Event Callback with Strongly Typed Object - c#

I'm trying to get a proof of concept down for a feature I need in my code. In the real application, I have a Dependency Injection container, and children sometimes need to 'new up' an object, and I need the DI container to return that object. So I'm using an event with a callback that lets the child get that instatiated object.
The problem is, I'd like one event, but allow it to return whichever object the caller specifies. I'm not sure how to get that strongly typed object back (without casting). I feel like it should be possible. If that's confusing enough, here's my example:
class Program
{
public static event EventHandler<MyEventArgs> MyEvent;
public static void Main()
{
MyEvent += (sender, args) =>
{
Console.WriteLine("Event Fired");
args.Callback("hello");
};
MyEvent(null, new MyEventArgs(obj => Console.WriteLine($"How do I get {obj} strongly typed")));
Console.Read();
}
}
and the event args:
public class MyEventArgs
{
public Action<object> Callback { get; set; }
public MyEventArgs(Action<object> callback)
{
Callback = callback;
}
}
I'm stuck, because MyEventArgs can't take a type parameter, as I would really like just one event to handle any return object type. Is it possible to get a strongly typed object through the callback?
Again, I could send the Type through as a parameter, and cast it, but I feel like this should be do-able. It's entirely possible that this is impossible, too.
Thanks for any guidance.

I worked out a solution that is almost exactly what I was going for:
public class MyEventArgs<T> : MyEventArgs where T : class
{
private Action<T> _callback;
public MyEventArgs(Action<T> callback)
{
_callback = callback;
}
public override void DoCallback(object item)
{
_callback(item as T);
}
}
public abstract class MyEventArgs
{
public abstract void DoCallback(object item);
}
and in my Main:
public static event EventHandler<MyEventArgs> MyEvent;
public static void Main()
{
MyEvent += (sender, args) =>
{
Console.WriteLine("Event Fired");
args.DoCallback("hello");
};
MyEvent(null, new MyEventArgs<string>(s => Console.WriteLine($"{s} is a string")));
Console.Read();
}
All it's missing is DoCallback()'s parameter is not strongly typed. But it's exremely close to what I wanted.

You probably would like to take a look at dynamic types.
public class MyEventArgs
{
public Action<dynamic> Callback { get; set; }
public MyEventArgs(Action<dynamic> callback)
{
Callback = callback;
}
}
It will allow you to pass any type to callback.

Related

Invoke event from unknown control [duplicate]

I have a class, EventContainer.cs, which contains an event, say:
public event EventHandler AfterSearch;
I have another class, EventRaiser.cs. How do I raise (and not handle) the above said event from this class?
The raised event will in turn call the handler of the event in the EventContainer class. Something like this (this is obviously not correct):
EventContainer obj = new EventContainer();
RaiseEvent(obj.AfterSearch);
This is not possible, Events can only be risen from inside the class. If you could do that, it would defeat the purpose of events (being able to rise status changes from inside the class). I think you are misunderstanding the function of events - an event is defined inside a class and others can subscribe to it by doing
obj.AfterSearch += handler; (where handler is a method according to the signature of AfterSearch). One is able to subscribe to the event from the outside just fine, but it can only be risen from inside the class defining it.
It is POSSIBLE, but using clever hack.
Inspired by http://netpl.blogspot.com/2010/10/is-net-type-safe.html
If you don't believe, try this code.
using System;
using System.Runtime.InteropServices;
namespace Overlapping
{
[StructLayout(LayoutKind.Explicit)]
public class OverlapEvents
{
[FieldOffset(0)]
public Foo Source;
[FieldOffset(0)]
public OtherFoo Target;
}
public class Foo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello Foo";
}
public void Click()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
}
public class OtherFoo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello OtherFoo";
}
public void Click2()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
public void Clean()
{
Clicked = null;
}
}
class Test
{
public static void Test3()
{
var a = new Foo();
a.Clicked += AClicked;
a.Click();
var o = new OverlapEvents { Source = a };
o.Target.Click2();
o.Target.Clean();
o.Target.Click2();
a.Click();
}
static void AClicked(object sender, EventArgs e)
{
Console.WriteLine(sender.ToString());
}
}
}
You can write a public method on the class you want the event to fire from and fire the event when it is called. You can then call this method from whatever user of your class.
Of course, this ruins encapsulation and is bad design.
It looks like you're using the Delegate pattern. In this case, the AfterSearch event should be defined on the EventRaiser class, and the EventContainer class should consume the event:
In EventRaiser.cs
public event EventHandler BeforeSearch;
public event EventHandler AfterSearch;
public void ExecuteSearch(...)
{
if (this.BeforeSearch != null)
this.BeforeSearch();
// Do search
if (this.AfterSearch != null)
this.AfterSearch();
}
In EventContainer.cs
public EventContainer(...)
{
EventRaiser er = new EventRaiser();
er.AfterSearch += this.OnAfterSearch;
}
public void OnAfterSearch()
{
// Handle AfterSearch event
}
I stumbled across this problem as well, because i was experimenting with calling PropertyChanged events from outside. So you dont have to implement everything in every class. The solution from halorty wouldn't work using interfaces.
I found a solution working using heavy reflection. It is surely slow and is breaking the principle that events should only be called from inside a class. But it is interesting to find a generic solution to this problem....
It works because every event is a list of invocation methods being called.
So we can get the invocation list and call every listener attached to that event by our own.
Here you go....
class Program
{
static void Main(string[] args)
{
var instance = new TestPropertyChanged();
instance.PropertyChanged += PropertyChanged;
instance.RaiseEvent(nameof(INotifyPropertyChanged.PropertyChanged), new PropertyChangedEventArgs("Hi There from anywhere"));
Console.ReadLine();
}
private static void PropertyChanged(object sender, PropertyChangedEventArgs e)
{
Console.WriteLine(e.PropertyName);
}
}
public static class PropertyRaiser
{
private static readonly BindingFlags staticFlags = BindingFlags.Instance | BindingFlags.NonPublic;
public static void RaiseEvent(this object instance, string eventName, EventArgs e)
{
var type = instance.GetType();
var eventField = type.GetField(eventName, staticFlags);
if (eventField == null)
throw new Exception($"Event with name {eventName} could not be found.");
var multicastDelegate = eventField.GetValue(instance) as MulticastDelegate;
if (multicastDelegate == null)
return;
var invocationList = multicastDelegate.GetInvocationList();
foreach (var invocationMethod in invocationList)
invocationMethod.DynamicInvoke(new[] {instance, e});
}
}
public class TestPropertyChanged : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged;
}
There is good way to do this. Every event in C# has a delegate that specifies the sign of methods for that event. Define a field in your external class with type of your event delegate. get the the reference of that field in the constructor of external class and save it. In main class of your event, send the reference of event for delegate of external class. Now you can easily call the delegate in your external class.
public delegate void MyEventHandler(object Sender, EventArgs Args);
public class MyMain
{
public event MyEventHandler MyEvent;
...
new MyExternal(this.MyEvent);
...
}
public MyExternal
{
private MyEventHandler MyEvent;
public MyExternal(MyEventHandler MyEvent)
{
this.MyEvent = MyEvent;
}
...
this.MyEvent(..., ...);
...
}
Agree with Femaref -- and note this is an important difference between delegates and events (see for example this blog entry for an good discussion of this and other differences).
Depending on what you want to achieve, you might be better off with a delegate.
Not a good programming but if you want to do that any way you can do something like this
class Program
{
static void Main(string[] args)
{
Extension ext = new Extension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
}
static void ext_MyEvent(int num)
{
Console.WriteLine(num);
}
}
public class Extension
{
public delegate void MyEventHandler(int num);
public event MyEventHandler MyEvent;
public void Dosomething()
{
int no = 0;
while(true){
if(MyEvent!=null){
MyEvent(++no);
}
}
}
}
I had a similar confusion and honestly find the answers here to be confusing. Although a couple hinted at solutions that I would later find would work.
My solution was to hit the books and become more familiar with delegates and event handlers.
Although I've used both for many years, I was never intimately familiar with them.
http://www.codeproject.com/Articles/20550/C-Event-Implementation-Fundamentals-Best-Practices
gives the best explanation of both delegates and event handlers that I've ever read and clearly explains that a class can be a publisher of events and have other classes consume them.
This article: http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single discusses how to single-cast events to only one handler since delegates are multicast by definition . A delegate inherits system.MulticastDelegate most including the system delegates are Multicast.
I found that multicast meant that any event handler with the same signature would receive the raised event. Multicast behavior has caused me some sleepless nights as I stepped through code and saw my event seemingly erroneously being sent to handlers that I had no intention of getting this event. Both articles explains this behavior.
The second article shows you one way, and the first article shows you another, by making the delegate and the signature tightly typed.
I personally believe strong typing prevents stupid bugs that can be a pain to find. So I'd vote for the first article, even though I got the second article code working. I was just curious. :-)
I also got curious if I could get #2 articles code to behave like how I interpreted the original question above. Regardless of your chosen approach or if I'm also misinterpreting the original question, my real message is that I still think you would benefit from reading the first article as I did, especially if the questions or answers on this page leave you confused. If you are having multicast nightmares and need a quick solution then article 2 may help you.
I started playing with the second article's eventRaiser class. I made a simple windows form project.
I added the second articles class EventRaiser.cs to my project.
In the Main form's code, I defined a reference to that EventRaiser class at the top as
private EventRaiser eventRaiser = new EventRaiser();
I added a method in the main form code that I wanted to be called when the event was fired
protected void MainResponse( object sender, EventArgs eArgs )
{
MessageBox.Show("got to MainResponse");
}
then in the main form's constructor I added the event assignment:
eventRaiser.OnRaiseEvent += new EventHandler(MainResponse);`
I then created a class that would be instantiated by my main form called "SimpleClass" for lack of creative ingenuity at the moment.
Then I added a button and in the button's click event
I instantiated the SimpleClass code I wanted to raise an event from:
private void button1_Click( object sender, EventArgs e )
{
SimpleClass sc = new SimpleClass(eventRaiser);
}
Note the instance of "eventRaiser" that I passed to SimpleClass.cs. That was defined and instantiated earlier in the Main form code.
In the SimpleClass:
using System.Windows.Forms;
using SinglecastEvent; // see SingleCastEvent Project for info or http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single
namespace GenericTest
{
public class SimpleClass
{
private EventRaiser eventRaiser = new EventRaiser();
public SimpleClass( EventRaiser ev )
{
eventRaiser = ev;
simpleMethod();
}
private void simpleMethod()
{
MessageBox.Show("in FileWatcher.simple() about to raise the event");
eventRaiser.RaiseEvent();
}
}
}
The only point to the private method I called SimpleMethod was to verify that a privately scoped method could still raise the event, not that I doubted it, but I like to be positive.
I ran the project and this resulted in raising the event from the "simpleMethod" of the "SimpleClass" up to the main form and going to the expected correct method called MainResponse proving that one class can indeed raise an event that is consumed by a different class.
Yes the event has to be raised from within the class that needs it's change broadcast to other classes that care. Receiving classes can be one class or many many classes depending on how strongly typed you defined them or by making them single cast as in 2nd article.
Hope this helps and not muddy the water. Personally I've got a lot of delegates and events to clean up! Multicast demons begone!
The raising class has to get a fresh copy of the EventHandler.
One possible solution below.
using System;
namespace ConsoleApplication1
{
class Program
{
class HasEvent
{
public event EventHandler OnEnvent;
EventInvoker myInvoker;
public HasEvent()
{
myInvoker = new EventInvoker(this, () => OnEnvent);
}
public void MyInvokerRaising() {
myInvoker.Raise();
}
}
class EventInvoker
{
private Func<EventHandler> GetEventHandler;
private object sender;
public EventInvoker(object sender, Func<EventHandler> GetEventHandler)
{
this.sender = sender;
this.GetEventHandler = GetEventHandler;
}
public void Raise()
{
if(null != GetEventHandler())
{
GetEventHandler()(sender, new EventArgs());
}
}
}
static void Main(string[] args)
{
HasEvent h = new HasEvent();
h.OnEnvent += H_OnEnvent;
h.MyInvokerRaising();
}
private static void H_OnEnvent(object sender, EventArgs e)
{
Console.WriteLine("FIRED");
}
}
}
Use public EventHandler AfterSearch;
not
public event EventHandler AfterSearch;
Use a Delegate (an Action or Func) instead of an event. An event is essentially a delegate that can only be triggered from within the class.
I took a slightly different approach in solving this problem. My solution consisted of a winform front end, a main Class Library (DLL) and within that dll, a secondary working class:
WinForm
|------> PickGen Library
|---------> Allocations class
What I decided to do is to create events in the main dll (PickGen) that the Allocations class could call, then those event methods would called the events within the UI.
So, allocations raises an event in PickGen which takes the parameter values and raises the event in the form. From a code standpoint, this is in the lowest class:
public delegate void AllocationService_RaiseAllocLog(string orderNumber, string message, bool logToDatabase);
public delegate void AllocationService_RaiseAllocErrorLog(string orderNumber, string message, bool logToDatabase);
public class AllocationService { ...
public event AllocationService_RaiseAllocLog RaiseAllocLog;
public event AllocationService_RaiseAllocErrorLog RaiseAllocErrorLog;
then later in the subclass code:
RaiseAllocErrorLog(SOHNUM_0, ShipmentGenerated + ": Allocated line QTY was: " + allocatedline.QTY_0 + ", Delivered was: " + QTY_0 + ". Problem batch.", false);
In the main DLL Class library I have these two event methods:
private void PickGenLibrary_RaiseAllocLog(string orderNumber, string message, bool updateDB)
{
RaiseLog(orderNumber, message, false);
}
private void PickGenLibrary_RaiseAllocErrorLog(string orderNumber, string message, bool updateDB)
{
RaiseErrorLog(orderNumber, message, false);
}
and I make the connection here when I create the allocation object:
AllocationService allsvc = new AllocationService(PickResult);
allsvc.RaiseAllocLog += new AllocationService_RaiseAllocLog(PickGenLibrary_RaiseAllocLog);
allsvc.RaiseAllocErrorLog += new AllocationService_RaiseAllocErrorLog(PickGenLibrary_RaiseAllocErrorLog);
and I also then have delegates that are set up to tie the main class with the winform code:
public delegate void JPPAPickGenLibrary_RaiseLog(string orderNumber, string message, bool logToDatabase);
public delegate void JPPAPickGenLibrary_RaiseErrorLog(string orderNumber, string message, bool logToDatabase);
It may not be the most elegant way to do it, but in the end, it does work and without being too obscure.
A nested class with an instance of the outer class provided in the constructor can access even private members of the outer class. As explained more here: stackoverflow question on inner classes.
This includes the ability to raise events in the outer class. This EventRaisers class could be internal, or otherwise controlled somehow, because it could technically otherwise be created by any script with a reference to the outer class instance.
Very simple example. i like to do it this way using EventHandler.
class Program
{
static void Main(string[] args)
{
MyExtension ext = new MyExtension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
Console.ReadLine();
}
static void ext_MyEvent(object sender, int num)
{
Console.WriteLine("Event fired.... "+num);
}
}
public class MyExtension
{
public event EventHandler<int> MyEvent;
public void Dosomething()
{
int no = 1;
if (MyEvent != null)
MyEvent(this, ++no);
}
}
}

All classes with particular Interface should be notify by event

How,does one should call an event declared by interface so that all the classes that has implemented that interface get notified??
For example in structure like this,
public delegate void myDel(int value);
interface IEventCaller{
event myDel myDelEventCall;
}
public Class One : IEventCaller {
public event myDel myDelEventCall;
}
public Class Two : IEventCaller {
public event myDel myDelEventCall;
}
I want both class One and Two to get notify and act as event gets called, I am feeling somewhere I am going wrong direction , is it possible to do?
Actually what you want doesn't involve events. Events would be used by an object implementing IEventCaller to notify some object holding a reference to that object of some change. To invoke something on the object implementing IEventCaller would just require a method, for example Hello();
First, you need code that informs all the objects that implement this interface. To make that possible, you somewhere need to store a list of instances that want to get notified.
One solution would be to create a class that manages that list. Let's say like this
private static List<IEventCaller> eventCallers = new List<IEventCaller>();
public static void AddEventCaller(IEventCaller c)
{
eventCallers.Add(c);
}
public static void RemoveEventCaller(IEventCaller c)
{
eventCallers.Remove(c);
}
public static IEventCaller[] EventCallers
{
get { return eventCallers.ToArray() }
}
Of course this code needs to be thread safe, etc. I'd put all this into a singleton to be globally available.
Then, all objects that implement IEventCallers need to register/unregister accordingly. Thus, I'd also have them Implement IDisposable so that in the constructor you can do
public EventCallable()
{
Singleton.Instance.AddEventCaller(this);
}
and in the Dispose method you can do this:
public void Dispose(bool disposing)
{
Singleton.Instance.RemoveEventCaller(this);
}
Now the code that should notify every instance could just do this:
public void NotifyAll()
{
foreach (IEventCaller caller in Singleton.Instance.EventCallers)
caller.Hello();
}
I think you might be looking at this the other one around.
With events, you want to have an object which is the publisher, which is responsible for publishing the event and saying "hey guys, something just occurred and you should know about it", and you have your subscribers, which are the guys who say "Yo dawg, let me know when that thing occurs, so i can act on it".
What you can do is have the object which is responsible for the event occurring implement your interface:
public class Publisher : IEventCaller
{
public event MyDel MyDeleteEvent;
public void OnDeleteOccured()
{
var myDeleteEvent = MyDeleteEvent;
if (myDeleteEvent != null)
{
MyDeleteEvent(1);
}
}
}
And then have your One and Two objects register to that event occurring, where they pass a method which signature matches the delegate type of MyDel:
public class SubscriberOne
{
public void OnSomethingOccured(int value)
{
Console.WriteLine(value);
}
}
public class SubscriberTwo
{
public void OnSomethingOccured(int value)
{
Console.WriteLine(value);
}
}
And the registration goes:
void Main()
{
var publisher = new Publisher();
var subscriberOne = new SubscriberOne();
var subscriberTwo = new SubscriberTwo();
publisher.MyDeleteEvent += subscriberOne.OnSomethingOccured;
publisher.MyDeleteEvent += subscriberTwo.OnSomethingOccured;
}

How to stop base static events/actions firing in other derived classes

I am working on an LOB application in C# using a WinForms tabbed MDI interface. I have various forms with DataGridViews to allow the user to select an object they are interested in, which they can then view/edit in a new form.
Each of my main business objects inherit from Entity, which is defined as below:
public abstract class Entity
{
public static event Action Saved;
internal virtual void OnSaved()
{
if (Saved != null)
{
Saved();
}
}
}
I then have the objects that populate the grid (these are actually auto-generated classes from Linq-to-SQL, although I can replicate the problem with normal classes):
class Class1 : Entity
{
//Stuff
}
class Class2 : Entity
{
//Stuff
}
I want to know when an object of a given class is modified, but i don't care which instance (hence the static action) so that i can refresh the grid and perform other activities.
The problem comes when the event is fired from a derived class instance - it fires for all other derived classes too. For example:
Class1.Saved += new Action(s1);
Class2.Saved += new Action(s2);
private void TestIt()
{
Class2 o2 = new Class2();
o2.OnSaved();
}
This would fire s1 and s2, but I only want the specific one to be fired (i.e. s2). What is the best way to do this? I have quite a few classes that need this behviour and would like to avoid having to add any code to each class if possible.
Update:
Thank you for all your responses, they have been very helpful.
I have opted for a slightly different option, which I admit seems quite hacky, but works well for my purposes. This involves passing the type with the action and letting a handler filter and call relevant operations.
Entity Class:
public abstract class Entity
{
public static event Action<Type> Saved;
internal void OnSaved()
{
private Action<Type> SavedCopy = Saved;
if (SavedCopy != null)
SavedCopy(this.GetType());
}
}
Hook up handler:
Entity.Saved += new Action<Type>(Handler);
Example Handler method (this will vary from form to form):
void Handler(Type obj)
{
if (obj==typeof(Class1))
UpdateGrid();
else if (obj==typeof(Class2))
UpdateBasicInfo();
else if (obj == typeof(Class3))
DoAnotherThing();
}
Using generics could be a work around; each generic class gets a copy of the static fields.
public abstract class Entity<T>
{
public static event Action Saved = delegate { };
internal virtual void OnSaved()
{
Saved();
}
}
class Class1 : Entity<Class1>
{
//Stuff
}
class Class2 : Entity<Class2>
{
//Stuff
}
I'm not sure doing it like this is a good idea, but you could specify the type when you subscribe and when you save the data:
public abstract class Entity
{
private static Dictionary<Type, Action> Subscribers
= new Dictionary<Type, Action>();
internal virtual void OnSaved()
{
OnSaved(GetType());
}
private OnSaved(Type type)
{
Action subscribed;
Subscribers.TryGetValue(type, out subscribed);
if (subscribed != null)
subscribed();
}
public Subscribe(Type type, Action action)
{
Action subscribed;
Subscribers.TryGetValue(type, out subscribed);
Subscribers[type] = subscribed + action;
}
public Unsubscribe(Type type, Action action)
{
Action subscribed;
Subscribers.TryGetValue(type, out subscribed);
Subscribers[type] = subscribed - action;
}
}
Keep in mind that this code is not thread-safe, so if you want to use it from different threads at the same time, you need to add locking.
You will need to have an event per type, because can't determine for which type the delegate is registered when the event is defined on the base type.
public abstract class Entity
{
internal abstract void OnSaved();
}
class Class1 : Entity
{
public static event Action Saved = () => { };
internal override void OnSaved()
{
this.Saved();
}
//Stuff
}
class Class2 : Entity
{
public static event Action Saved = () => { };
internal override void OnSaved()
{
this.Saved();
}
//Stuff
}
Why does it have to be static? Make it an instance event instead.
public event Action Saved;
You have to hook it up for each instance instead of just once per class (or, in your current case, once), but it will separate the events.

Call Delegate methods from another class

I am having trouble figuring out how to program delegate method calls across classes in C#. I am coming from the world of Objective-C, which may be confusing me. In Objective-C, I can assign a delegate object inside a child class, to be the parent class (I.e., childViewcontroller.delegate = self;). Then I can to fire a method in the delegate class by using:
if([delegate respondsToSelector:#selector(methodName:)]) {
[delegate methodName:parametersgohere];
}
However, I can't figure out how to do this in C#. I've read a bit about C# delegates in general (for example, here), but I'm still stuck.
Are there any examples that explain this?
Here is my scenario in full:
I have classA which instantiates an instance of classB. ClassB fires a method (which call a web service), and upon response, I'd like to fire a method in classA.
Any 'Hello World' types of tutorials out there that might explain the very basics of this?
A delegate is an object that points to a method, be it a static or instance method. So for your example, you would just use the event model:
class Caller {
public void Call() {
new Callee().DoSomething(this.Callback); // Pass in a delegate of this instance
}
public void Callback() {
Console.WriteLine("Callback called!");
}
}
class Callee {
public void DoSomething(Action callback) {
// Do stuff
callback(); // Call the callback
}
}
...
new Caller().Call(); // Callback called!
The Caller instance passes a delegate to the Callee instance's DoSomething method, which in turn calls the pointed-to method, which is the Callback method of the Caller instance.
In C# what I think you are looking for are called events. They are a language feature that allows a class instance to expose a public delegate in a way that other class instances can subscribe to. Only the exposing class is allowed to raise the event.
In your example:
public class ClassB {
// Note the syntax at the end here- the "(s, e) => { }"
// assigns a no-op listener so that you don't have to
// check the event for null before raising it.
public event EventHandler<MyEventArgs> MyEvent = (s, e) => { }
public void DoMyWork() {
// Do whatever
// Then notify listeners that the event was fired
MyEvent(this, new MyEventArgs(myWorkResult));
}
}
public class ClassA {
public ClassA(ClassB worker) {
// Attach to worker's event
worker.MyEvent += MyEventHandler;
// If you want to detach later, use
// worker.MyEvent -= MyEventHandler;
}
void MyEventHandler(Object sender, MyEventArgs e) {
// This will get fired when B's event is raised
}
}
public class MyEventArgs : EventArgs {
public String MyWorkResult { get; private set; }
public MyEventArgs(String myWorkResult) { MyWorkResult = myWorkResult; }
}
Note that the above will be synchronous. My understanding is that Objective-C delegates are all Actor pattern, so they are asynchronous. To make the above asynch, you'll need to delve into threading (probably want to google "C# Thread pool").

Raise an event of a class from a different class in C#

I have a class, EventContainer.cs, which contains an event, say:
public event EventHandler AfterSearch;
I have another class, EventRaiser.cs. How do I raise (and not handle) the above said event from this class?
The raised event will in turn call the handler of the event in the EventContainer class. Something like this (this is obviously not correct):
EventContainer obj = new EventContainer();
RaiseEvent(obj.AfterSearch);
This is not possible, Events can only be risen from inside the class. If you could do that, it would defeat the purpose of events (being able to rise status changes from inside the class). I think you are misunderstanding the function of events - an event is defined inside a class and others can subscribe to it by doing
obj.AfterSearch += handler; (where handler is a method according to the signature of AfterSearch). One is able to subscribe to the event from the outside just fine, but it can only be risen from inside the class defining it.
It is POSSIBLE, but using clever hack.
Inspired by http://netpl.blogspot.com/2010/10/is-net-type-safe.html
If you don't believe, try this code.
using System;
using System.Runtime.InteropServices;
namespace Overlapping
{
[StructLayout(LayoutKind.Explicit)]
public class OverlapEvents
{
[FieldOffset(0)]
public Foo Source;
[FieldOffset(0)]
public OtherFoo Target;
}
public class Foo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello Foo";
}
public void Click()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
}
public class OtherFoo
{
public event EventHandler Clicked;
public override string ToString()
{
return "Hello OtherFoo";
}
public void Click2()
{
InvokeClicked(EventArgs.Empty);
}
private void InvokeClicked(EventArgs e)
{
var handler = Clicked;
if (handler != null)
handler(this, e);
}
public void Clean()
{
Clicked = null;
}
}
class Test
{
public static void Test3()
{
var a = new Foo();
a.Clicked += AClicked;
a.Click();
var o = new OverlapEvents { Source = a };
o.Target.Click2();
o.Target.Clean();
o.Target.Click2();
a.Click();
}
static void AClicked(object sender, EventArgs e)
{
Console.WriteLine(sender.ToString());
}
}
}
You can write a public method on the class you want the event to fire from and fire the event when it is called. You can then call this method from whatever user of your class.
Of course, this ruins encapsulation and is bad design.
It looks like you're using the Delegate pattern. In this case, the AfterSearch event should be defined on the EventRaiser class, and the EventContainer class should consume the event:
In EventRaiser.cs
public event EventHandler BeforeSearch;
public event EventHandler AfterSearch;
public void ExecuteSearch(...)
{
if (this.BeforeSearch != null)
this.BeforeSearch();
// Do search
if (this.AfterSearch != null)
this.AfterSearch();
}
In EventContainer.cs
public EventContainer(...)
{
EventRaiser er = new EventRaiser();
er.AfterSearch += this.OnAfterSearch;
}
public void OnAfterSearch()
{
// Handle AfterSearch event
}
I stumbled across this problem as well, because i was experimenting with calling PropertyChanged events from outside. So you dont have to implement everything in every class. The solution from halorty wouldn't work using interfaces.
I found a solution working using heavy reflection. It is surely slow and is breaking the principle that events should only be called from inside a class. But it is interesting to find a generic solution to this problem....
It works because every event is a list of invocation methods being called.
So we can get the invocation list and call every listener attached to that event by our own.
Here you go....
class Program
{
static void Main(string[] args)
{
var instance = new TestPropertyChanged();
instance.PropertyChanged += PropertyChanged;
instance.RaiseEvent(nameof(INotifyPropertyChanged.PropertyChanged), new PropertyChangedEventArgs("Hi There from anywhere"));
Console.ReadLine();
}
private static void PropertyChanged(object sender, PropertyChangedEventArgs e)
{
Console.WriteLine(e.PropertyName);
}
}
public static class PropertyRaiser
{
private static readonly BindingFlags staticFlags = BindingFlags.Instance | BindingFlags.NonPublic;
public static void RaiseEvent(this object instance, string eventName, EventArgs e)
{
var type = instance.GetType();
var eventField = type.GetField(eventName, staticFlags);
if (eventField == null)
throw new Exception($"Event with name {eventName} could not be found.");
var multicastDelegate = eventField.GetValue(instance) as MulticastDelegate;
if (multicastDelegate == null)
return;
var invocationList = multicastDelegate.GetInvocationList();
foreach (var invocationMethod in invocationList)
invocationMethod.DynamicInvoke(new[] {instance, e});
}
}
public class TestPropertyChanged : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged;
}
There is good way to do this. Every event in C# has a delegate that specifies the sign of methods for that event. Define a field in your external class with type of your event delegate. get the the reference of that field in the constructor of external class and save it. In main class of your event, send the reference of event for delegate of external class. Now you can easily call the delegate in your external class.
public delegate void MyEventHandler(object Sender, EventArgs Args);
public class MyMain
{
public event MyEventHandler MyEvent;
...
new MyExternal(this.MyEvent);
...
}
public MyExternal
{
private MyEventHandler MyEvent;
public MyExternal(MyEventHandler MyEvent)
{
this.MyEvent = MyEvent;
}
...
this.MyEvent(..., ...);
...
}
Agree with Femaref -- and note this is an important difference between delegates and events (see for example this blog entry for an good discussion of this and other differences).
Depending on what you want to achieve, you might be better off with a delegate.
Not a good programming but if you want to do that any way you can do something like this
class Program
{
static void Main(string[] args)
{
Extension ext = new Extension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
}
static void ext_MyEvent(int num)
{
Console.WriteLine(num);
}
}
public class Extension
{
public delegate void MyEventHandler(int num);
public event MyEventHandler MyEvent;
public void Dosomething()
{
int no = 0;
while(true){
if(MyEvent!=null){
MyEvent(++no);
}
}
}
}
I had a similar confusion and honestly find the answers here to be confusing. Although a couple hinted at solutions that I would later find would work.
My solution was to hit the books and become more familiar with delegates and event handlers.
Although I've used both for many years, I was never intimately familiar with them.
http://www.codeproject.com/Articles/20550/C-Event-Implementation-Fundamentals-Best-Practices
gives the best explanation of both delegates and event handlers that I've ever read and clearly explains that a class can be a publisher of events and have other classes consume them.
This article: http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single discusses how to single-cast events to only one handler since delegates are multicast by definition . A delegate inherits system.MulticastDelegate most including the system delegates are Multicast.
I found that multicast meant that any event handler with the same signature would receive the raised event. Multicast behavior has caused me some sleepless nights as I stepped through code and saw my event seemingly erroneously being sent to handlers that I had no intention of getting this event. Both articles explains this behavior.
The second article shows you one way, and the first article shows you another, by making the delegate and the signature tightly typed.
I personally believe strong typing prevents stupid bugs that can be a pain to find. So I'd vote for the first article, even though I got the second article code working. I was just curious. :-)
I also got curious if I could get #2 articles code to behave like how I interpreted the original question above. Regardless of your chosen approach or if I'm also misinterpreting the original question, my real message is that I still think you would benefit from reading the first article as I did, especially if the questions or answers on this page leave you confused. If you are having multicast nightmares and need a quick solution then article 2 may help you.
I started playing with the second article's eventRaiser class. I made a simple windows form project.
I added the second articles class EventRaiser.cs to my project.
In the Main form's code, I defined a reference to that EventRaiser class at the top as
private EventRaiser eventRaiser = new EventRaiser();
I added a method in the main form code that I wanted to be called when the event was fired
protected void MainResponse( object sender, EventArgs eArgs )
{
MessageBox.Show("got to MainResponse");
}
then in the main form's constructor I added the event assignment:
eventRaiser.OnRaiseEvent += new EventHandler(MainResponse);`
I then created a class that would be instantiated by my main form called "SimpleClass" for lack of creative ingenuity at the moment.
Then I added a button and in the button's click event
I instantiated the SimpleClass code I wanted to raise an event from:
private void button1_Click( object sender, EventArgs e )
{
SimpleClass sc = new SimpleClass(eventRaiser);
}
Note the instance of "eventRaiser" that I passed to SimpleClass.cs. That was defined and instantiated earlier in the Main form code.
In the SimpleClass:
using System.Windows.Forms;
using SinglecastEvent; // see SingleCastEvent Project for info or http://www.codeproject.com/Articles/12285/Implementing-an-event-which-supports-only-a-single
namespace GenericTest
{
public class SimpleClass
{
private EventRaiser eventRaiser = new EventRaiser();
public SimpleClass( EventRaiser ev )
{
eventRaiser = ev;
simpleMethod();
}
private void simpleMethod()
{
MessageBox.Show("in FileWatcher.simple() about to raise the event");
eventRaiser.RaiseEvent();
}
}
}
The only point to the private method I called SimpleMethod was to verify that a privately scoped method could still raise the event, not that I doubted it, but I like to be positive.
I ran the project and this resulted in raising the event from the "simpleMethod" of the "SimpleClass" up to the main form and going to the expected correct method called MainResponse proving that one class can indeed raise an event that is consumed by a different class.
Yes the event has to be raised from within the class that needs it's change broadcast to other classes that care. Receiving classes can be one class or many many classes depending on how strongly typed you defined them or by making them single cast as in 2nd article.
Hope this helps and not muddy the water. Personally I've got a lot of delegates and events to clean up! Multicast demons begone!
The raising class has to get a fresh copy of the EventHandler.
One possible solution below.
using System;
namespace ConsoleApplication1
{
class Program
{
class HasEvent
{
public event EventHandler OnEnvent;
EventInvoker myInvoker;
public HasEvent()
{
myInvoker = new EventInvoker(this, () => OnEnvent);
}
public void MyInvokerRaising() {
myInvoker.Raise();
}
}
class EventInvoker
{
private Func<EventHandler> GetEventHandler;
private object sender;
public EventInvoker(object sender, Func<EventHandler> GetEventHandler)
{
this.sender = sender;
this.GetEventHandler = GetEventHandler;
}
public void Raise()
{
if(null != GetEventHandler())
{
GetEventHandler()(sender, new EventArgs());
}
}
}
static void Main(string[] args)
{
HasEvent h = new HasEvent();
h.OnEnvent += H_OnEnvent;
h.MyInvokerRaising();
}
private static void H_OnEnvent(object sender, EventArgs e)
{
Console.WriteLine("FIRED");
}
}
}
Use public EventHandler AfterSearch;
not
public event EventHandler AfterSearch;
Use a Delegate (an Action or Func) instead of an event. An event is essentially a delegate that can only be triggered from within the class.
I took a slightly different approach in solving this problem. My solution consisted of a winform front end, a main Class Library (DLL) and within that dll, a secondary working class:
WinForm
|------> PickGen Library
|---------> Allocations class
What I decided to do is to create events in the main dll (PickGen) that the Allocations class could call, then those event methods would called the events within the UI.
So, allocations raises an event in PickGen which takes the parameter values and raises the event in the form. From a code standpoint, this is in the lowest class:
public delegate void AllocationService_RaiseAllocLog(string orderNumber, string message, bool logToDatabase);
public delegate void AllocationService_RaiseAllocErrorLog(string orderNumber, string message, bool logToDatabase);
public class AllocationService { ...
public event AllocationService_RaiseAllocLog RaiseAllocLog;
public event AllocationService_RaiseAllocErrorLog RaiseAllocErrorLog;
then later in the subclass code:
RaiseAllocErrorLog(SOHNUM_0, ShipmentGenerated + ": Allocated line QTY was: " + allocatedline.QTY_0 + ", Delivered was: " + QTY_0 + ". Problem batch.", false);
In the main DLL Class library I have these two event methods:
private void PickGenLibrary_RaiseAllocLog(string orderNumber, string message, bool updateDB)
{
RaiseLog(orderNumber, message, false);
}
private void PickGenLibrary_RaiseAllocErrorLog(string orderNumber, string message, bool updateDB)
{
RaiseErrorLog(orderNumber, message, false);
}
and I make the connection here when I create the allocation object:
AllocationService allsvc = new AllocationService(PickResult);
allsvc.RaiseAllocLog += new AllocationService_RaiseAllocLog(PickGenLibrary_RaiseAllocLog);
allsvc.RaiseAllocErrorLog += new AllocationService_RaiseAllocErrorLog(PickGenLibrary_RaiseAllocErrorLog);
and I also then have delegates that are set up to tie the main class with the winform code:
public delegate void JPPAPickGenLibrary_RaiseLog(string orderNumber, string message, bool logToDatabase);
public delegate void JPPAPickGenLibrary_RaiseErrorLog(string orderNumber, string message, bool logToDatabase);
It may not be the most elegant way to do it, but in the end, it does work and without being too obscure.
A nested class with an instance of the outer class provided in the constructor can access even private members of the outer class. As explained more here: stackoverflow question on inner classes.
This includes the ability to raise events in the outer class. This EventRaisers class could be internal, or otherwise controlled somehow, because it could technically otherwise be created by any script with a reference to the outer class instance.
Very simple example. i like to do it this way using EventHandler.
class Program
{
static void Main(string[] args)
{
MyExtension ext = new MyExtension();
ext.MyEvent += ext_MyEvent;
ext.Dosomething();
Console.ReadLine();
}
static void ext_MyEvent(object sender, int num)
{
Console.WriteLine("Event fired.... "+num);
}
}
public class MyExtension
{
public event EventHandler<int> MyEvent;
public void Dosomething()
{
int no = 1;
if (MyEvent != null)
MyEvent(this, ++no);
}
}
}

Categories