Semantic difference of Read and Load - c#

I wonder what the semantic difference is between Read and Load (in C#). I don't see a difference when comparing e.g.
System.IO.MemoryStream.Read()
System.Console.Read()
System.IO.StreamReader.Read()
System.IO.File.ReadAllText()
vs
System.Xml.XmlDocument.Load()
System.Xml.Linq.XDocument.Load()
System.Reflection.Assembly.Load()
Since I want a consistent naming over my program that deals a lot with simply getting files from persistent storage and higher level functions that also initialize, cross reference and errorcheck I kindly ask for your input.

In your examples, "Read" generally refers to reading a portion of the data. Whether this is for the purpose of limiting the amount of data that needs to be stored and/or handled in a given operation, or because the data itself is not immediately available in its entirety (e.g. Console.Read() or reading from a network stream), the fundamental behavior is the same: data is processed in pieces smaller than the entire set of data that can or will be processed.
There is the exception ReadAllText(), which does in fact read all of the data at once. But that's in a type where all the other methods that perform similarly also use the word "Read". Using "Read" in that context keeps the API consistent, and failing to use "Load" doesn't significantly hinder comprehension of the API (especially since the method name also explicitly states "All Text"…no one should be surprised to see all of the text read in that case, right? :) ).
In your examples that use "Load", they consume all of the data at once, and turn it into something else, e.g. an XML DOM or an assembly. This is a distinctly different kind of operation from just reading data and at most doing minimal processing on it (e.g. decoding some text format). In contrast to "Read" operations, "Load" will always consume all of the data, rather than allowing the option of reading just a portion at a time.

Read APIs are about:
Reading data in smaller units like bytes, characters
Have a pointer, which is mostly forward only type like DataReader
Connected and reading from the source
Works fine for all kinds of data, but may be a costly option if a live connection is maintained over a period of time
Needs consistent connectivity, throughout the process
ADO.Net connected architecture is the example
Load APIs on the other end:
Load all data in memory in one go
Opens connection, Read everything and close it, doesn't maintain a live connection
Can work with data to apply logic, move forward / backward in the memory
Works fine for smaller sets, may have trouble for larger sets of data due to memory and network requirements
Once loaded and can be worked upon at convenience over a period of time as its a disconnected data
ADO.Net disconnected architecture, Dataset, DataTable and IEnumerable are valid examples

Related

Are there any persistence guarantees when using memory mapped files or plain Stream.Write

I have lots of data which I would like to save to disk in binary form and I would like to get as close to having ACID properties as possible. Since I have lots of data and cannot keep it all in memory, I understand I have two basic approaches:
Have lots of small files (e.g. write to disk every minute or so) - in case of a crash I lose only the last file. Performance will be worse, however.
Have a large file (e.g. open, modify, close) - best sequential read performance afterwards, but in case of a crash I can end up with a corrupted file.
So my question is specifically:
If I choose to go for the large file option and open it as a memory mapped file (or using Stream.Position and Stream.Write), and there is a loss of power, are there any guarantees to what could possibly happen with the file?
Is it possible to lose the entire large file, or just end up with the data corrupted in the middle?
Does NTFS ensure that a block of certain size (4k?) always gets written entirely?
Is the outcome better/worse on Unix/ext4?
I would like to avoid using NTFS TxF since Microsoft already mentioned it's planning to retire it. I am using C# but the language probably doesn't matter.
(additional clarification)
It seems that there should be a certain guarantee, because -- unless I am wrong -- if it was possible to lose the entire file (or suffer really weird corruption) while writing to it, then no existing DB would be ACID, unless they 1) use TxF or 2) make a copy of the entire file before writing? I don't think journal will help you if you lose parts of the file you didn't even plan to touch.
You can call FlushViewOfFile, which initiates dirty page writes, and then FlushFileBuffers, which according to this article, guarantees that the pages have been written.
Calling FlushFileBuffers after each write might be "safer" but it's not recommended. You have to know how much loss you can tolerate. There are patterns that limit that potential loss, and even the best databases can suffer a write failure. You just have to come back to life with the least possible loss, which typically demands some logging with a multi-phase commit.
I suppose it's possible to open the memory mapped file with FILE_FLAG_NO_BUFFERING and FILE_FLAG_WRITE_THROUGH but that's gonna suck up your throughput. I don't do this. I open the memory mapped files for asynchronous I/O, letting the OS optimize the throughput with it's own implementation of async I/O completion ports. It's the fastest possible throughput. I can tolerate potential loss, and have mitigated appropriately. My memory mapped data is file backup data...and if I detect loss, I can can detect and re-backup the lost data once the hardware error is cleared.
Obviously, the file system has to be reliable enough to operate a database application, but I don't know of any vendors that suggest you don't still need backups. Bad things will happen. Plan for loss. One thing I do is that I never write into the middle of data. My data is immutable and versioned, and each "data" file is limited to 2gb, but each application employs different strategies.
The NTFS file system (and ext3-4) uses a transaction journal to operate the changes. Each changed is stored in the journal and the then, the journal itself is used to effectively peform the change.
Except for catastrophic disk failures, the file system is designed to be consistent in its own data structures, not yours: in case of a crash, the recovery procedure will decide what to roll back in order to preserve the consistency. In case of roll back, your "not-yet-written but to-be-written" data is lost.
The file system will be consistent, while your data not.
Additionally, there are several other factors involved: software and hardware caches introduce an additional layer, and therefore a point of failure. Usually the operations are performed in the cache, and then, the cache itself is flushed on disk. The file system driver won't see the operations performed "in" the cache, but we'll see the flush operations.
This is done for performances reasons, as the hard drive is the bottleneck. Hardware controllers do have batteries to guarantee that their own cache can be flushed even in an event of power loss.
The size of a sector is another important factor, but this detail should not be taken into account as the hard drive itself could lie about its native size for interoperability purposes.
If you have a mewmory mapped and you insert data in the middle, while the power goes down, the content of the file might partially contain the change you did if it exceeds the size of the internal buffers.
TxF is a way to mitigate the issue, but has several implications which limits the contexts where you can use it: for eaxample it does not work on different drives or shared networks.
In order to be ACID, you need to design your data structures and/or the way you use it in order not to rely about the implementation details. For example, Mercurial (versioning tool) always appends its own data to its own revision log.
There are many possible patterns, however, the more guarantees you need, the more technology specific you'll get (and by tied to).

How does database engines guarantee no data loss and still uses basic I/O (Windows OS)?

This question arise because when someone wants to use flat file as database, most people will say "is database not an option?" and things like that. This makes me think that most people believe that popular database softwares are reliable in handling data storage.
However, since database engines also write their data stores to files (or allow me to say "flat files"), then I am confused as to why most people believe that protection from data loss is almost completely guaranteed in database engines.
I suppose that database softwares use features like the Windows' CreateFile() function with the FILE_FLAG_WRITE_THROUGH option set; yet, Microsoft specifies in their Documentation that "Not all hard disk hardware supports this write-through capability."
Then why can a database engine be more reliable than my C# code that also uses unmanaged CreateFile() function to write to disk directly using some algorithms (like this SO way) to prevent damage to data? Especially when writing small bits of files and appending small bytes to it in some future time? (Note: not comparing in terms of robustness, features, etc... just reliability of data integrity)
The key to most database systems integrity is the log file.
As well as updating the various tables/data stores/documents they also write all operations and associated data to a log file.
In most cases when the program "commits()" it waits until all operations are written (really written!) to the log file. If anything happens after that database can be rebuilt using the log file data.
Note -- you could get something similar using standard disk I/O and calling flush() at the appropriate points. However you could never guarantee the status of the file (many I/Os could have taken place before you called flush() ) and you could never recover to a point in time as you have no copy of deleted records or a copy of a previous version of an updated record.
Of course you can write a very secure piece of C# code that handles all possible exceptions and faults, that calculates hash codes and check them back for anything it is going to write on the disk, that manages all quirks of every operating system it's deployed on with respect with file caching, disk write buffering and so forth and so on.
The question is: why should you?
Admittedly, a DB is not always the right choice if you just want to write data on the disk. But if you want to store data consistently, safely and most importantly, without losing too much of your time in nitty-gritty IO-operation details, then you should use some kind of well established and tested piece of code that someone else wrote and took the time to debug (hint: a database is a good choice).
See?
Also, there are databases, like sqlite, that are perfect for fast, installation-less use in a program. Use them or not, it's your choice, but I wouldn't spend my time to reinvent the wheel, if I were you.

Database recommendations needed -> Columnar, Embedded (if possible)

EDIT: As result of the answers so far I like to add more focus in what I like to zero in on: A database that allows writing in-memory (could be simple C# code) with persistence to storage options in order to access the data from within R. Redis so far looks the most promising. I also consider to actually use something similar to Lockfree++ or ZeroMQ, in order to avoid writing data concurrently to the database, but rather sending all to be persisted data over a message bus/other implementation and to have one "actor" handle all write operations to an in-memory db or other solution. Any more ideas aside Redis (some mentioned SQLite and I will need to still test its performance). Any other suggestions?
I am searching for the ideal database structure/solution that meets most of my below requirements but so far I utterly failed. Can you please help?
My tasks: I run a process in .Net 4.5 (C#) and generate (generally) value types that I want to use for further analysis in other applications and therefore like to either preserve in-memory or persist on disk. More below. The data is generated within different tasks/threads and thus a row based data format does not lend itself well to match this situation (because the data generated in different threads is generated at different times and is thus not aligned). Thus I thought a columnar data structure may be suitable but please correct me if I am wrong.
Example:
Tasks/Thread #1 generates the following data at given time stamps
datetime.ticks / value of output data
1000000001 233.23
1000000002 233.34
1000000006 234.23
...
Taks/Thread #2 generates the following data at given time stamps
datetime.ticks / value of output data
1000000002 33.32
1000000005 34.34
1000000015 54.32
...
I do not need to align the time stamps at the .Net run-time, I am first and foremost after preserving the data and to process the data within R or Python at a later point.
My requirements:
Fast writes, fast writes, fast writes: It can happen that I generate 100,000- 1,000,000 data points per second and need to persist (worst case) or retain in memory the data. Its ok to run the writes on its own thread so this process can lag the data generation process but limitation is 16gb RAM (64bit code), more below.
Preference is for columnar db format as it lends itself well to how I want to query the data later but I am open to any other structure if it makes sense in regards to the examples above (document/key-value also ok if all other requirements are met, especially in terms of write speed).
API that can be referenced from within .Net. Example: HDF5 may be considered capable by some but I find their .Net port horrible.Something that supports .Net a little better would be a plus but if all other requirements are met then I can deal with something similar to the HDF5 .Net port.
Concurrent writes if possible: As described earlier I like to write data concurrently from different tasks/threads.
I am constrained by 16gb memory (run .Net process in 64bit) and thus I probably look for something that is not purely in-memory as I may sometimes generate more data than that. Something in-memory which persists at times or a pure persistence model is probably preferable.
Preference for embedded but if a server in a client/server solution can run as a windows service then no issue.
In terms of data access I have strong preference for a db solution for which interfaces from R and Python already exist because I like to use the Panda library within Python for time series alignments and other analysis and run analyses within R.
If the API/library supports in addition SQL/SQL-like/Linq/ like queries that would be terrific but generally I just need the absolute bare bones such as load columnar data in between start and end date (given the "key"/index is in such format) because I analyze and run queries within R/Python.
If it comes with a management console or data visualizer that would be a plus but not a must.
Should be open source or priced within "reach" (no, KDB does not qualify in that regards ;-)
OK, here is what I have so far, and again its all I got because most db solution simply fail already on the write performance requirement:
Infobright and Db4o. I like what I read so far but I admit I have not checked into any performance stats
Something done myself. I can easily store value types in binary format and index the data by datetime.ticks , I just would need to somehow write scripts to load/deserialize the data in Python/R. But it would be a massive tasks if I wanted to add concurrency, a query engine, and other goodies. Thus I look for something already out there.
I can't comment -- low rep (I'm new here) -- so you get a full answer instead...
First, are you sure you need a database at all? If fast write speed and portability to R is your biggest concern then have you just considered a flat file mechanism? According to your comments you're willing to batch writes out but you need persistence; if those were my requirements I'd write a straight-to-disck buffering system that was lightning fast then build a separate task that periodically took the disk files and moved them into a data store for R, and that's only if R reading the flat files wasn't sufficient in the first place.
If you can do alignment after-the-fact, then you could write the threads to separate files in your main parallel loop, cutting each file off every so often, and leave the alignment and database loading to the subprocess.
So (in crappy pseudo_code), build a thread process that you'd call with backgroundworker or some such and include a threadname string uniquely identifying each worker and thus each filestream (task/thread):
file_name = threadname + '0001.csv' // or something
open(file_name for writing)
while(generating_data) {
generate_data()
while (buffer_not_full and very_busy) {
write_data_to_buffer
generate_data()
}
flush_buffer_to_disk(file_name)
if(file is big enough or enough time has passed or we're not too busy) {
close(file_name)
move(file_name to bob's folder)
increment file_name
open(file_name for writing)
}
)
Efficient and speedy file I/O and buffering is a straightforward and common problem. Nothing is going to be faster than this. Then you can just write another process to do the database loads and not sweat the performance there:
while(file_name in list of files in bob's folder sorted by date for good measure)
{
read bob's file
load bob's file to database
align dates, make pretty
}
And I wouldn't write that part in C#, I'd batch script it and use the database's native loader which is going to be as fast as anything you can build from scratch.
You'll have to make sure the two loops don't interfere much if you're running on the same hardware. That is, run the task threads at a higher priority, or build in some mutex or performance limiters so that the database load doesn't hog resources while the threads are running. I'd definitely segregate the database server and hardware so that file I/O to the flat files isn't compromised.
FIFO queues would work if you're on Unix, but you're not. :-)
Also, hardware is going to have more of a performance impact for you than the database engine, I'd imagine. If you're on a budget I'm guessing you're on COTS hardware, so springing for a solid state drive may up performance fairly cheaply. As I said, separating the DB storage from the flat file storage would help, and the CPU/RAM for R, the Database, and your Threads should all be segregated ideally.
What I'm saying is that choice of DB vendor probably isn't your biggest issue, unless you have a lot of money to spend. You'll be hardware bound most of the time otherwise. Database tuning is an art, and while you can eek out minor performance gains at the top end, having a good database administrator will keep most databases in the same ballpark for performance. I'd look at what R and Python support well and that you're comfortable with. If you think in columnar fashion then look at R and C#'s support for Cassandra (my vote), Hana, Lucid, HBase, Infobright, Vertica and others and pick one based on price and support. For traditional databases on a single commodity machine, I haven't seen anything that MySQL can't handle.
This is not to answer my own question but to keep track of all data bases which I tested so far and why they have not met my requirements (yet): each time I attempted to write 1 million single objects (1 long, 2 floats) to the database. For ooDBs, I stuck the objects into a collection and wrote the collection itself, similar story for key/value such as Redis but also attempted to write simple ints (1mil) to columnar dbs such as InfoBright.
Db4o, awefully slow writes: 1mil objects within a collection took about 45 seconds. I later optimized the collection structure and also wrote each object individually, not much love here.
InfoBright: Same thing, very slow in terms of write speed, which surprised me quite a bit as it organizes data in columnar format but I think the "knowledge tree" only kicks in when querying data rather than when saving flat data structures/tables-like structures.
Redis (through BookSleeve): Great API for .Net: Full Redis functionality (though couple drawbacks to run the server on Windows machines vs. a Linux or Unix box). Performance was very fast...North of 1 million items per second. I serialized all objects using Protocol Buffers (protobuf-net, both written by Marc Gravell), still need to play a lot more with the library but R and Python both have full access to the Redis DB, which is a big plus. Love it so far. The Async framework that Marc wrote around the Redis base functions is awesome, really neat and it works so far. I wanna spend a little more time to experiment with the Redis Lists/Collection types as well, as I so far only serialized to byte arrays.
SqLite: I ran purely in-memory and managed to write 1 million value type elements in around 3 seconds. Not bad for a pure RDBMS, obviously the in-memory option really speeds things up. I only created one connection, one transaction, created one command, one parameter, and simply adjusted the value of the parameter within a loop and ran the ExecuteNonQuery on each iteration. The transaction commit was then run outside the loop.
HDF5: Though there is a .Net port and there also exists a library to somehow work with HDF5 files out of R, I strongly discourage anyone to do so. Its a pure nightmare. The .Net port is very badly written, heck, the whole HDF5 concept is more than questionable. Its a very old and in my opinion outgrown solution to store vectorized/columnar data. This is 2012 not 1995. If one cannot completely delete datasets and vectors out of the file in which they were stored before then I do not call that an annoyance but a major design flaw. The API in general (not just .Net) is very badly designed and written imho, there are tons of class objects that nobody, without having spent hours and hours of studying the file structure, understands how to use. I think that is somewhat evidenced by the very sparse amount of documentation and example code that is out there. Furthermore, the h5r R library is a drama, an absolute nightmare. Its badly written as well (often the file upon writing is not correctly close due to a faulty flush and it corrupts files), the library has issues to even be properly installed on 32 bit OSs...and it goes on and on. I write the most about HDF5 because I spent the most of my time on this piece of .... and ended up with the most frustration. The idea to have a fast columnar file storage system, accessible from R and .Net was enticing but it just does not deliver what it promised in terms of API integration and usability or lack thereof.
Update: I ditched testing velocityDB simply because there does not seem any adapter to access the db from within R available. I currently contemplate writing my own GUI with charting library which would access the generated data either from a written binary file or have it sent over a broker-less message bus (zeroMQ) or sent through LockFree++ to an "actor" (my gui). I could then call R from within C# and have results returned to my GUI. That would possibly allow me the most flexibility and freedom, but would obviously also be the most tedious to code. I am running into more and more limitations during my tests that with each db test I befriend this idea more and more.
RESULT: Thanks for the participation. In the end I awarded the bounty points to Chipmonkey because he suggested partly what I considered important points to the solution to my problem (though I chose my own, different solution in the end).
I ended up with a hybrid between Redis in memory storage and direct calls out of .Net to the R.dll. Redis allows access to its data stored in memory by different processes. This makes it a convenient solution to quickly store the data as key/value in Redis and to then access the same data out of R. Additionally I directly send data and invoke functions in R through its .dll and the excellent R.Net library. Passing a collection of 1 million value types to R takes about 2.3 seconds on my machine which is fast enough given that I get the convenience to just pass in the data, invoke computational functions within R out of the .Net environment and getting the results back sync or async.
Just a note: I once had a similar problem posted by a fellow in a delphi forum. I could help him with a simple ID-key-value database backend I wrote at that time (kind of a NoSQL engine). Basically, it uses a B-Tree to store triplets (32bit ObjectID, 32bit PropertyKey, 64bit Value). I could manage to save about 500k/sec Values in real time (about 5 years ago). Of course, the data was indexed on all three values (ID, property-ID and value). You could optimize this by ignoring the value index.
The source I still have is in Delphi, but I would think about implementing something like that using C#. I cannot tell you whether it will meet your needs for performance, but if all else fails, give it a try. Using a buffered write should also drastically improve performance.
I would go with way combining persistence storage (I personally prefer db4o, but you can use files as well as mentioned above) and storing objects into memory this way:
use BlockingCollection<T> to store objects in memory (I believe you will achieve better performance then 1000000/s to store objects in memory), and than have one or more processing threads which will consume the objects and store them into persistent database
// Producing thread
for (int i=0; i<1000000; i++)
blockingCollection.Add(myObject);
// Consuming threads
while (true)
{
var myObject = blockingCollection.Take();
db4oSession.Store(myObject); // or write it to the files or whathever
}
BlockingCollection pretty much solves Producer-Consumer workflow, and in case you will use multiple instance of them and use AddToAny/TakeFromAny you can reach any kind of multithreaded performance
each consuming thread could have different db4o session (file) to reach desired performance (db4o is singlethreaded).
Since you want to use ZeroMQ why not use memcache over Redis?
ZeroMQ offers no persistence as far as I know. Memcache also offers no persistence and is a bit faster than Redis.
Or perhaps the other way, if you use Redis why not use beanstalk MQ?
If you want to use Redis (for the persistence) you might want to switch from ZeroMQ to beanstalk MQ (also a fast in memory queue, but also has persistence via logging). Beanstalk also has C# libs.

Listing more than 10 million records from Oracle With C#

I have a database that contains more than 100 million records. I am running a query that contains more than 10 million records. This process takes too much time so i need to shorten this time. I want to save my obtained record list as a csv file. How can I do it as quickly and optimum as possible? Looking forward your suggestions. Thanks.
I'm assuming that your query is already constrained to the rows/columns you need, and makes good use of indexing.
At that scale, the only critical thing is that you don't try to load it all into memory at once; so forget about things like DataTable, and most full-fat ORMs (which typically try to associate rows with an identity-manager and/or change-manager). You would have to use either the raw IDataReader (from DbCommand.ExecuteReader), or any API that builds a non-buffered iterator on top of that (there are several; I'm biased towards dapper). For the purposes of writing CSV, the raw data-reader is probably fine.
Beyond that: you can't make it go much faster, since you are bandwidth constrained. The only way you can get it faster is to create the CSV file at the database server, so that there is no network overhead.
Chances are pretty slim you need to do this in C#. This is the domain of bulk data loading/exporting (commonly used in Data Warehousing scenarios).
Many (free) tools (I imagine even Toad by Quest Software) will do this more robustly and more efficiently than you can write it in any platform.
I have a hunch that you don't actually need this for an end-user (the simple observation is that the department secretary doesn't actually need to mail out copies of that; it is too large to be useful in that way).
I suggest using the right tool for the job. And whatever you do,
donot roll your own datatype conversions
use CSV with quoted literals and think of escaping the double quotes inside these
think of regional options (IOW: always use InvariantCulture for export/import!)
"This process takes too much time so i need to shorten this time. "
This process consists of three sub-processes:
Retrieving > 10m records
Writing records to file
Transferring records across the network (my presumption is you are working with a local client against a remote database)
Any or all of those issues could be a bottleneck. So, if you want to reduce the total elapsed time you need to figure out where the time is spent. You will probably need to instrument your C# code to get the metrics.
If it turns out the query is the problem then you will need to tune it. Indexes won't help here as you're retrieving a large chunk of the table (> 10%), so increasing the performance of a full table scan will help. For instance increasing the memory to avoid disk sorts. Parallel query could be useful (if you have Enterprise Edition and you have sufficient CPUs). Also check that the problem isn't a hardware issue (spindle contention, dodgy interconnects, etc).
Can writing to a file be the problem? Perhaps your disk is slow for some reason (e.g. fragmentation) or perhaps you're contending with other processes writing to the same directory.
Transferring large amounts of data across a network is obviously a potential bottleneck. Are you certain you're only sending relevenat data to the client?
An alternative architecture: use PL/SQL to write the records to a file on the dataserver, using bulk collect to retrieve manageable batches of records, and then transfer the file to where you need it at the end, via FTP, perhaps compressing it first.
The real question is why you need to read so many rows from the database (and such a large proportion of the underlying dataset). There are lots of approaches which should make this scenario avoidable, obvious ones being synchronous processing, message queueing and pre-consolidation.
Leaving that aside for now...if you're consolidating the data or sifting it, then implementing the bulk of the logic in PL/SQL saves having to haul the data across the network (even if it's just to localhost, there's still a big overhead). Again if you just want to dump it out into a flat file, implementing this in C# isn't doing you any favours.

What's the best way to read and parse a large text file over the network?

I have a problem which requires me to parse several log files from a remote machine.
There are a few complications:
1) The file may be in use
2) The files can be quite large (100mb+)
3) Each entry may be multi-line
To solve the in-use issue, I need to copy it first. I'm currently copying it directly from the remote machine to the local machine, and parsing it there. That leads to issue 2. Since the files are quite large copying it locally can take quite a while.
To enhance parsing time, I'd like to make the parser multi-threaded, but that makes dealing with multi-lined entries a bit trickier.
The two main issues are:
1) How do i speed up the file transfer (Compression?, Is transferring locally even neccessary?, Can I read an in use file some other way?)
2) How do i deal with multi-line entries when splitting up the lines among threads?
UPDATE: The reason I didnt do the obvious parse on the server reason is that I want to have as little cpu impact as possible. I don't want to affect the performance of the system im testing.
If you are reading a sequential file you want to read it in line by line over the network. You need a transfer method capable of streaming. You'll need to review your IO streaming technology to figure this out.
Large IO operations like this won't benefit much by multithreading since you can probably process the items as fast as you can read them over the network.
Your other great option is to put the log parser on the server, and download the results.
The better option, from the perspective of performance, is going to be to perform your parsing at the remote server. Apart from exceptional circumstances the speed of your network is always going to be the bottleneck, so limiting the amount of data that you send over your network is going to greatly improve performance.
This is one of the reasons that so many databases use stored procedures that are run at the server end.
Improvements in parsing speed (if any) through the use of multithreading are going to be swamped by the comparative speed of your network transfer.
If you're committed to transferring your files before parsing them, an option that you could consider is the use of on-the-fly compression while doing your file transfer.
There are, for example, sftp servers available that will perform compression on the fly.
At the local end you could use something like libcurl to do the client side of the transfer, which also supports on-the-fly decompression.
The easiest way considering you are already copying the file would be to compress it before copying, and decompress once copying is complete. You will get huge gains compressing text files because zip algorithms generally work very well on them. Also your existing parsing logic could be kept intact rather than having to hook it up to a remote network text reader.
The disadvantage of this method is that you won't be able to get line by line updates very efficiently, which are a good thing to have for a log parser.
I guess it depends on how "remote" it is. 100MB on a 100Mb LAN would be about 8 secs...up it to gigabit, and you'd have it in around 1 second. $50 * 2 for the cards, and $100 for a switch would be a very cheap upgrade you could do.
But, assuming it's further away than that, you should be able to open it with just read mode (as you're reading it when you're copying it). SMB/CIFS supports file block reading, so you should be streaming the file at that point (of course, you didn't actually say how you were accessing the file - I'm just assuming SMB).
Multithreading won't help, as you'll be disk or network bound anyway.
Use compression for transfer.
If your parsing is really slowing you down, and you have multiple processors, you can break the parsing job up, you just have to do it in a smart way -- have a deterministic algorithm for which workers are responsible for dealing with incomplete records. Assuming you can determine that a line is part of a middle of a record, for example, you could break the file into N/M segments, each responsible for M lines; when one of the jobs determines that its record is not finished, it just has to read on until it reaches the end of the record. When one of the jobs determines that it's reading a record for which it doesn't have a beginning, it should skip the record.
If you can copy the file, you can read it. So there's no need to copy it in the first place.
EDIT: use the FileStream class to have more control over the access and sharing modes.
new FileStream("logfile", FileMode.Open, FileAccess.Read, FileShare.ReadWrite)
should do the trick.
I've used SharpZipLib to compress large files before transferring them over the Internet. So that's one option.
Another idea for 1) would be to create an assembly that runs on the remote machine and does the parsing there. You could access the assembly from the local machine using .NET remoting. The remote assembly would need to be a Windows service or be hosted in IIS. That would allow you to keep your copies of the log files on the same machine, and in theory it would take less time to process them.
i think using compression (deflate/gzip) would help
The given answer do not satisfy me and maybe my answer will help others to not think it is super complicated or multithreading wouldn't benefit in such a scenario. Maybe it will not make the transfer faster but depending on the complexity of your parsing it may make the parsing/or analysis of the parsed data faster.
It really depends upon the details of your parsing. What kind of information do you need to get from the log files? Are these information like statistics or are they dependent on multiple log message?
You have several options:
parse multiple files at the same would be the easiest I guess, you have the file as context and can create one thread per file
another option as mentioned before is use compression for the network communication
you could also use a helper that splits the log file into lines that belong together as a first step and then with multiple threads process these blocks of lines; the parsing of this depend lines should be quite easy and fast.
Very important in such a scenario is to measure were your actual bottleneck is. If your bottleneck is the network you wont benefit of optimizing the parser too much. If your parser creates a lot of objects of the same kind you could use the ObjectPool pattern and create objects with multiple threads. Try to process the input without allocating too much new strings. Often parsers are written by using a lot of string.Split and so forth, that is not really as fast as it could be. You could navigate the Stream by checking the coming values without reading the complete string and splitting it again but directly fill the objects you will need after parsing is done.
Optimization is almost always possible, the question is how much you get out for how much input and how critical your scenario is.

Categories