivalent. They may be equivalent in some cases, but the general answer is no.
Different kinds of catch blocks
catch block with a specified exception type
The following will only catch managed exceptions that inherit from System.Exception and then executes the finally block, which will happen regardless of whether an exception was thrown or not.
try
{
// Some work that may generate exception
}
catch (Exception)
{
throw;
}
finally
{
// Some final work
}
catch block without a specified exception type
The following catch block without a type specifier will also catch non-managed exceptions that are not necessarily represented by a managed System.Exception object, and then executes the finally block, which will happen regardless of whether an exception was thrown or not.
try
{
// Some work that may generate exception
}
catch
{
throw;
}
finally
{
// Some final work
}
finally block without a catch block
If you do not have a catch block at all, your finally will still be executed regardless of whether or not an exception occoured.
try
{
// Some work that may generate exception
}
finally
{
// Some final work
}
When are they equivalent?
In case your catch block doesn't specify an exception and only contains the throw; statement, the last two are indeed equivalent. In case you don't care about non-managed exceptions and your catch block only contains the throw; statement, all three can be considered equivalent.
Notes
A note about throw
The following two pieces of code contain a subtle difference. The latter will re-throw the exception, meaning that it will rewrite the exception's stack trace, so these are definitely not equivalent:
catch (Exception e)
{
throw;
}
And
catch (Exception e)
{
throw e;
}
In case you use finally with an IDisposable, the following two pieces of code are almost equivalent, but with some subtle differences:
When the object is null, the using statement won't give you a NullReferenceException
When using the try-finally technique, the variable remains in scope, although it is very discouraged to use any object after it has been disposed. However you can still reassign the variable to something else.
Something obj = null;
try
{
obj = new Something()
// Do something
}
finally
{
obj.Dispose();
}
And
using (var obj = new Something())
{
// Do something
}
You have some good answers so far, but there is an interesting difference that they did not mention so far. Consider:
try { ImpersonateAdmin(); DoWork(); }
finally { RevertImpersonation(); }
vs
try { ImpersonateAdmin(); DoWork(); }
catch { RevertImpersonation(); throw; }
finally { RevertImpersonation(); }
Suppose DoWork throws.
Now the first question at hand is "is there a catch block that can handle this exception", because if the answer is "no" then the behaviour of the program is implementation-defined. The runtime might choose to terminate the process immediately, it might choose to run the finally blocks before it terminates the process, it might choose to start a debugger broken at the point of the unhandled exception, it might choose to do anything it likes. Programs with unhandled exceptions are permitted to do anything.
So the runtime starts looking for a catch block. There's none in this try statement, so it looks up the call stack. Suppose it finds one with an exception filter. It needs to know if the filter will permit the exception to be handled, so the filter runs before impersonation is reverted. If the filter accidentally or deliberately does something that only an admin can do, it will succeed! This might not be what you want.
In the second example, the catch catches the exception immediately, reverts the impersonation, throws, and now the runtime starts looking for a catch block to handle the re-throw. Now if there is a filter it runs after the impersonation is reverted. (And of course the finally then reverts again; I assume that reverting impersonation is idempotent here.)
This is an important difference between these two code snippets. If it is absolutely positively forbidden for any code to see the global state that was messed up by the try and cleaned up by the finally, then you have to catch before finally. "Finally" does not mean "immediately", it means "eventually".
Both of the try / catch statements are equivalent in that they are re-throwing the original exception that was caught. However the empty catch is more broad (as Venemo has already stated, catching unmanaged exceptions). If you are to catch an exception and capture it in a variable you can use it for logging or you can throw a new exception while passing the original exception as an argument - making it the "inner exception".
The finally is going to function the same regardless.
Which one should be used, in a scenario where we don't need logging exception and we explicitly assume caller will handle exception being raised like writing in file stream or sending email.
If the caller will handle the exception and you do not need to log the occurrence of the exception at this level, then you should not be catching at all. If the caller will handle an exception being thrown, there is no need to catch an exception just to re-throw it.
Valid reasons to catch an exception that will be re-thrown:
throw new Exception("WTF Happened", ex); // Use as inner exception
Log exception
Use a finally block to execute some cleanup code
I'm refactoring a medium-sized WinForms application written by other developers and almost every method of every class is surrounded by a try-catch block. 99% of the time these catch blocks only log exceptions or cleanup resources and return error status.
I think it is obvious that this application lacks proper exception-handling mechanism and I'm planning to remove most try-catch blocks.
Is there any downside of doing so? How would you do this? I'm planning to:
To log exceptions appropriately and prevent them from propagating to the user, have an Application.ThreadException handler
For cases where there's a resource that needs cleanup, leave the try-catch block as it is
Update: Using using or try-finally blocks is a better way. Thanks for the responses.
In methods that "return-false-on-error", let the exception propagate and catch it in the caller instead
Any corrections/suggestions are welcome.
Edit: In the 3rd item, with "return-false-on-error" I meant methods like this:
bool MethodThatDoesSomething() {
try {
DoSomething(); // might throw IOException
} catch(Exception e) {
return false;
}
}
I'd like to rewrite this as:
void MethodThatDoesSomething() {
DoSomething(); // might throw IOException
}
// try-catch in the caller instead of checking MethodThatDoesSomething's return value
try {
MethodThatDoesSomething()
} catch(IOException e) {
HandleException(e);
}
"To log exceptions appropriately and prevent them from propagating to the user, have an Application.ThreadException handler"
Would you then be able to tell the user what happened? Would all exceptions end up there?
"For cases where there's a resource that needs cleanup, leave the try-catch block as it is"
You can use try-finally blocks as well if you wish to let the exception be handled elsewhere. Also consider using the using keyword on IDisposable resources.
"In methods that "return-false-on-error", let the exception propagate and catch it in the caller instead"
It depends on the method. Exceptions should occur only in exceptional situations. A FileNotFoundException is just weird for the FileExists() method to throw, but perfectly legal to be thrown by OpenFile().
For cleanup rather use try-finally or implement the IDisposable as suggested by Amittai. For methods that return bool on error rather try and return false if the condition is not met. Example.
bool ReturnFalseExample() {
try {
if (1 == 2) thow new InvalidArgumentException("1");
}catch(Exception e) {
//Log exception
return false;
}
Rather change to this.
bool ReturnFalseExample() {
if (1 == 2) {
//Log 1 != 2
return false;
}
If i'm not mistaken try catches are an expensive process and when possible you should try determine if condition is not met rather then just catching exceptions.
}
As an option for "return-false-on-error" you can clean up the code this way:
static class ErrorsHelper {
public static bool ErrorToBool(Action action) {
try {
action();
return true;
} catch (Exception ex) {
LogException(ex);
return false;
}
}
private static void LogException(Exception ex) {
throw new NotImplementedException();
}
}
and usage example:
static void Main(string[] args) {
if (!ErrorToBool(Method)) {
Console.WriteLine("failed");
} else if (!ErrorToBool(() => Method2(2))) {
Console.WriteLine("failed");
}
}
static void Method() {}
static void Method2(int agr) {}
The best is as said by others, do exception handling at 1 place. Its bad practice to conceal the raised exception rather than allowing to bubble up.
You should only handle only the exceptions that you are expecting, know how to handle and they are not corrupt the state of your application, otherwise let them throw.
A good approach to follow is to log the exception first, then Restart your application, just like what Microsoft did when office or visual studio crashing. To do so you have to handle the application domain unhanded exception, so:
AppDomain.CurrentDomain.UnhandledException += OnCurrentDomainUnhandledException;
//Add these two lines if you are using winforms
Application.ThreadException += OnApplicationThreadException;
Application.SetUnhandledExceptionMode(UnhandledExceptionMode.CatchException);
private void OnCurrentDomainUnhandledException(object sender, System.Threading.ThreadExceptionEventArgs e)
{
//Log error
//RestartTheApplication
}
Here an example on how to restart your application.
I think your strategy of removing try/catch block which just appear to do generic thoughtless logging is fine. Obviously leaving the cleanup code is necessary. However, I think more clarification is needed for your third point.
Return false on error methods are usually OK for things where exceptions are unavoidable, like a file operation in your example. Whereas I can see the benefit of removing exception handling code where it's just been put in thoughtlessly, I would consider carefully what benefit you get by pushing responsibility for handling an exception of this kind higher up in the call chain.
If the method is doing something very specific (it's not generic framework code), and you know which callers are using it, then I'd let it swallow the exception, leaving the callers free of exception handling duties. However, if it's something more generic and maybe more of a framework method, where you're not sure what code will be calling the method, I'd maybe let the exception propagate.
You may try to use AOP.
In AOP through PostSharp, for example, you can handle exceptions in one central place (piece of code) as an aspect.
Look at the examples in documentation to have an idea => Docs on Exception Handling with PostSharp.
we can remove try and catch by adding condition Like
string emailAddresses = #"^([\w\.\-]+)#([\w\-]+)((\.(\w){2,3})+)$";
if (!Regex.IsMatch(Email, emailAddresses))
{
throw new UserFriendlyException($"E-mail Address Is not Valid");
}**strong text**
Hey:)
Is there any way to catch a handled exception globally? I know we can catch unhandled exceptions with " AppDomain.CurrentDomain.UnhandledException" and "Application.ThreadException", but I would like to add some handling to the exceptions I already caught (such as writing to log, etc)
thanks
In general, you probably want to catch exceptions at the lowest possible level in your code. The closer they're handed relative to where the exception occurs, the better chance that you have to fix the problem that caused them.
If you can't take any corrective action at this level that has a hope of fixing the problem causing the exception, you should not be handling it at all. Just let the exception bubble up, and handle it globally like you want.
That being said, if you've have handled the exception at a lower level, the only way you're going to be able to catch it at a higher level is if you rethrow it from the Catch block at the lower level.So, for example:
try
{
//your code
}
catch (SomeException e)
{
//take any relevant handling measures
//rethrow the exception
throw;
}
Of course, this would technically mean that the exception is unhandled by this Try/Catch block at the lower level, but that's the only way you're going to have anything to catch at a higher level.
For more information on rethrowing exceptions, see:
Why Re-throw Exceptions?
http://weblogs.asp.net/fmarguerie/archive/2008/01/02/rethrowing-exceptions-and-preserving-the-full-call-stack-trace.aspx
http://msdn.microsoft.com/en-us/library/xhcbs8fz.aspx
You can rethrow same exception and catch it in calling module / logging module and then log it.
For example :
private void DivideByZero()
{
try
{
int x = 2/0;
}
cath(Exception ex)
{
Console.Writeline(ex.ToString());
throw;
}
}
void Main(string[] a)
{
try
{
DivideByZero();
}
catch(Exception x)
{
// write logging code here ..
}
}
No, there is not global exception event. That would be very dangerous, you would catch all sorts of internal exceptions from other modules that was not ment for public use. It would also potentially drown your logs with exceptions.
You should be more structured about your exception handling to achieve the same effect. Encapsulate the actual handling of exceptions and do minimal work in the actual catch block. Either by just have a "HandleException" method somewhere that you pass every exception too. You might also have a look at the Exception Handling block in Enterprise library.
Suppose I have the following two classes in two different assemblies:
//in assembly A
public class TypeA {
// Constructor omitted
public void MethodA
{
try {
//do something
}
catch {
throw;
}
}
}
//in assembly B
public class TypeB {
public void MethodB
{
try {
TypeA a = new TypeA();
a.MethodA();
}
catch (Exception e)
//Handle exception
}
}
}
In this case, the try-catch in MethodA just elevates the exception but doesn't really handle it. Is there any advantage in using try-catch at all in MethodA? In other words, is there a difference between this kind of try-catch block and not using one at all?
In your example, there is no advantage to this. But there are cases where it is desirable to just bubble up a specific exception.
public void Foo()
{
try
{
// Some service adapter code
// A call to the service
}
catch (ServiceBoundaryException)
{
throw;
}
catch (Exception ex)
{
throw new AdapterBoundaryException("some message", ex);
}
}
This allows you to easily identify which boundary an exception occurred in. In this case, you would need to ensure your boundary exceptions are only thrown for code specific to the boundary.
Yes there is a difference. When you catch an exception, .NET assumes you are going to handle it in some way, the stack is unwound up to the function that is doing the catch.
If you don't catch it will end up as an unhandled exception, which will invoke some kind of diagnostic (like a debugger or a exception logger), the full stack and its state at the actual point of failure will be available for inspection.
So if you catch then re-throw an exception that isn't handled elsewhere you rob the diagnostic tool of the really useful info about what actually happened.
With the code the way you've written it for MethodA, there is no difference. All it will do is eat up processor cycles. However there can be an advantage to writing code this way if there is a resource you must free. For example
Resource r = GetSomeResource();
try {
// Do Something
} catch {
FreeSomeResource();
throw;
}
FreeSomeResource();
However there is no real point in doing it this way. It would be much better to just use a finally block instead.
Just rethrowing makes no sense - it's the same as if you did not do anything.
However it gets useful when you actually do something - most common thing is to log the exception. You can also change state of your class, whatever.
Taken as-is, the first option would seem like a bad (or should that be 'useless'?) idea. However, it is rarely done this way. Exceptions are re-thrown from within a Catch block usually under two conditions :
a. You want to check the exception generated for data and conditionally bubble it up the stack.
try
{
//do something
}
catch (Exception ex)
{
//Check ex for certain conditions.
if (ex.Message = "Something bad")
throw ex;
else
//Handle the exception here itself.
}
b. An unacceptable condition has occurred within a component and this information needs to be communicated to the calling code (usually by appending some other useful information or wrapping it in another exception type altogether).
try
{
//do something
}
catch (StackOverflowException ex)
{
//Bubble up the exception to calling code
//by wrapping it up in a custom exception.
throw new MyEuphemisticException(ex, "Something not-so-good just happened!");
}
Never do option A. As Anton says, it eats up the stack trace. JaredPar's example also eats up the stacktrace. A better solution would be:
SomeType* pValue = GetValue();
try {
// Do Something
} finally {
delete pValue;
}
If you got something in C# that needs to be released, for instance a FileStream you got the following two choices:
FileStream stream;
try
{
stream = new FileStream("C:\\afile.txt");
// do something with the stream
}
finally
{
// Will always close the stream, even if there are an exception
stream.Close();
}
Or more cleanly:
using (FileStream stream = new FileStream("c:\\afile.txt"))
{
// do something with the stream
}
Using statement will Dispose (and close) the stream when done or when an exception is closed.
When you catch and throw, it allows you to set a breakpoint on the throw line.
Re-throwing exceptions can be used to encapsulate it into generic exception like... consider following example.
public class XmlException: Exception{
....
}
public class XmlParser{
public void Parse()
{
try{
....
}
catch(IOException ex)
{
throw new XmlException("IO Error while Parsing", ex );
}
}
}
This gives benefit over categorizing exceptions. This is how aspx file handlers and many other system code does exception encapsulation which determines their way up to the stack and their flow of logic.
The assembly A - try catch - block does not make any sense to me. I believe that if you are not going to handle the exception, then why are you catching those exceptions.. It would be anyway thrown to the next level.
But, if you are creating a middle layer API or something like that and handling an exception ( and hence eating up the exception) in that layer does not make sense, then you can throw your own layer ApplicationException. But certainly rethrowing the same exception does not make sense.
Since the classes are in 2 different assemblies, you may want o simply catch the exception for logging it and then throw it back out to the caller, so that it can handle it the way it sees fit. A throw instead of a throw ex will preserve contextual information about where the exception originated. This can prove useful when your assembly is an API/framework where in you should never swallow exceptions unless its meaningful to do so but helpful nonetheless in trouble shooting if it's logged for example to the EventLog.
You can use try{} catch(ex){} block in Method A only if you could catch the specific exception which can be handled in MethodA() (for eg: logging ).
Another option is chain the exception using the InnerException property and pass it to the caller. This idea will not kill the stack trace.