can "is" operator be factorized in c#? - c#

I want to use is operator in c# condition statement. my code is like this:
public static string returnProperColumnValue(string columnName, object columnValue)
{
if (columnValue is int || columnValue is float || columnValue is long || ..... ))
{
return columnValue.ToString();
}
else if (columnValue is string)
{
return "'" + columnValue + "'";
}
else if (columnValue.GetType().IsGenericType && columnValue is IDictionary)
{
var dictionaryType = columnValue.GetType().GetGenericArguments().First().Name;
//to do
return "";
}
else if (columnValue.GetType().IsGenericType && (columnValue is IEnumerable))
{
var listType = columnValue.GetType().GetGenericArguments().Single().Name;
if (listType is int || ....... )
return columnName + "+" + "[" + columnValue.ToString() + "]";
else if (listType is string)
return columnName + "+" + "{'" + columnValue.ToString() + "'} ";
}
return "";
}
I want to check lots of variable types in the if clause.
Therefore, I want to use is operator in shorter way like this:
public void properColumnValue(object columnValue)
{
if (columnValue is ( int || decimal || ... ) )
{
//do stuff for int
}
//other conditions
}
Is it possible to factorize the is operation?

No, the is operator cannot be factored like this. Maybe you could use the IsInstanceOfType method, which is a member of System.Type:
public void properColumnValue(object columnValue)
{
Type[] types = new[] {typeof (int), typeof (decimal), typeof (long)};
bool b = types.Any(x => x.IsInstanceOfType(columnValue));
if (b)
{
// do stuff
}
}

Apart from Kapol's idea you can also use the Contains method to see if the actual type of the value contained in your columnValue is a member of the array:
public void properColumnValue(object columnValue)
{
Type[] number_types = new[] {typeof (int), typeof (decimal), typeof (long)};
if (number_types.Contains(columnValue?.GetType()))
{
// convert to long, or whatever you need it to be:
long value = Convert.ToInt64(columnValue);
//... do something with the value
}
}
Or you can make that a static readonly array at the class level to speed things up a tiny bit:
static readonly Type[] number_types = new[] {typeof (int), typeof (decimal), typeof (long)};
public void properColumnValue(object columnValue)
{
if (number_types.Contains(columnValue?.GetType()))
{
// convert to long, or whatever you need it to be:
long value = Convert.ToInt64(columnValue);
//... do something with the value
}
}
At least that way you're only creating the array once.

Every logical operation requires both left and right side arguments, and is operator is not a method you cannot use it like columnValue is ( int || decimal || ...)
What you can do is create custom extension method for this, and pass types (or string names of types) as parameters :
public static class Helper
{
static Dictionary<string, Type> _types = new Dictionary<string, Type>()
{
{"int", typeof(int)}, {"string", typeof(string)},
{"double", typeof(double)}, {"decimal", typeof(decimal)},
// ... etc
};
public static bool Is<T>(this T instance, params string[] types)
{
Type iType = instance.GetType();
for (int i = 0; i < types.Length; i++)
if (_types.ContainsKey(types[i]) && _types[types[i]] == iType)
return true;
return false;
}
}
And use it :
public void properColumnValue(object columnValue)
{
if (columnValue.Is("int", "decimal", "double") ... ))
{
//do stuff for int, decimal or double
}
}

Related

How do I cast/convert an array of objects to generic type T when T is defined as an array?

Given a generic class Foo<T> with a method public T Convert(string value), I am trying to handle the possibility that T is defined as an array.
For example, T as a simple type:
Foo<int> foo = new Foo<int>();
int bar = foo.Convert("123");
// bar == 123
But also, T as an array:
Foo<int[]> foo = new Foo<int[]>();
int[] bars = foo.Convert("1,2,3");
// bars = [1, 2, 3]
Here is class Foo with an invalid cast that I'm not quite sure how to resolve.
public class Foo<T>
{
public T Convert(string value)
{
Type t = typeof(T);
if (t.IsArray)
{
string[] values = value.Split(',');
Type elementType = t.GetElementType();
// this cast is invalid
return (T)values.Select(v => elementType.IsEnum ? Enum.Parse(elementType, v, true) : ChangeType(v, elementType)).ToArray();
}
else
{
return (T)ChangeType(value, t);
}
}
private object ChangeType(string value, Type type)
{
if (type.IsGenericType && type.GetGenericTypeDefinition().Equals(typeof(Nullable<>)))
{
if (value == null)
{
return default;
}
type = Nullable.GetUnderlyingType(type);
}
return System.Convert.ChangeType(value, type);
}
}
You are not really using the features of generics here, except getting the type via typeof(T). So a solution without generics would be:
public class Foo
{
public object Convert(string value, Type t)
{
if (t.IsArray)
{
string[] values = value.Split(',');
Type elementType = t.GetElementType();
var array = Array.CreateInstance(elementType, values.Length);
for (var i = 0; i < values.Length; i++)
{
array.SetValue(elementType.IsEnum ? Enum.Parse(elementType, values[i], true) : ChangeType(values[i], elementType), i);
}
return array;
}
else
{
return ChangeType(value, t);
}
}
private object ChangeType(string value, Type type)
{
if (type.IsGenericType && type.GetGenericTypeDefinition().Equals(typeof(Nullable<>)))
{
if (value == null)
{
return default;
}
type = Nullable.GetUnderlyingType(type);
}
return System.Convert.ChangeType(value, type);
}
}
Note that I use Array.CreateInstance to create e.g. a proper int[] instead of the object[] created by your values.Select(v => elementType.IsEnum ? Enum.Parse(elementType, v, true) : ChangeType(v, elementType)).ToArray().
If you want, you can still have a generic version on top of it:
public class Foo<T> : Foo
{
public T Convert(string value)
{
return (T)Convert(value, typeof(T));
}
}
Why not keep your impl that understands Foo<int> and use it to make an array:
int[] bars = "1,2,3".Split(",").Select(foo.Convert).ToArray();
This way the calling method can be the one who knows how the array is arranged rather than baking it into Convert as a CSV:
int[] bars = "1-2-3".Split("-").Select(foo.Convert).ToArray();
I do wonder what you really gain over swapping foo.Convert out for int.Parse though.. Looks like you're writing a large, confusing, slow mega parser for little gain over offering a static Parse method per your custom type and calling it as per above

Get Max value of a dynamic type in C#

I wrote a method in C# which returns Type and based on this type (which is int or long)
private Type GetNumberColumnType(INumberedEntity entity)
{
var numberRow = SG.Framework.Numbering.NumberingService.NumberableEntities.Where(ne => ne.GetType().FullName == entity.ToString()).FirstOrDefault();
var row = (DataRow)numberRow;
return row.Table.Columns[numberRow.NumberColumnName].DataType;
}
I want to get:
GetNumberColumnType(INumberedEntity entity).MaxValue
instead of:
if( GetNumberColumnType(entity) == typeof(long))
long.MaxValue
else
int.MaxValue
What should I do?
If you don't mind using reflection, here's how you go.
var type = GetNumberColumnType(entity);
FieldInfo fi = type.GetField("MaxValue");
if(fi!=null && fi.IsLiteral && !fi.IsInitOnly)
{
object value = fi.GetRawConstantValue();
}
As noted in comments, reflection is expensive, since these are just constants you can just make a lookup
internal class MaxValueCache
{
private static readonly Dictionary<Type, object> maxValues = new Dictionary<Type, object>()
{
{ typeof(int), int.MaxValue},
{ typeof(long), long.MaxValue}
//...
};
public static object GetMaxValue(Type type)
{
return maxValues[type];
}
}
Then use
var type = GetNumberColumnType(entity);
object value = MaxValueCache.GetMaxValue(type);

Compare 2 List<> without using Linq

Im working with 2 List, i want to see if the main contains the same types. The 2 lists do not need to contain the same count or order, just have all of the matching Types. I know this is very possible with Linq, however i cannot use that.
private static bool ContentsMatch(List<Type> list1, List<Type> list2)
{
if (list1.Count != list2.Count)
return false;
for (int i = 0; i < list1.Count; i++)
{
if (!list1[i].Equals(list2[i]))
return false;
}
return true;
}
The above method i tried will only return true if they are in the same order.
Code for algorithm provided in the comments.
Does not depend on order or count or duplicate items. Also generic and abstracted.
bool IsSameSet<T>(IEnumerable<T> l1, IEnumerable<T> l2)
{
return IsSubSet(l1, l2) && IsSubSet(l2, l1);
}
bool IsSubSet<T>(IEnumerable<T> l1, IEnumerable<T> l2)
{
var lookup = new Dictionary<T, bool>();
foreach (var e in l1)
lookup[e] = true;
foreach (var e in l2)
if (!lookup.ContainsKey(e))
return false;
return true;
}
Usage:
Type[] l1 = { typeof(object), typeof(int), typeof(long), typeof(object) };
Type[] l2 = { typeof(int), typeof(long), typeof(object) };
var result = IsSameSet(l1, l2);
Console.WriteLine(result); // prints true
Exercise for the user:
Add an additional parameter to provide an IEqualityComparer<T> to be passed to the dictionary.
To compare any user defined customized types, we need to override Equals & GetHashCode.
Below is the code snippet you could refer to :
public class CustomizedDataType
{
private int field1;
private string field2;
public CustomizedDataType(int field1,string field2)
{
this.field1 = field1;
this.field2 = field2;
}
public override bool Equals(object obj)
{
CustomizedDataType dataType = obj as CustomizedDataType;
if (this.field1 == dataType.field1 && this.field2 == dataType.field2)
{
return true;
}
return false;
}
public override int GetHashCode()
{
return (this.field1.GetHashCode() + this.field2.GetHashCode());
}
Sample code to execute :
static void Main(string[] args)
{
//Test Data
List<CustomizedDataType> dataTypeContaineer1 = new List<CustomizedDataType>();
dataTypeContaineer1.Add(new CustomizedDataType(10,"Test10"));
dataTypeContaineer1.Add(new CustomizedDataType(11, "Test11"));
dataTypeContaineer1.Add(new CustomizedDataType(12, "Test12"));
//Test Data
List<CustomizedDataType> dataTypeContaineer2 = new List<CustomizedDataType>();
dataTypeContaineer2.Add(new CustomizedDataType(100, "Test10"));
dataTypeContaineer2.Add(new CustomizedDataType(11, "Test11"));
dataTypeContaineer2.Add(new CustomizedDataType(12, "Test120"));
//Checking if both the list contains the same types.
if (dataTypeContaineer1.GetType() == dataTypeContaineer2.GetType())
{
//Checking if both the list contains the same count
if (dataTypeContaineer1.Count == dataTypeContaineer2.Count)
{
//Checking if both the list contains the same data.
for (int index = 0; index < dataTypeContaineer1.Count; index++)
{
if(!dataTypeContaineer1[index].Equals(dataTypeContaineer2[index]))
{
Console.WriteLine("Mismatch # Index {0}", index);
}
}
}
}
}
Output :
You can use the C# keyword 'is' to see if an object is compatible with a given type.
http://msdn.microsoft.com/en-us/library/vstudio/scekt9xw.aspx
Assuming you mean that that two List<T> both have matching T, you could use:
private static Boolean MatchingBaseType(IEnumerable a, IEnumerable b)
{
return GetIListBaseType(a) == GetIListBaseType(b);
}
private static Type GetIListBaseType(IEnumerable a)
{
foreach (Type interfaceType in a.GetType().GetInterfaces())
{
if (interfaceType.IsGenericType &&
(interfaceType.GetGenericTypeDefinition() == typeof(IList<>) ||
interfaceType.GetGenericTypeDefinition() == typeof(IEnumerable<>) ||
interfaceType.GetGenericTypeDefinition() == typeof(ICollection<>))
)
{
return interfaceType.GetGenericArguments()[0];
}
}
return default(Type);
}
You say count doesn't matter (though you're checking .Count()--why?) But this should return if the two lists have the same types in them.

C# Get Generic Type Name

I need some way to get the Name of a Type, when type.IsGenericType = true.
Type t = typeof(List<String>);
MessageBox.Show( ..?.. );
What I want, is a message box to pop up with List showing... how can I do that?
You can implement an extension method to get the "friendly name" of a type, like this:
public static class TypeNameExtensions
{
public static string GetFriendlyName(this Type type)
{
string friendlyName = type.Name;
if (type.IsGenericType)
{
int iBacktick = friendlyName.IndexOf('`');
if (iBacktick > 0)
{
friendlyName = friendlyName.Remove(iBacktick);
}
friendlyName += "<";
Type[] typeParameters = type.GetGenericArguments();
for (int i = 0; i < typeParameters.Length; ++i)
{
string typeParamName = GetFriendlyName(typeParameters[i]);
friendlyName += (i == 0 ? typeParamName : "," + typeParamName);
}
friendlyName += ">";
}
return friendlyName;
}
}
With this in your project, you can now say:
MessageBox.Show(t.GetFriendlyName());
And it will display "List<String>".
I know the OP didn't ask for the generic type parameters, but I prefer it that way. ;-)
Namespaces, standard aliases for built-in types, and use of StringBuilder left as an exercise for the reader. ;-)
Type t = ...;
if (t.IsGenericType)
{
Type g = t.GetGenericTypeDefinition();
MessageBox.Show(g.Name); // displays "List`1"
MessageBox.Show(g.Name.Remove(g.Name.IndexOf('`'))); // displays "List"
}
My take on yoyo's approach. Ensures more friendly names for primitives, handles arrays and is recursive to handle nested generics. Also unit tests.
private static readonly Dictionary<Type, string> _typeToFriendlyName = new Dictionary<Type, string>
{
{ typeof(string), "string" },
{ typeof(object), "object" },
{ typeof(bool), "bool" },
{ typeof(byte), "byte" },
{ typeof(char), "char" },
{ typeof(decimal), "decimal" },
{ typeof(double), "double" },
{ typeof(short), "short" },
{ typeof(int), "int" },
{ typeof(long), "long" },
{ typeof(sbyte), "sbyte" },
{ typeof(float), "float" },
{ typeof(ushort), "ushort" },
{ typeof(uint), "uint" },
{ typeof(ulong), "ulong" },
{ typeof(void), "void" }
};
public static string GetFriendlyName(this Type type)
{
string friendlyName;
if (_typeToFriendlyName.TryGetValue(type, out friendlyName))
{
return friendlyName;
}
friendlyName = type.Name;
if (type.IsGenericType)
{
int backtick = friendlyName.IndexOf('`');
if (backtick > 0)
{
friendlyName = friendlyName.Remove(backtick);
}
friendlyName += "<";
Type[] typeParameters = type.GetGenericArguments();
for (int i = 0; i < typeParameters.Length; i++)
{
string typeParamName = typeParameters[i].GetFriendlyName();
friendlyName += (i == 0 ? typeParamName : ", " + typeParamName);
}
friendlyName += ">";
}
if (type.IsArray)
{
return type.GetElementType().GetFriendlyName() + "[]";
}
return friendlyName;
}
[TestFixture]
public class TypeHelperTest
{
[Test]
public void TestGetFriendlyName()
{
Assert.AreEqual("string", typeof(string).FriendlyName());
Assert.AreEqual("int[]", typeof(int[]).FriendlyName());
Assert.AreEqual("int[][]", typeof(int[][]).FriendlyName());
Assert.AreEqual("KeyValuePair<int, string>", typeof(KeyValuePair<int, string>).FriendlyName());
Assert.AreEqual("Tuple<int, string>", typeof(Tuple<int, string>).FriendlyName());
Assert.AreEqual("Tuple<KeyValuePair<object, long>, string>", typeof(Tuple<KeyValuePair<object, long>, string>).FriendlyName());
Assert.AreEqual("List<Tuple<int, string>>", typeof(List<Tuple<int, string>>).FriendlyName());
Assert.AreEqual("Tuple<short[], string>", typeof(Tuple<short[], string>).FriendlyName());
}
}
Assuming you just want to see that its List<T> instead of List<string> you'd need to do:
MessageBox.Show(t.GetGenericTypeDefinition().FullName)
See http://msdn.microsoft.com/en-us/library/system.type.getgenerictypedefinition.aspx
public static class TypeNameExtensions
{
public static string GetFriendlyName(this Type type)
{
var friendlyName = type.Name;
if (!type.IsGenericType) return friendlyName;
var iBacktick = friendlyName.IndexOf('`');
if (iBacktick > 0) friendlyName = friendlyName.Remove(iBacktick);
var genericParameters = type.GetGenericArguments().Select(x => x.GetFriendlyName());
friendlyName += "<" + string.Join(", ", genericParameters) + ">";
return friendlyName;
}
}
Here is my take on this. I did not put the backtick check since for what I see, it's always there. You can add it if you want but I like to keep things simple.
public static string GetFriendlyName(this Type type)
{
if (type.IsGenericType)
{
var name = type.Name.Substring(0, type.Name.IndexOf('`'));
var types = string.Join(",", type.GetGenericArguments().Select(GetFriendlyName));
return $"{name}<{types}>";
}
else
{
return type.Name;
}
}
I know this is an old question, but a colleague and myself needed to do this for some intellisense/roslyn work. The optimal solution appeared to be Ali's solution, but it doesn't work for nested types:
int i = 1; //would work
List<string> listTest = new List<string>(); //would work
Dictionary<string, int> dictTest = new Dictionary<string, int>(); //would work
Dictionary<int, List<string>> nestTest = new Dictionary<int, List<string>>(); //would fail
Dictionary<int, List<Dictionary<string, List<object>>>> superNestTest = new Dictionary<int, List<Dictionary<string, List<object>>>>(); //would fail
Dictionary<int, List<Dictionary<string, int>>> superNestTest2 = new Dictionary<int, List<Dictionary<string, int>>>(); //would fail
In order to solve these issues, I converted the function into a recursive method:
public static class TypeExtensions
{
public static string GetFriendlyName(this Type type)
{
string friendlyName = type.FullName;
if (type.IsGenericType)
{
friendlyName = GetTypeString(type);
}
return friendlyName;
}
private static string GetTypeString(Type type)
{
var t = type.AssemblyQualifiedName;
var output = new StringBuilder();
List<string> typeStrings = new List<string>();
int iAssyBackTick = t.IndexOf('`') + 1;
output.Append(t.Substring(0, iAssyBackTick - 1).Replace("[", string.Empty));
var genericTypes = type.GetGenericArguments();
foreach (var genType in genericTypes)
{
typeStrings.Add(genType.IsGenericType ? GetTypeString(genType) : genType.ToString());
}
output.Append($"<{string.Join(",", typeStrings)}>");
return output.ToString();
}
}
running for the previous examples/test cases yielded the following outputs:
System.Int32
System.Collections.Generic.List<System.String>
System.Collections.Generic.Dictionary<System.String,System.Int32>
System.Collections.Generic.Dictionary<System.Int32,System.Collections.Generic.List<System.String>>
System.Collections.Generic.Dictionary<System.Int32,System.Collections.Generic.List<System.Collections.Generic.Dictionary<System.String,System.Collections.Generic.List<System.Object>>>>
System.Collections.Generic.Dictionary<System.Int32,System.Collections.Generic.List<System.Collections.Generic.Dictionary<System.String,System.Int32>>>
I spent some time trying to resolve the nested types issue so wanted to document this here to ensure anyone else in future can save some considerable time (and headaches!). I have checked the performance as well, and it is in the microseconds to complete (8 microseconds in the case of the last scenario:
Performance results
(Variables names used from original scenario list)
"i" | 43uS
"listTest" | 3uS
"dictTest" | 2uS
"nestTest" | 5uS
"superNestTest" | 9uS
"superNestTest2" | 9uS
Average times after performing the above code 200 times on each scenario
Here is a complete implementation based on the previous answers supporting both Aliases (including Nullable) and Arrays:
public static class TypeNameExtensions
{
public static string GetFriendlyName(this Type type, bool aliasNullable = true, bool includeSpaceAfterComma = true)
{
TryGetInnerElementType(ref type, out string arrayBrackets);
if (!TryGetNameAliasNonArray(type, out string friendlyName))
{
if (!type.IsGenericType)
{
friendlyName = type.Name;
}
else
{
if (aliasNullable && type.GetGenericTypeDefinition() == typeof(System.Nullable<>))
{
string generics = GetFriendlyName(type.GetGenericArguments()[0]);
friendlyName = generics + "?";
}
else
{
string generics = GetFriendlyGenericArguments(type, includeSpaceAfterComma);
int iBacktick = type.Name.IndexOf('`');
friendlyName = (iBacktick > 0 ? type.Name.Remove(iBacktick) : type.Name)
+ $"<{generics}>";
}
}
}
return friendlyName + arrayBrackets;
}
public static bool TryGetNameAlias(this Type type, out string alias)
{
TryGetInnerElementType(ref type, out string arrayBrackets);
if (!TryGetNameAliasNonArray(type, out alias))
return false;
alias += arrayBrackets;
return true;
}
private static string GetFriendlyGenericArguments(Type type, bool includeSpaceAfterComma)
=> string.Join(
includeSpaceAfterComma ? ", " : ",",
type.GetGenericArguments().Select(t => t.GetFriendlyName())
);
private static bool TryGetNameAliasNonArray(Type type, out string alias)
=> (alias = TypeAliases[(int)Type.GetTypeCode(type)]) != null
&& !type.IsEnum;
private static bool TryGetInnerElementType(ref Type type, out string arrayBrackets)
{
arrayBrackets = null;
if (!type.IsArray)
return false;
do
{
arrayBrackets += "[" + new string(',', type.GetArrayRank() - 1) + "]";
type = type.GetElementType();
}
while (type.IsArray);
return true;
}
private static readonly string[] TypeAliases = {
"void", // 0
null, // 1 (any other type)
"DBNull", // 2
"bool", // 3
"char", // 4
"sbyte", // 5
"byte", // 6
"short", // 7
"ushort", // 8
"int", // 9
"uint", // 10
"long", // 11
"ulong", // 12
"float", // 13
"double", // 14
"decimal", // 15
null, // 16 (DateTime)
null, // 17 (-undefined-)
"string", // 18
};
}
Tested with nonsense such as:
var type = typeof(Dictionary<string[,], List<int?[,][]>[,,]>[]);
var name = type.GetFriendlyName();
Console.WriteLine(name);
And it does indeed return: "Dictionary<string[,], List<int?[,][]>[,,]>[]"
Edit: Updated to properly handle enum types.
i have improved yoyos version for the usage in Code Generation.
Note that all types are now referenced full qualified => global::System.String.
public static string GetFriendlyTypeName(Type type)
{
string friendlyName = type.Name;
if (type.IsGenericType)
{
int iBacktick = friendlyName.IndexOf('`');
if (iBacktick > 0)
{
friendlyName = friendlyName.Remove(iBacktick);
}
friendlyName += "<";
Type[] typeParameters = type.GetGenericArguments();
for (int i = 0; i < typeParameters.Length; ++i)
{
string typeParamName = GetFriendlyTypeName(typeParameters[i]);
friendlyName += (i == 0 ? typeParamName : "," + typeParamName);
}
friendlyName += ">";
friendlyName = "global::" + type.Namespace + "." + friendlyName;
}
else
{
friendlyName = "global::" + type.FullName;
}
return friendlyName.Replace('+', '.');
}
In the latest version of C#, you can use:
var s = x.GetType().ShortDisplayName();
And it returns Thing<IFoo>
Edit: Sorry, that only works as an extension on EF Core. :(

Get the type name

How i can get full right name of generic type?
For example:
This code
typeof(List<string>).Name
return
List`1
instead of
List<string>
How to get a right name?
typeof(List<string>).ToString()
returns System.Collections.Generic.List`1[System.String] but i want to get initial name:
List<string>
Is it real?
Use the FullName property.
typeof(List<string>).FullName
That will give you the namespace + class + type parameters.
What you are asking for is a C# specific syntax. As far as .NET is concerned, this is proper:
System.Collections.Generic.List`1[System.String]
So to get what you want, you'd have to write a function to build it the way you want it. Perhaps like so:
static string GetCSharpRepresentation( Type t, bool trimArgCount ) {
if( t.IsGenericType ) {
var genericArgs = t.GetGenericArguments().ToList();
return GetCSharpRepresentation( t, trimArgCount, genericArgs );
}
return t.Name;
}
static string GetCSharpRepresentation( Type t, bool trimArgCount, List<Type> availableArguments ) {
if( t.IsGenericType ) {
string value = t.Name;
if( trimArgCount && value.IndexOf("`") > -1 ) {
value = value.Substring( 0, value.IndexOf( "`" ) );
}
if( t.DeclaringType != null ) {
// This is a nested type, build the nesting type first
value = GetCSharpRepresentation( t.DeclaringType, trimArgCount, availableArguments ) + "+" + value;
}
// Build the type arguments (if any)
string argString = "";
var thisTypeArgs = t.GetGenericArguments();
for( int i = 0; i < thisTypeArgs.Length && availableArguments.Count > 0; i++ ) {
if( i != 0 ) argString += ", ";
argString += GetCSharpRepresentation( availableArguments[0], trimArgCount );
availableArguments.RemoveAt( 0 );
}
// If there are type arguments, add them with < >
if( argString.Length > 0 ) {
value += "<" + argString + ">";
}
return value;
}
return t.Name;
}
For these types (with true as 2nd param):
typeof( List<string> ) )
typeof( List<Dictionary<int, string>> )
It returns:
List<String>
List<Dictionary<Int32, String>>
In general though, I'd bet you probably don't need to have the C# representation of your code and perhaps if you do, some format better than the C# syntax would be more appropriate.
You could use this:
public static string GetTypeName(Type t) {
if (!t.IsGenericType) return t.Name;
if (t.IsNested && t.DeclaringType.IsGenericType) throw new NotImplementedException();
string txt = t.Name.Substring(0, t.Name.IndexOf('`')) + "<";
int cnt = 0;
foreach (Type arg in t.GetGenericArguments()) {
if (cnt > 0) txt += ", ";
txt += GetTypeName(arg);
cnt++;
}
return txt + ">";
}
For example:
static void Main(string[] args) {
var obj = new Dictionary<string, Dictionary<HashSet<int>, int>>();
string s = GetTypeName(obj.GetType());
Console.WriteLine(s);
Console.ReadLine();
}
Output:
Dictionary<String, Dictionary<HashSet<Int32>, Int32>>
If you have an instance of the list, you can call .ToString() and get the following
System.Collections.Generic.List`1[System.String]
This is in addition to the methods provided by the other answers directly against the type rather than the instance.
Edit: On your edit, I do not believe it is possible without providing your own parsing method, as List<string> is C# shorthand for how the type is implemented, sort of like if you wrote typeof(int).ToString(), what is captured is not "int" but the CTS name, System.Int32.
Here's my implementation, which benefited from #Hans's answer above and #Jack's answer on a duplicate question.
public static string GetCSharpName( this Type type )
{
string result;
if ( primitiveTypes.TryGetValue( type, out result ) )
return result;
else
result = type.Name.Replace( '+', '.' );
if ( !type.IsGenericType )
return result;
else if ( type.IsNested && type.DeclaringType.IsGenericType )
throw new NotImplementedException();
result = result.Substring( 0, result.IndexOf( "`" ) );
return result + "<" + string.Join( ", ", type.GetGenericArguments().Select( GetCSharpName ) ) + ">";
}
static Dictionary<Type, string> primitiveTypes = new Dictionary<Type, string>
{
{ typeof(bool), "bool" },
{ typeof(byte), "byte" },
{ typeof(char), "char" },
{ typeof(decimal), "decimal" },
{ typeof(double), "double" },
{ typeof(float), "float" },
{ typeof(int), "int" },
{ typeof(long), "long" },
{ typeof(sbyte), "sbyte" },
{ typeof(short), "short" },
{ typeof(string), "string" },
{ typeof(uint), "uint" },
{ typeof(ulong), "ulong" },
{ typeof(ushort), "ushort" },
};
Another way to get a nice type name by using an extension:
typeof(Dictionary<string, Dictionary<decimal, List<int>>>).CSharpName();
// output is:
// Dictionary<String, Dictionary<Decimal, List<Int32>>>
The Extension Code:
public static class TypeExtensions
{
public static string CSharpName(this Type type)
{
string typeName = type.Name;
if (type.IsGenericType)
{
var genArgs = type.GetGenericArguments();
if (genArgs.Count() > 0)
{
typeName = typeName.Substring(0, typeName.Length - 2);
string args = "";
foreach (var argType in genArgs)
{
string argName = argType.Name;
if (argType.IsGenericType)
argName = argType.CSharpName();
args += argName + ", ";
}
typeName = string.Format("{0}<{1}>", typeName, args.Substring(0, args.Length - 2));
}
}
return typeName;
}
}
typeof(List<string>).ToString()
An improvement on Adam Sills's answer that works with non-generic nested types, and generic type definitions:
public class TypeNameStringExtensions
{
public static string GetCSharpRepresentation(Type t)
{
return GetCSharpRepresentation(t, new Queue<Type>(t.GetGenericArguments()));
}
static string GetCSharpRepresentation(Type t, Queue<Type> availableArguments)
{
string value = t.Name;
if (t.IsGenericParameter)
{
return value;
}
if (t.DeclaringType != null)
{
// This is a nested type, build the parent type first
value = GetCSharpRepresentation(t.DeclaringType, availableArguments) + "+" + value;
}
if (t.IsGenericType)
{
value = value.Split('`')[0];
// Build the type arguments (if any)
string argString = "";
var thisTypeArgs = t.GetGenericArguments();
for (int i = 0; i < thisTypeArgs.Length && availableArguments.Count > 0; i++)
{
if (i != 0) argString += ", ";
argString += GetCSharpRepresentation(availableArguments.Dequeue());
}
// If there are type arguments, add them with < >
if (argString.Length > 0)
{
value += "<" + argString + ">";
}
}
return value;
}
[TestCase(typeof(List<string>), "List<String>")]
[TestCase(typeof(List<Dictionary<int, string>>), "List<Dictionary<Int32, String>>")]
[TestCase(typeof(Stupid<int>.Stupider<int>), "Stupid<Int32>+Stupider<Int32>")]
[TestCase(typeof(Dictionary<int, string>.KeyCollection), "Dictionary<Int32, String>+KeyCollection")]
[TestCase(typeof(Nullable<Point>), "Nullable<Point>")]
[TestCase(typeof(Point?), "Nullable<Point>")]
[TestCase(typeof(TypeNameStringExtensions), "TypeNameStringExtensions")]
[TestCase(typeof(Another), "TypeNameStringExtensions+Another")]
[TestCase(typeof(G<>), "TypeNameStringExtensions+G<T>")]
[TestCase(typeof(G<string>), "TypeNameStringExtensions+G<String>")]
[TestCase(typeof(G<Another>), "TypeNameStringExtensions+G<TypeNameStringExtensions+Another>")]
[TestCase(typeof(H<,>), "TypeNameStringExtensions+H<T1, T2>")]
[TestCase(typeof(H<string, Another>), "TypeNameStringExtensions+H<String, TypeNameStringExtensions+Another>")]
[TestCase(typeof(Another.I<>), "TypeNameStringExtensions+Another+I<T3>")]
[TestCase(typeof(Another.I<int>), "TypeNameStringExtensions+Another+I<Int32>")]
[TestCase(typeof(G<>.Nested), "TypeNameStringExtensions+G<T>+Nested")]
[TestCase(typeof(G<string>.Nested), "TypeNameStringExtensions+G<String>+Nested")]
[TestCase(typeof(A<>.C<>), "TypeNameStringExtensions+A<B>+C<D>")]
[TestCase(typeof(A<int>.C<string>), "TypeNameStringExtensions+A<Int32>+C<String>")]
public void GetCSharpRepresentation_matches(Type type, string expected)
{
string actual = GetCSharpRepresentation(type);
Assert.AreEqual(expected, actual);
}
public class G<T>
{
public class Nested { }
}
public class A<B>
{
public class C<D> { }
}
public class H<T1, T2> { }
public class Another
{
public class I<T3> { }
}
}
public class Stupid<T1>
{
public class Stupider<T2>
{
}
}
I also chose to forgo his trimArgCount, as I can't see when that would be useful, and to use a Queue<Type> since that was the intent (pulling items off the front while they exist).
I had problems with the other answers in some instances, i.e. with arrays, so I ended up writing yet another one. I don't use the text from Type.Name or similar except to get the plain name of the types, because I don't know if the format is guaranteed to be the same across different .Net versions or with other implementations of the libraries (I assume it isn't).
/// <summary>
/// For the given type, returns its representation in C# code.
/// </summary>
/// <param name="type">The type.</param>
/// <param name="genericArgs">Used internally, ignore.</param>
/// <param name="arrayBrackets">Used internally, ignore.</param>
/// <returns>The representation of the type in C# code.</returns>
public static string GetTypeCSharpRepresentation(Type type, Stack<Type> genericArgs = null, StringBuilder arrayBrackets = null)
{
StringBuilder code = new StringBuilder();
Type declaringType = type.DeclaringType;
bool arrayBracketsWasNull = arrayBrackets == null;
if (genericArgs == null)
genericArgs = new Stack<Type>(type.GetGenericArguments());
int currentTypeGenericArgsCount = genericArgs.Count;
if (declaringType != null)
currentTypeGenericArgsCount -= declaringType.GetGenericArguments().Length;
Type[] currentTypeGenericArgs = new Type[currentTypeGenericArgsCount];
for (int i = currentTypeGenericArgsCount - 1; i >= 0; i--)
currentTypeGenericArgs[i] = genericArgs.Pop();
if (declaringType != null)
code.Append(GetTypeCSharpRepresentation(declaringType, genericArgs)).Append('.');
if (type.IsArray)
{
if (arrayBrackets == null)
arrayBrackets = new StringBuilder();
arrayBrackets.Append('[');
arrayBrackets.Append(',', type.GetArrayRank() - 1);
arrayBrackets.Append(']');
Type elementType = type.GetElementType();
code.Insert(0, GetTypeCSharpRepresentation(elementType, arrayBrackets : arrayBrackets));
}
else
{
code.Append(new string(type.Name.TakeWhile(c => char.IsLetterOrDigit(c) || c == '_').ToArray()));
if (currentTypeGenericArgsCount > 0)
{
code.Append('<');
for (int i = 0; i < currentTypeGenericArgsCount; i++)
{
code.Append(GetTypeCSharpRepresentation(currentTypeGenericArgs[i]));
if (i < currentTypeGenericArgsCount - 1)
code.Append(',');
}
code.Append('>');
}
if (declaringType == null && !string.IsNullOrEmpty(type.Namespace))
{
code.Insert(0, '.').Insert(0, type.Namespace);
}
}
if (arrayBracketsWasNull && arrayBrackets != null)
code.Append(arrayBrackets.ToString());
return code.ToString();
}
I have tested it with crazy types like this, and so far it has worked perfectly:
class C
{
public class D<D1, D2>
{
public class E
{
public class K<R1, R2, R3>
{
public class P<P1>
{
public struct Q
{
}
}
}
}
}
}
type = typeof(List<Dictionary<string[], C.D<byte, short[,]>.E.K<List<int>[,][], Action<List<long[][][,]>[], double[][,]>, float>.P<string>.Q>>[][,][,,,][][,,]);
// Returns "System.Collections.Generic.List<System.Collections.Generic.Dictionary<System.String[],Test.Program.C.D<System.Byte,System.Int16[,]>.E.K<System.Collections.Generic.List<System.Int32>[,][],System.Action<System.Collections.Generic.List<System.Int64[][][,]>[],System.Double[][,]>,System.Single>.P<System.String>.Q>>[][,][,,,][][,,]":
GetTypeCSharpRepresentation(type);
There may still be some gotchas I didn't think about, but there's a known one: to retrieve the names, I only get characters that meet the condition char.IsLetterOrDigit(c) || c == '_' until one that doesn't is found, so any names of types that use allowed characters that don't meet the condition will fail.
Came across this and thought I'd share my own solution. It handles multiple generic arguments, nullables, jagged arrays, multidimensional arrays, combinations of jagged/multidimensional arrays, and any nesting combinations of any of the above. I use it mainly for logging so that it's easier to identify complicated types.
public static string GetGoodName(this Type type)
{
var sb = new StringBuilder();
void VisitType(Type inType)
{
if (inType.IsArray)
{
var rankDeclarations = new Queue<string>();
Type elType = inType;
do
{
rankDeclarations.Enqueue($"[{new string(',', elType.GetArrayRank() - 1)}]");
elType = elType.GetElementType();
} while (elType.IsArray);
VisitType(elType);
while (rankDeclarations.Count > 0)
{
sb.Append(rankDeclarations.Dequeue());
}
}
else
{
if (inType.IsGenericType)
{
var isNullable = inType.IsNullable();
var genargs = inType.GetGenericArguments().AsEnumerable();
var numer = genargs.GetEnumerator();
numer.MoveNext();
if (!isNullable) sb.Append($"{inType.Name.Substring(0, inType.Name.IndexOf('`'))}<");
VisitType(numer.Current);
while (numer.MoveNext())
{
sb.Append(",");
VisitType(numer.Current);
}
if (isNullable)
{
sb.Append("?");
}
else
{
sb.Append(">");
}
}
else
{
sb.Append(inType.Name);
}
}
}
VisitType(type);
var s = sb.ToString();
return s;
}
This:
typeof(Dictionary<int?, Tuple<string[], List<string[][,,,]>>>).GetGoodName()
...returns this:
Dictionary<Int32?,Tuple<String[],List<String[][,,,]>>>
If you want the base generic type used:
List<string> lstString = new List<string>();
Type type = lstString.GetType().GetGenericTypeDefinition();
Assuming that you want to use the type do do something and that you don't really need the actual string definition which isn't all that useful.

Categories