I'm trying to validate an entity coming from an External context has not changed.
public class Employee
{
public int Id { get; set; }
public string Name { get; set; }
}
I have a method which takes in an entity which has not been loaded from the context.
public bool Validate(Employee employee)
{
using (var context = new Context())
{
return context.Entry(employee).State == EntityState.Modified;
}
}
I would like to attach and verify that the attached entity is not modified from whats in the database.
I would prefer not to manually have to iterate of the properties. Is there a way to hack around this?
No need to attach the external entity. You can use the external entity to set values of the database entity and then check the state of the latter:
public bool Validate(Employee externalEmployee)
{
using var context = new Context(); // C# 8.0
var dbEntity = context.Where(x => x.Id == externalEmployee.Id).SingleOrDefault();
if (dbEntity != null)
{
context.Entry(dbEntity).CurrentValues.SetValues(externalEmployee);
return context.Entry(dbEntity).State == EntityState.Modified;
}
return false; // Or true, depending on your semantics.
}
You can try:
public static List<string> GetChanges<T>(this T obj, T dbObj)
{
List<string> result = new List<string>();
var type = typeof(T);
foreach (var prop in type.GetProperties())
{
var newValue = prop.GetValue(obj, null);
var dbValue = prop.GetValue(dbObj, null);
if(newValue == null && dbValue != null)
{
result.Add(prop.Name);
continue;
}
if (newValue != null && dbValue == null)
{
result.Add(prop.Name);
continue;
}
if (newValue == null && dbValue == null)
continue;
if (!newValue.ToString().Equals(dbValue.ToString()))
result.Add(prop.Name);
}
return result;
}
if resultList.Count > 0, your object has changes.
In your Validate Method:
public bool Validate(Employee employee)
{
using (var context = new Context())
{
Employee dbEmployee = context.Employee.Find(employee.Id);
if(employee.GetChanges(dbEmployee).Count > 0)
return true;
return false;
}
}
It's a god workaround =D
Works for me!
I have an XF application using BottomNavigationView in Android side that removes and add TabbedPage children depending on the user mode. Below is my Android renderer:
public class BottomTabPageRenderer : TabbedPageRenderer
{
public BottomTabPageRenderer(Context context) : base(context) { }
protected override void OnElementChanged(ElementChangedEventArgs<TabbedPage> e)
{
base.OnElementChanged(e);
if (ViewGroup != null && ViewGroup.ChildCount > 0)
{
BottomNavigationMenuView bottomNavigationMenuView = FindChildOfType<BottomNavigationMenuView>(ViewGroup);
if (bottomNavigationMenuView != null)
{
var shiftMode = bottomNavigationMenuView.Class.GetDeclaredField("mShiftingMode");
shiftMode.Accessible = true;
shiftMode.SetBoolean(bottomNavigationMenuView, false);
shiftMode.Accessible = false;
shiftMode.Dispose();
for (var i = 0; i < bottomNavigationMenuView.ChildCount; i++)
{
var item = bottomNavigationMenuView.GetChildAt(i) as BottomNavigationItemView;
if (item == null) continue;
item.SetShiftingMode(false);
item.SetChecked(item.ItemData.IsChecked);
}
if (bottomNavigationMenuView.ChildCount > 0) bottomNavigationMenuView.UpdateMenuView();
}
}
T FindChildOfType<T>(ViewGroup viewGroup) where T : Android.Views.View
{
if (viewGroup == null || viewGroup.ChildCount == 0) return null;
for (var i = 0; i < viewGroup.ChildCount; i++)
{
var child = viewGroup.GetChildAt(i);
var typedChild = child as T;
if (typedChild != null) return typedChild;
if (!(child is ViewGroup)) continue;
var result = FindChildOfType<T>(child as ViewGroup);
if (result != null) return result;
}
return null;
}
}
}
When the user starts the game by clicking a button, 4 out of 5 tabs at the bottom are removed. And when the user ends the game again by clicking a button the tabs are added again. I tried xxx.Children.Insert() to put the tabs back to their original position but this gives me the following errors:
Java.Lang.IndexOutOfBoundsException: Index: 1, Size: 1
So I ended up with the following code:
public static void ReAddChildren()
{
mainPage.Children.Remove(gameTabPage);
mainPage.Children.Add(homeTabPage);
mainPage.Children.Add(helpTabPage);
mainPage.Children.Add(settingsTabPage);
mainPage.Children.Add(dictTabPage);
mainPage.Children.Add(gameTabPage);
}
This works but now the shiftingMode is back. Anyone knows how I can disable this whenever I "re-add" the tab items?
Android just update it on 28.0.0 support library.
Not sure if Xamarin could access to this native method setLabelVisibilityMode() to disable the shifting or not.
navBottom.setLabelVisibilityMode(LabelVisibilityMode.LABEL_VISIBILITY_LABELED);
In renderer you can easily use this extension method from Xamarin.Forms to manage shift mode.
https://github.com/xamarin/Xamarin.Forms/blob/master/Xamarin.Forms.Platform.Android/Renderers/BottomNavigationViewUtils.cs
so you would get:
using static Xamarin.Forms.Platform.Android.BottomNavigationViewUtils;
public class BottomTabPageRenderer : TabbedPageRenderer
{
public BottomTabPageRenderer(Context context) : base(context) { }
protected override void OnElementChanged(ElementChangedEventArgs<TabbedPage> e)
{
base.OnElementChanged(e);
if (ViewGroup != null && ViewGroup.ChildCount > 0)
{
BottomNavigationMenuView bottomNavigationMenuView = FindChildOfType<BottomNavigationMenuView>(ViewGroup);
if (bottomNavigationMenuView != null)
{
// use extension method from XF
bottomNavigationMenuView.SetShiftMode(false, false);
}
}
T FindChildOfType<T>(ViewGroup viewGroup) where T : Android.Views.View
{
if (viewGroup == null || viewGroup.ChildCount == 0) return null;
for (var i = 0; i < viewGroup.ChildCount; i++)
{
var child = viewGroup.GetChildAt(i);
var typedChild = child as T;
if (typedChild != null) return typedChild;
if (!(child is ViewGroup)) continue;
var result = FindChildOfType<T>(child as ViewGroup);
if (result != null) return result;
}
return null;
}
}
}
As was mentioned from Pawel, you can easily use the extension method from Xamarin.Forms to manage shift mode. But this one was that worked for me
public class CustomTabbedPageRenderer : TabbedPageRenderer
{
public CustomTabbedPageRenderer(Context context) : base(context)
{
}
protected override void OnElementChanged(ElementChangedEventArgs<TabbedPage> e)
{
base.OnElementChanged(e);
if (ViewGroup != null && ViewGroup.ChildCount > 0)
{
BottomNavigationView bottomNavigationView = FindChildOfType<BottomNavigationView>(ViewGroup);
if (bottomNavigationView != null)
{
// use extension method from XF
bottomNavigationView.SetShiftMode(false, false);
}
}
}
private T FindChildOfType<T>(ViewGroup viewGroup) where T : Android.Views.View
{
if (viewGroup == null || viewGroup.ChildCount == 0) return null;
for (var i = 0; i < viewGroup.ChildCount; i++)
{
var child = viewGroup.GetChildAt(i);
var typedChild = child as T;
if (typedChild != null) return typedChild;
if (!(child is ViewGroup)) continue;
var result = FindChildOfType<T>(child as ViewGroup);
if (result != null) return result;
}
return null;
}
protected override void DispatchDraw(Canvas canvas)
{
base.DispatchDraw(canvas);
}
}
I'm trying to create a custom When Extensions to check if my entity has changes. But I'm having trouble getting the Propertyname, which I need with the instance being validated.
public static bool WhenHasChanged<T, TProperty>(this IRuleBuilderOptions<T, TProperty> rule)
{
//I need to get the PropertyValidatorContext from the rule
PropertyValidatorContext context;
var instance = (IChangeTrackingObject)context.Instance;
if (false == instance.GetChangedProperties().ContainsKey(context.PropertyName))
{
return true;
}
var oldValue = instance.GetChangedProperties().Get(context.PropertyName).OldValue;
var newValue = context.PropertyValue;
return (null == oldValue) ? null == newValue : oldValue.Equals(newValue);
}
I need to get the PropertyName being validated and the instance that's being validated, normally these lie within the PropertyValidatorContext is there a way to get the PropertyValidatorContext from the rule?
I ended up creating a must extensions in stead so I had access to the property validator context:
private static Func<T, TProperty, PropertyValidatorContext, bool> MustWhenChangedPredicate<T, TProperty>(Func<T, TProperty, PropertyValidatorContext, bool> predicate)
{
return (t, p, context) =>
{
var instance = (IChangeTrackingObject)context.Instance;
//The type name always prefixes the property
var propertyName = context.PropertyName.Split(new[] { '.' }, 2).Skip(1).First();
if (false == instance.GetChangedProperties().ContainsKey(propertyName))
{
return true;
}
var oldValue = instance.GetChangedProperties().Get(propertyName).OldValue;
var newValue = context.PropertyValue;
if (oldValue == null && newValue == null)
{
return true;
}
if ((oldValue != null && oldValue.Equals(newValue)) ||
(newValue != null && newValue.Equals(oldValue)))
{
return true;
}
return predicate(t, p, context);
};
}
Hi I am doing something related to Reflection, I don't understand what's wrong with my code. I try to clean up my codes however, the first piece of code will not update my instance values, when I step through the debugger I can see the correct result from "newobj", however the "next" reference is lost as a result of not updating my instance values. The only change I have done is to add "this" to queue, to me it is no difference. Can someone explain the reason behind this?
private void UpdateBreathFirst()// This code is WRONG!!! but why?
{
RootQueue = new Queue<object>();
RootQueue.Enqueue(this);
while (RootQueue.Count > 0)
{
var next = RootQueue.Dequeue();
EnqueueChildren(next);
var newobj = next.GetType().GetMethod("Get").Invoke(next, null);
ValueAssign(next, newobj);
}
}
private void UpdateBreathFirst()//This code produces correct result.
{
RootQueue = new Queue<object>();
var val = GetType().GetMethod("Get").Invoke(this, null);
ValueAssign(this, val);
EnqueueChildren(this);
while (RootQueue.Count > 0)
{
var next = RootQueue.Dequeue();
EnqueueChildren(next);
var newobj = next.GetType().GetMethod("Get").Invoke(next, null);
ValueAssign(next, newobj);
}
}
Other support codes
private Queue<object> RootQueue;
private void EnqueueChildren(object obj)
{
if (BaseTypeCompare(obj.GetType(), typeof(SerializedEntity<>)))
{
foreach (var propertyInfo in obj.GetType().GetProperties())
{
if (BaseTypeCompare(propertyInfo.PropertyType, typeof (List<>)))
{
var list = (IList) propertyInfo.GetValue(obj, null);
if (list != null)
{
foreach (object item in list)
{
RootQueue.Enqueue(item);
}
}
}
}
}
}
public static void ValueAssign(object a, object b)
{
foreach (var p in a.GetType().GetProperties())
{
foreach (var p2 in b.GetType().GetProperties())
{
if (p.Name == p2.Name && BaseTypeCompare(p.GetType(), p2.GetType()))
{
p.SetValue(a, p2.GetValue(b, null), null);
}
}
}
}
public static bool BaseTypeCompare(Type t, Type t2)
{
if (t.FullName.StartsWith(t2.FullName)) return true;
if (t == typeof(object)) return false;
return BaseTypeCompare(t.BaseType, t2);
}
I think I found my problem myself, my ValueAssign() has some bug. I found a similar method on the net which works perfectly!
private static void CopyObject(object sourceObject, ref object destObject)
{
// If either the source, or destination is null, return
if (sourceObject == null || destObject == null)
return;
// Get the type of each object
Type sourceType = sourceObject.GetType();
Type targetType = destObject.GetType();
// Loop through the source properties
foreach (PropertyInfo p in sourceType.GetProperties())
{
// Get the matching property in the destination object
PropertyInfo targetObj = targetType.GetProperty(p.Name);
// If there is none, skip
if (targetObj == null)
continue;
// Set the value in the destination
targetObj.SetValue(destObject, p.GetValue(sourceObject, null), null);
}
I am looking for a C# specific , open source (or source code available) implementation of recursive, or deep, object comparison.
I currently have two graphs of live objects that I am looking to compare to each other, with the result of the comparison being a set of discrepancies in the graphs. The objects are instantiations of a set of classes that are known at run time (but not necessarily at compile time).
There is a specific requirement to be able to map from the discrepancies in the graphs, back to the objects containing the discrepancies.
I found a really nice, free implementation at www.kellermansoftware.com called Compare .NET Objects which can be found here. Highly recommended.
Appears to have relocated to github - most recent version is available here
This is a complex area; I've done some things like this at runtime, and it quickly gets messy. If possible, you might find that the simplest way to do this is to serialize the objects and compare the serialized form (perhaps xml-diff and XmlSerializer). This is complicated a little by the types not being known until runtime, but not hugely (you can always use new XmlSerializer(obj.GetType()) etc).
That would be my default approach, anyway.
Here's an NUnit 2.4.6 custom constraint we use for comparing complex graphs. It supports embedded collections, parent references, setting tolerance for numeric comparisons, identifying field names to ignore (even deep within the hierarchy), and decorating types to be always ignored.
I'm sure this code can be adapted to be used outside NUnit, the bulk of the code isn't dependent on NUnit.
We use this in thousands of unit tests.
using System;
using System.Collections;
using System.Collections.Generic;
using System.Reflection;
using System.Text;
using NUnit.Framework;
using NUnit.Framework.Constraints;
namespace Tests
{
public class ContentsEqualConstraint : Constraint
{
private readonly object expected;
private Constraint failedEquality;
private string expectedDescription;
private string actualDescription;
private readonly Stack<string> typePath = new Stack<string>();
private string typePathExpanded;
private readonly HashSet<string> _ignoredNames = new HashSet<string>();
private readonly HashSet<Type> _ignoredTypes = new HashSet<Type>();
private readonly LinkedList<Type> _ignoredInterfaces = new LinkedList<Type>();
private readonly LinkedList<string> _ignoredSuffixes = new LinkedList<string>();
private readonly IDictionary<Type, Func<object, object, bool>> _predicates = new Dictionary<Type, Func<object, object, bool>>();
private bool _withoutSort;
private int _maxRecursion = int.MaxValue;
private readonly HashSet<VisitedComparison> _visitedObjects = new HashSet<VisitedComparison>();
private static readonly HashSet<string> _globallyIgnoredNames = new HashSet<string>();
private static readonly HashSet<Type> _globallyIgnoredTypes = new HashSet<Type>();
private static readonly LinkedList<Type> _globallyIgnoredInterfaces = new LinkedList<Type>();
private static object _regionalTolerance;
public ContentsEqualConstraint(object expectedValue)
{
expected = expectedValue;
}
public ContentsEqualConstraint Comparing<T>(Func<T, T, bool> predicate)
{
Type t = typeof (T);
if (predicate == null)
{
_predicates.Remove(t);
}
else
{
_predicates[t] = (x, y) => predicate((T) x, (T) y);
}
return this;
}
public ContentsEqualConstraint Ignoring(string fieldName)
{
_ignoredNames.Add(fieldName);
return this;
}
public ContentsEqualConstraint Ignoring(Type fieldType)
{
if (fieldType.IsInterface)
{
_ignoredInterfaces.AddFirst(fieldType);
}
else
{
_ignoredTypes.Add(fieldType);
}
return this;
}
public ContentsEqualConstraint IgnoringSuffix(string suffix)
{
if (string.IsNullOrEmpty(suffix))
{
throw new ArgumentNullException("suffix");
}
_ignoredSuffixes.AddLast(suffix);
return this;
}
public ContentsEqualConstraint WithoutSort()
{
_withoutSort = true;
return this;
}
public ContentsEqualConstraint RecursingOnly(int levels)
{
_maxRecursion = levels;
return this;
}
public static void GlobalIgnore(string fieldName)
{
_globallyIgnoredNames.Add(fieldName);
}
public static void GlobalIgnore(Type fieldType)
{
if (fieldType.IsInterface)
{
_globallyIgnoredInterfaces.AddFirst(fieldType);
}
else
{
_globallyIgnoredTypes.Add(fieldType);
}
}
public static IDisposable RegionalIgnore(string fieldName)
{
return new RegionalIgnoreTracker(fieldName);
}
public static IDisposable RegionalIgnore(Type fieldType)
{
return new RegionalIgnoreTracker(fieldType);
}
public static IDisposable RegionalWithin(object tolerance)
{
return new RegionalWithinTracker(tolerance);
}
public override bool Matches(object actualValue)
{
typePathExpanded = null;
actual = actualValue;
return Matches(expected, actualValue);
}
private bool Matches(object expectedValue, object actualValue)
{
bool matches = true;
if (!MatchesNull(expectedValue, actualValue, ref matches))
{
return matches;
}
// DatesEqualConstraint supports tolerance in dates but works as equal constraint for everything else
Constraint eq = new DatesEqualConstraint(expectedValue).Within(tolerance ?? _regionalTolerance);
if (eq.Matches(actualValue))
{
return true;
}
if (MatchesVisited(expectedValue, actualValue, ref matches))
{
if (MatchesDictionary(expectedValue, actualValue, ref matches) &&
MatchesList(expectedValue, actualValue, ref matches) &&
MatchesType(expectedValue, actualValue, ref matches) &&
MatchesPredicate(expectedValue, actualValue, ref matches))
{
MatchesFields(expectedValue, actualValue, eq, ref matches);
}
}
return matches;
}
private bool MatchesNull(object expectedValue, object actualValue, ref bool matches)
{
if (IsNullEquivalent(expectedValue))
{
expectedValue = null;
}
if (IsNullEquivalent(actualValue))
{
actualValue = null;
}
if (expectedValue == null && actualValue == null)
{
matches = true;
return false;
}
if (expectedValue == null)
{
expectedDescription = "null";
actualDescription = "NOT null";
matches = Failure;
return false;
}
if (actualValue == null)
{
expectedDescription = "not null";
actualDescription = "null";
matches = Failure;
return false;
}
return true;
}
private bool MatchesType(object expectedValue, object actualValue, ref bool matches)
{
Type expectedType = expectedValue.GetType();
Type actualType = actualValue.GetType();
if (expectedType != actualType)
{
try
{
Convert.ChangeType(actualValue, expectedType);
}
catch(InvalidCastException)
{
expectedDescription = expectedType.FullName;
actualDescription = actualType.FullName;
matches = Failure;
return false;
}
}
return true;
}
private bool MatchesPredicate(object expectedValue, object actualValue, ref bool matches)
{
Type t = expectedValue.GetType();
Func<object, object, bool> predicate;
if (_predicates.TryGetValue(t, out predicate))
{
matches = predicate(expectedValue, actualValue);
return false;
}
return true;
}
private bool MatchesVisited(object expectedValue, object actualValue, ref bool matches)
{
var c = new VisitedComparison(expectedValue, actualValue);
if (_visitedObjects.Contains(c))
{
matches = true;
return false;
}
_visitedObjects.Add(c);
return true;
}
private bool MatchesDictionary(object expectedValue, object actualValue, ref bool matches)
{
if (expectedValue is IDictionary && actualValue is IDictionary)
{
var expectedDictionary = (IDictionary)expectedValue;
var actualDictionary = (IDictionary)actualValue;
if (expectedDictionary.Count != actualDictionary.Count)
{
expectedDescription = expectedDictionary.Count + " item dictionary";
actualDescription = actualDictionary.Count + " item dictionary";
matches = Failure;
return false;
}
foreach (DictionaryEntry expectedEntry in expectedDictionary)
{
if (!actualDictionary.Contains(expectedEntry.Key))
{
expectedDescription = expectedEntry.Key + " exists";
actualDescription = expectedEntry.Key + " does not exist";
matches = Failure;
return false;
}
if (CanRecurseFurther)
{
typePath.Push(expectedEntry.Key.ToString());
if (!Matches(expectedEntry.Value, actualDictionary[expectedEntry.Key]))
{
matches = Failure;
return false;
}
typePath.Pop();
}
}
matches = true;
return false;
}
return true;
}
private bool MatchesList(object expectedValue, object actualValue, ref bool matches)
{
if (!(expectedValue is IList && actualValue is IList))
{
return true;
}
var expectedList = (IList) expectedValue;
var actualList = (IList) actualValue;
if (!Matches(expectedList.Count, actualList.Count))
{
matches = false;
}
else
{
if (CanRecurseFurther)
{
int max = expectedList.Count;
if (max != 0 && !_withoutSort)
{
SafeSort(expectedList);
SafeSort(actualList);
}
for (int i = 0; i < max; i++)
{
typePath.Push(i.ToString());
if (!Matches(expectedList[i], actualList[i]))
{
matches = false;
return false;
}
typePath.Pop();
}
}
matches = true;
}
return false;
}
private void MatchesFields(object expectedValue, object actualValue, Constraint equalConstraint, ref bool matches)
{
Type expectedType = expectedValue.GetType();
FieldInfo[] fields = expectedType.GetFields(BindingFlags.Instance | BindingFlags.NonPublic);
// should have passed the EqualConstraint check
if (expectedType.IsPrimitive ||
expectedType == typeof(string) ||
expectedType == typeof(Guid) ||
fields.Length == 0)
{
failedEquality = equalConstraint;
matches = Failure;
return;
}
if (expectedType == typeof(DateTime))
{
var expectedDate = (DateTime)expectedValue;
var actualDate = (DateTime)actualValue;
if (Math.Abs((expectedDate - actualDate).TotalSeconds) > 3.0)
{
failedEquality = equalConstraint;
matches = Failure;
return;
}
matches = true;
return;
}
if (CanRecurseFurther)
{
while(true)
{
foreach (FieldInfo field in fields)
{
if (!Ignore(field))
{
typePath.Push(field.Name);
if (!Matches(GetValue(field, expectedValue), GetValue(field, actualValue)))
{
matches = Failure;
return;
}
typePath.Pop();
}
}
expectedType = expectedType.BaseType;
if (expectedType == null)
{
break;
}
fields = expectedType.GetFields(BindingFlags.Instance | BindingFlags.NonPublic);
}
}
matches = true;
return;
}
private bool Ignore(FieldInfo field)
{
if (_ignoredNames.Contains(field.Name) ||
_ignoredTypes.Contains(field.FieldType) ||
_globallyIgnoredNames.Contains(field.Name) ||
_globallyIgnoredTypes.Contains(field.FieldType) ||
field.GetCustomAttributes(typeof (IgnoreContentsAttribute), false).Length != 0)
{
return true;
}
foreach(string ignoreSuffix in _ignoredSuffixes)
{
if (field.Name.EndsWith(ignoreSuffix))
{
return true;
}
}
foreach (Type ignoredInterface in _ignoredInterfaces)
{
if (ignoredInterface.IsAssignableFrom(field.FieldType))
{
return true;
}
}
return false;
}
private static bool Failure
{
get
{
return false;
}
}
private static bool IsNullEquivalent(object value)
{
return value == null ||
value == DBNull.Value ||
(value is int && (int) value == int.MinValue) ||
(value is double && (double) value == double.MinValue) ||
(value is DateTime && (DateTime) value == DateTime.MinValue) ||
(value is Guid && (Guid) value == Guid.Empty) ||
(value is IList && ((IList)value).Count == 0);
}
private static object GetValue(FieldInfo field, object source)
{
try
{
return field.GetValue(source);
}
catch(Exception ex)
{
return ex;
}
}
public override void WriteMessageTo(MessageWriter writer)
{
if (TypePath.Length != 0)
{
writer.WriteLine("Failure on " + TypePath);
}
if (failedEquality != null)
{
failedEquality.WriteMessageTo(writer);
}
else
{
base.WriteMessageTo(writer);
}
}
public override void WriteDescriptionTo(MessageWriter writer)
{
writer.Write(expectedDescription);
}
public override void WriteActualValueTo(MessageWriter writer)
{
writer.Write(actualDescription);
}
private string TypePath
{
get
{
if (typePathExpanded == null)
{
string[] p = typePath.ToArray();
Array.Reverse(p);
var text = new StringBuilder(128);
bool isFirst = true;
foreach(string part in p)
{
if (isFirst)
{
text.Append(part);
isFirst = false;
}
else
{
int i;
if (int.TryParse(part, out i))
{
text.Append("[" + part + "]");
}
else
{
text.Append("." + part);
}
}
}
typePathExpanded = text.ToString();
}
return typePathExpanded;
}
}
private bool CanRecurseFurther
{
get
{
return typePath.Count < _maxRecursion;
}
}
private static bool SafeSort(IList list)
{
if (list == null)
{
return false;
}
if (list.Count < 2)
{
return true;
}
try
{
object first = FirstNonNull(list) as IComparable;
if (first == null)
{
return false;
}
if (list is Array)
{
Array.Sort((Array)list);
return true;
}
return CallIfExists(list, "Sort");
}
catch
{
return false;
}
}
private static object FirstNonNull(IEnumerable enumerable)
{
if (enumerable == null)
{
throw new ArgumentNullException("enumerable");
}
foreach (object item in enumerable)
{
if (item != null)
{
return item;
}
}
return null;
}
private static bool CallIfExists(object instance, string method)
{
if (instance == null)
{
throw new ArgumentNullException("instance");
}
if (String.IsNullOrEmpty(method))
{
throw new ArgumentNullException("method");
}
Type target = instance.GetType();
MethodInfo m = target.GetMethod(method, new Type[0]);
if (m != null)
{
m.Invoke(instance, null);
return true;
}
return false;
}
#region VisitedComparison Helper
private class VisitedComparison
{
private readonly object _expected;
private readonly object _actual;
public VisitedComparison(object expected, object actual)
{
_expected = expected;
_actual = actual;
}
public override int GetHashCode()
{
return GetHashCode(_expected) ^ GetHashCode(_actual);
}
private static int GetHashCode(object o)
{
if (o == null)
{
return 0;
}
return o.GetHashCode();
}
public override bool Equals(object obj)
{
if (obj == null)
{
return false;
}
if (obj.GetType() != typeof(VisitedComparison))
{
return false;
}
var other = (VisitedComparison) obj;
return _expected == other._expected &&
_actual == other._actual;
}
}
#endregion
#region RegionalIgnoreTracker Helper
private class RegionalIgnoreTracker : IDisposable
{
private readonly string _fieldName;
private readonly Type _fieldType;
public RegionalIgnoreTracker(string fieldName)
{
if (!_globallyIgnoredNames.Add(fieldName))
{
_globallyIgnoredNames.Add(fieldName);
_fieldName = fieldName;
}
}
public RegionalIgnoreTracker(Type fieldType)
{
if (!_globallyIgnoredTypes.Add(fieldType))
{
_globallyIgnoredTypes.Add(fieldType);
_fieldType = fieldType;
}
}
public void Dispose()
{
if (_fieldName != null)
{
_globallyIgnoredNames.Remove(_fieldName);
}
if (_fieldType != null)
{
_globallyIgnoredTypes.Remove(_fieldType);
}
}
}
#endregion
#region RegionalWithinTracker Helper
private class RegionalWithinTracker : IDisposable
{
public RegionalWithinTracker(object tolerance)
{
_regionalTolerance = tolerance;
}
public void Dispose()
{
_regionalTolerance = null;
}
}
#endregion
#region IgnoreContentsAttribute
[AttributeUsage(AttributeTargets.Field)]
public sealed class IgnoreContentsAttribute : Attribute
{
}
#endregion
}
public class DatesEqualConstraint : EqualConstraint
{
private readonly object _expected;
public DatesEqualConstraint(object expectedValue) : base(expectedValue)
{
_expected = expectedValue;
}
public override bool Matches(object actualValue)
{
if (tolerance != null && tolerance is TimeSpan)
{
if (_expected is DateTime && actualValue is DateTime)
{
var expectedDate = (DateTime) _expected;
var actualDate = (DateTime) actualValue;
var toleranceSpan = (TimeSpan) tolerance;
if ((actualDate - expectedDate).Duration() <= toleranceSpan)
{
return true;
}
}
tolerance = null;
}
return base.Matches(actualValue);
}
}
}
This is actually a simple process. Using reflection you can compare each field on the object.
public static Boolean ObjectMatches(Object x, Object y)
{
if (x == null && y == null)
return true;
else if ((x == null && y != null) || (x != null && y == null))
return false;
Type tx = x.GetType();
Type ty = y.GetType();
if (tx != ty)
return false;
foreach(FieldInfo field in tx.GetFields(BindingFlags.NonPublic | BindingFlags.Public | BindingFlags.Instance | BindingFlags.DeclaredOnly))
{
if (field.FieldType.IsValueType && (field.GetValue(x).ToString() != field.GetValue(y).ToString()))
return false;
else if (field.FieldType.IsClass && !ObjectMatches(field.GetValue(x), field.GetValue(y)))
return false;
}
return true;
}
Using the Nuget suggested by Jesse and this code I managed to compare two objects with great results.
using KellermanSoftware.CompareNetObjects;
using System;
namespace MyProgram.UnitTestHelper
{
public class ObjectComparer
{
public static bool ObjectsHaveSameValues(object first, object second)
{
CompareLogic cl = new CompareLogic();
ComparisonResult result = cl.Compare(first, second);
if (!result.AreEqual)
Console.WriteLine(result.DifferencesString);
return result.AreEqual;
}
}
}
Here is a simple comparer that we've used with unit testing to assert that two objects have equal properties. It's a mash-up of ideas found in various articles, and handles circular references.
public static class TestHelper
{
public static void AssertAreEqual(Object expected, Object actual, String name)
{
// Start a new check with an empty list of actual objects checked
// The list of actual objects checked is used to ensure that circular references don't result in infinite recursion
List<Object> actualObjectsChecked = new List<Object>();
AssertAreEqual(expected, actual, name, actualObjectsChecked);
}
private static void AssertAreEqual(Object expected, Object actual, String name, List<Object> actualObjectsChecked)
{
// Just return if already checked the actual object
if (actualObjectsChecked.Contains(actual))
{
return;
}
actualObjectsChecked.Add(actual);
// If both expected and actual are null, they are considered equal
if (expected == null && actual == null)
{
return;
}
if (expected == null && actual != null)
{
Assert.Fail(String.Format("The actual value of {0} was not null when null was expected.", name));
}
if (expected != null && actual == null)
{
Assert.Fail(String.Format("The actual value of {0} was null when an instance was expected.", name));
}
// Get / check type info
// Note: GetType always returns instantiated (i.e. most derived) type
Type expectedType = expected.GetType();
Type actualType = actual.GetType();
if (expectedType != actualType)
{
Assert.Fail(String.Format("The actual type of {0} was not the same as the expected type.", name));
}
// If expected is a Primitive, Value, or IEquatable type, assume Equals is sufficient to check
// Note: Every IEquatable type should have also overridden Object.Equals
if (expectedType.IsPrimitive || expectedType.IsValueType || expectedType.IsIEquatable())
{
Assert.IsTrue(expected.Equals(actual), "The actual {0} is not equal to the expected.", name);
return;
}
// If expected is an IEnumerable type, assume comparing enumerated items is sufficient to check
IEnumerable<Object> expectedEnumerable = expected as IEnumerable<Object>;
IEnumerable<Object> actualEnumerable = actual as IEnumerable<Object>;
if ((expectedEnumerable != null) && (actualEnumerable != null))
{
Int32 actualEnumerableCount = actualEnumerable.Count();
Int32 expectedEnumerableCount = expectedEnumerable.Count();
// Check size first
if (actualEnumerableCount != expectedEnumerableCount)
{
Assert.Fail(String.Format("The actual number of enumerable items in {0} did not match the expected number.", name));
}
// Check items in order, assuming order is the same
for (int i = 0; i < actualEnumerableCount; ++i)
{
AssertAreEqual(expectedEnumerable.ElementAt(i), actualEnumerable.ElementAt(i), String.Format("{0}[{1}]", name, i), actualObjectsChecked);
}
return;
}
// If expected is not a Primitive, Value, IEquatable, or Ienumerable type, assume comparing properties is sufficient to check
// Iterate through properties
foreach (PropertyInfo propertyInfo in actualType.GetProperties(BindingFlags.Instance | BindingFlags.Public))
{
// Skip properties that can't be read or require parameters
if ((!propertyInfo.CanRead) || (propertyInfo.GetIndexParameters().Length != 0))
{
continue;
}
// Get properties from both
Object actualProperty = propertyInfo.GetValue(actual, null);
Object expectedProperty = propertyInfo.GetValue(expected, null);
AssertAreEqual(expectedProperty, actualProperty, String.Format("{0}.{1}", name, propertyInfo.Name), actualObjectsChecked);
}
}
public static Boolean IsIEquatable(this Type type)
{
return type.GetInterfaces().Any(x => x.IsGenericType && x.GetGenericTypeDefinition() == typeof(IEquatable<>));
}
}