I got a strange C# programming problem. There is a data retrieval in groups of random lengths of number groups. The numbers should be all unique, like:
group[1]{1,2,15};
group[2]{3,4,7,33,22,100};
group[3]{11,12,9};
// Now there is a routine that adds a number to a group.
// For the example, just imagine the active group looks like:
// group[active]=(10,5,0)
group[active].add(new_number);
// Now if 100 were to be added to the active group
// then the active group should be merged to group[2]
// (as that one already contained 100)
// And then as a result it would like
group[1]{1,2,15};
group[2]{3,4,7,33,22,100,10,5,0}; // 10 5 0 added to group[2]
group[3]{11,12,9};
// 100 wasn't added to group[2] since it was already in there.
If the number to be added is already used (not unique) in a previous group.
Then I should merge all numbers in the active group towards that previous group, so I don’t get double numbers.
So in the above example if number 100 was added to the active
group, then all numbers in the group[active] should be merged into group[2].
And then the group[active] should start clean fresh again without any items. And since 100 was already in group[2] it should not be added double.
I am not entirely sure on how to deal with this in a proper way.
As an important criteria here is that it has to work fast.
I will have around minimal 30 groups (upper-bound unknown might be 2000 or more), and their length on average contains five integer numbers, but it could be much longer or only one number.
I kind of feel that I am reinventing the wheel here.
I wonder what this problem is called (does it go by a name, some sorting, or grouping math problem)?, with a name I might find some articles related to such problems.
But maybe it’s indeed something new, then what would be recommended? Should I use list of lists or a dictionary of lists.. or something else? Somehow the checking if the number is already present should be done fast.
I'm thinking along this path now and am not sure if it’s the best.
Instead of a single number, I use a struct now. It wasn't written in the original question as I was afraid, explaining that would make it too complex.
struct data{int ID; int additionalNumber}
Dictionary <int,List<data>> group =new Dictionary<int, List<data>>();
I can step aside from using a struct in here. A lookup list could connect the other data to the proper index. So this makes it again more close to the original description.
On a side note, great answers are given.
So far I don’t know yet what would work best for me in my situation.
Note on the selected answer
Several answers were given here, but I went for the pure dictionary solution.
Just as a note for people in similar problem scenarios: I'd still recommend testing, and maybe the others work better for you. It’s just that in my case currently it worked best. The code was also quite short which I liked, and a dictionary adds also other handy options for my future coding on this.
I would go with Dictionary<int, HashSet<int>>, since you want to avoid duplicates and want a fast way to check if given number already exists:
Usage example:
var groups = new Dictionary<int, HashSet<int>>();
// populate the groups
groups[1] = new HashSet<int>(new[] { 1,2,15 });
groups[2] = new HashSet<int>(new[] { 3,4,7,33,22,100 });
int number = 5;
int groupId = 4;
bool numberExists = groups.Values.Any(x => x.Contains(number));
// if there is already a group that contains the number
// merge it with the current group and add the new number
if (numberExists)
{
var group = groups.First(kvp => kvp.Value.Contains(number));
groups[group.Key].UnionWith(groups[groupId]);
groups[groupId] = new HashSet<int>();
}
// otherwise just add the new number
else
{
groups[groupId].Add(number);
}
From what I gather you want to iteratively assign numbers to groups satisfying these conditions:
Each number can be contained in only one of the groups
Groups are sets (numbers can occur only once in given group)
If number n exists in group g and we try to add it to group g', all numbers from g' should be transferred to g instead (avoiding repetitions in g)
Although approaches utilizing Dictionary<int, HashSet<int>> are correct, here's another one (more mathematically based).
You could simply maintain a Dictionary<int, int>, in which the key would be the number, and the corresponding value would indicate the group, to which that number belongs (this stems from condition 1.). And here's the add routine:
//let's assume dict is a reference to the dictionary
//k is a number, and g is a group
void AddNumber(int k, int g)
{
//if k already has assigned a group, we assign all numbers from g
//to k's group (which should be O(n))
if(dict.ContainsKey(k) && dict[k] != g)
{
foreach(var keyValuePair in dict.Where(kvp => kvp.Value == g).ToList())
dict[keyValuePair.Key] = dict[k];
}
//otherwise simply assign number k to group g (which should be O(1))
else
{
dict[k] = g;
}
}
Notice that from a mathematical point of view what you want to model is a function from a set of numbers to a set of groups.
I have kept it as easy to follow as I can, trying not to impact the speed or deviate from the spec.
Create a class called Groups.cs and copy and paste this code into it:
using System;
using System.Collections.Generic;
namespace XXXNAMESPACEXXX
{
public static class Groups
{
public static List<List<int>> group { get; set; }
public static int active { get; set; }
public static void AddNumberToGroup(int numberToAdd, int groupToAddItTo)
{
try
{
if (group == null)
{
group = new List<List<int>>();
}
while (group.Count < groupToAddItTo)
{
group.Add(new List<int>());
}
int IndexOfListToRefresh = -1;
List<int> NumbersToMove = new List<int>();
foreach (List<int> Numbers in group)
{
if (Numbers.Contains(numberToAdd) && (group.IndexOf(Numbers) + 1) != groupToAddItTo)
{
active = group.IndexOf(Numbers) + 1;
IndexOfListToRefresh = group.IndexOf(Numbers);
foreach (int Number in Numbers)
{
NumbersToMove.Add(Number);
}
}
}
foreach (int Number in NumbersToMove)
{
if (!group[groupToAddItTo - 1].Contains(Number))
{
group[groupToAddItTo - 1].Add(Number);
}
}
if (!group[groupToAddItTo - 1].Contains(numberToAdd))
{
group[groupToAddItTo - 1].Add(numberToAdd);
}
if (IndexOfListToRefresh != -1)
{
group[IndexOfListToRefresh] = new List<int>();
}
}
catch//(Exception ex)
{
//Exception handling here
}
}
public static string GetString()
{
string MethodResult = "";
try
{
string Working = "";
bool FirstPass = true;
foreach (List<int> Numbers in group)
{
if (!FirstPass)
{
Working += "\r\n";
}
else
{
FirstPass = false;
}
Working += "group[" + (group.IndexOf(Numbers) + 1) + "]{";
bool InnerFirstPass = true;
foreach (int Number in Numbers)
{
if (!InnerFirstPass)
{
Working += ", ";
}
else
{
InnerFirstPass = false;
}
Working += Number.ToString();
}
Working += "};";
if ((active - 1) == group.IndexOf(Numbers))
{
Working += " //<active>";
}
}
MethodResult = Working;
}
catch//(Exception ex)
{
//Exception handling here
}
return MethodResult;
}
}
}
I don't know if foreach is more or less efficient than standard for loops, so I have made an alternative version that uses standard for loops:
using System;
using System.Collections.Generic;
namespace XXXNAMESPACEXXX
{
public static class Groups
{
public static List<List<int>> group { get; set; }
public static int active { get; set; }
public static void AddNumberToGroup(int numberToAdd, int groupToAddItTo)
{
try
{
if (group == null)
{
group = new List<List<int>>();
}
while (group.Count < groupToAddItTo)
{
group.Add(new List<int>());
}
int IndexOfListToRefresh = -1;
List<int> NumbersToMove = new List<int>();
for(int i = 0; i < group.Count; i++)
{
List<int> Numbers = group[i];
int IndexOfNumbers = group.IndexOf(Numbers) + 1;
if (Numbers.Contains(numberToAdd) && IndexOfNumbers != groupToAddItTo)
{
active = IndexOfNumbers;
IndexOfListToRefresh = IndexOfNumbers - 1;
for (int j = 0; j < Numbers.Count; j++)
{
int Number = NumbersToMove[j];
NumbersToMove.Add(Number);
}
}
}
for(int i = 0; i < NumbersToMove.Count; i++)
{
int Number = NumbersToMove[i];
if (!group[groupToAddItTo - 1].Contains(Number))
{
group[groupToAddItTo - 1].Add(Number);
}
}
if (!group[groupToAddItTo - 1].Contains(numberToAdd))
{
group[groupToAddItTo - 1].Add(numberToAdd);
}
if (IndexOfListToRefresh != -1)
{
group[IndexOfListToRefresh] = new List<int>();
}
}
catch//(Exception ex)
{
//Exception handling here
}
}
public static string GetString()
{
string MethodResult = "";
try
{
string Working = "";
bool FirstPass = true;
for(int i = 0; i < group.Count; i++)
{
List<int> Numbers = group[i];
if (!FirstPass)
{
Working += "\r\n";
}
else
{
FirstPass = false;
}
Working += "group[" + (group.IndexOf(Numbers) + 1) + "]{";
bool InnerFirstPass = true;
for(int j = 0; j < Numbers.Count; j++)
{
int Number = Numbers[j];
if (!InnerFirstPass)
{
Working += ", ";
}
else
{
InnerFirstPass = false;
}
Working += Number.ToString();
}
Working += "};";
if ((active - 1) == group.IndexOf(Numbers))
{
Working += " //<active>";
}
}
MethodResult = Working;
}
catch//(Exception ex)
{
//Exception handling here
}
return MethodResult;
}
}
}
Both implimentations contain the group variable and two methods, which are; AddNumberToGroup and GetString, where GetString is used to check the current status of the group variable.
Note: You'll need to replace XXXNAMESPACEXXX with the Namespace of your project. Hint: Take this from another class.
When adding an item to your List, do this:
int NumberToAdd = 10;
int GroupToAddItTo = 2;
AddNumberToGroup(NumberToAdd, GroupToAddItTo);
...or...
AddNumberToGroup(10, 2);
In the example above, I am adding the number 10 to group 2.
Test the speed with the following:
DateTime StartTime = DateTime.Now;
int NumberOfTimesToRepeatTest = 1000;
for (int i = 0; i < NumberOfTimesToRepeatTest; i++)
{
Groups.AddNumberToGroup(4, 1);
Groups.AddNumberToGroup(3, 1);
Groups.AddNumberToGroup(8, 2);
Groups.AddNumberToGroup(5, 2);
Groups.AddNumberToGroup(7, 3);
Groups.AddNumberToGroup(3, 3);
Groups.AddNumberToGroup(8, 4);
Groups.AddNumberToGroup(43, 4);
Groups.AddNumberToGroup(100, 5);
Groups.AddNumberToGroup(1, 5);
Groups.AddNumberToGroup(5, 6);
Groups.AddNumberToGroup(78, 6);
Groups.AddNumberToGroup(34, 7);
Groups.AddNumberToGroup(456, 7);
Groups.AddNumberToGroup(456, 8);
Groups.AddNumberToGroup(7, 8);
Groups.AddNumberToGroup(7, 9);
}
long MillisecondsTaken = DateTime.Now.Ticks - StartTime.Ticks;
Console.WriteLine(Groups.GetString());
Console.WriteLine("Process took: " + MillisecondsTaken);
I think this is what you need. Let me know if I misunderstood anything in the question.
As far as I can tell it's brilliant, it's fast and it's tested.
Enjoy!
...and one more thing:
For the little windows interface app, I just created a simple winforms app with three textboxes (one set to multiline) and a button.
Then, after adding the Groups class above, in the button-click event I wrote the following:
private void BtnAdd_Click(object sender, EventArgs e)
{
try
{
int Group = int.Parse(TxtGroup.Text);
int Number = int.Parse(TxtNumber.Text);
Groups.AddNumberToGroup(Number, Group);
TxtOutput.Text = Groups.GetString();
}
catch//(Exception ex)
{
//Exception handling here
}
}
Related
E.g. If we have an array [1,2,3,4,6,7,8] then 1 then 2 then 3 then 4 are all consecutive but 6 is not, so that's the first non-consecutive number.
If the whole array is consecutive then return null .
The array will always have at least 2 elements 1 and all elements will be numbers. The numbers will also all be unique and in ascending order. The numbers could be positive or negative and the first non-consecutive could be either too. please help me finish this code i am new in programming. My code:
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
namespace _2katas
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
private void button1_Click(object sender, EventArgs e)
{
var input = this.txtInput.Text;
var numarray = input.Split(',');
int firstValue = Convert.ToInt32(numarray[0]);
for (var i = 0; i < numarray.Length; i++)
{
if (Convert.ToInt32(numarray[i]) - i != firstValue)
{
lblPrint.Text = "";
}
else
{
lblPrint.Text = "";
}
if (this.rdbConsecutive.Checked == true)
{
lblKataRunning.Text = "Consecutive";
}
else if (this.rdbStripCleaning.Checked == true)
{
lblKataRunning.Text = "Strip Cleaning";
}
}
}
}
}
Let's extract a method:
Find the first element of an array that is not consecutive ...
If the whole array is consecutive then return null
We can implement it like this:
private static string FirstInconsecutive(string data) {
var array = data.Split(',');
if (array.Length <= 0)
return null; //TODO: what shall we return on empty array?
if (!int.TryParse(array[0], out int delta))
return array[0];
for (int i = 1; i < array.Length; ++i)
if (!int.TryParse(array[i], out int value) || value - i != delta)
return array[i];
return null;
}
Usage:
string result = FirstInconsecutive(txtInput.Text);
Please note int.TryParse which helps to return the right answer "ABC" on an input like "1, 2, 3, ABC, 4, 6, 7, 8" (user input txtInput.Text can contain any string)
A linq solution just for the fun of it:
static int? FindFirstNonConsecutive(IEnumerable<int> arr)
{
var nonConsecutiveInfo =
arr.Select((i, index) => new {Index = index, Delta = i - index})
.FirstOrDefault(t => t.Delta != arr.First());
return nonConsecutiveInfo?.Delta + nonConsecutiveInfo?.Index;
}
Note that this will only work finding non consecutive numbers in ascending order as per requirements.
Two numbers are not consecutive if the left ones + 1 <> the right one.
Check with something like this, note that you have to change your boundary checks:
for (var i = 0; i < numarray.Length - 1; i++)
{
if (Convert.ToInt32(numarray[i]) + 1 != Convert.ToInt32(numarray[i+1]))
Update your condition as below for loop and it will work. I would suggest you to have separate function so that it could be reusable if needed elsewhere in code.
Here start your loop from i = 1 and compare numarray[i-1] + 1 != numarray[i] values.
You can convert your sting[] to int[] with var numarray = input.Split(',').Select(x => Convert.ToInt32(x)).ToArray(); and use it with IsConsecutive(numarray) as per button1_Click code.
You can get first non-consecutive value with minor modification in return type and return statement as shown in GetFirstNonConsecutiveValue().
public bool IsConsecutive(int[] numarray)
{
for (int i = 1; i < numarray.Length; i++)
{
if (numarray[i-1] + 1 != numarray[i])
{
return false;
}
}
return true;
}
public int? GetFirstNonConsecutiveValue(int[] numarray)
{
for (int i = 1; i < numarray.Length; i++)
{
if (numarray[i-1] + 1 != numarray[i])
{
return numarray[i];
}
}
return null;
}
private void button1_Click(object sender, EventArgs e)
{
var input = this.txtInput.Text;
var numarray = input.Split(',').Select(x => Convert.ToInt32(x)).ToArray();
var nonConsecutiveValue = GetFirstNonConsecutiveValue(numarray);
if (nonConsecutiveValue != null)
{
// nonConsecutiveValue is first non consecutive value.
}
else
{
// sequence is consecutive.
}
}
One way to go.
string rawData = "1,2,3,4,6,7,8,9";
IEnumerable<int> data = rawData.Split(',').Select(v => Convert.ToInt32(v));
IEnumerable<int> all = Enumerable.Range(data.Min(), data.Max() - data.Min() + 1);
IEnumerable<int> diff = all.Except(data);
if (diff.Count() == 0)
{
return null;
}
return data.ElementAt(all.ToList().IndexOf(diff.First()))
NB Not thoroughly tested.
Just test diff for being empty to get the numbers are consecutive
I am making a tic tac toe game and I am making it to be unbeatable
but first I have to let the computer know the rules.
I'm stuck in a step that is => when it's the computer's turn and we have just started the game so no win case so it's up to the computer to generate a random number that will be the computer's choice ( the block where he mark X or O )
so I need it to generate a number from 1 to 9 but by excluding the already used blocks ( numbers ).
I tried doing that by making a list and adding a number every time the human player used a block but I can't find a way to use those numbers from the list as exclusion for the random choice of the computer.
Here is what I tried and thnx in advance:
//random
List<int> cas = new List<int>();
if (c1 == true)
{
cas.Add(1);
}
if (c2 == true)
{
cas.Add(2);
}
if (c3 == true)
{
cas.Add(3);
}
if (c4 == true)
{
cas.Add(4);
}
if (c5 == true)
{
cas.Add(5);
}
if (c6 == true)
{
cas.Add(6);
}
if (c7 == true)
{
cas.Add(7);
}
if (c8 == true)
{
cas.Add(8);
}
if (c9 == true)
{
cas.Add(9);
}
for (int i = 0; i < cas.Count; i++)
{
random_except_list(cas[]);
}
public static int random_except_list(int[] x)
{
Random r = new Random();
int result = r.Next(1, 9 - );
for (int i = 0; i < x.Length; i++)
{
if (result < x[i])
return result;
result++;
}
return result;
}
Lets have possible places to use:
List<int> possible = Enumerable.Range(1,9).ToList(); // create a list and add 1-9
and used places:
List<int> used = new List<int>();
Random rnd = new Random();
Now everytime we generate a random number in the range of possible list count as index and remove it from there and move it to used:
int index = rnd.Next(0, possible.Count);
used.Add(possible[index]);
possible.RemoveAt(index);
for user its just enough to check if it exists in the used so the acceptable number should be:
!used.Any(x=> x== NumberUserHaveChosen)
So the first time the random number can be 0-8 (as possible.Count==9) and take from it at random index.
the second time the random number can be 0-7 (as possible.Count==8) and take from it at random index.
and so on... while the possible.Count != 0
in this case there is no need to generate random numbers several times that finally it won't exist in our used List.
Several years ago I was working on a Sudoku algorithm, and what I was trying to achieve was to generate a valid solved sudoku table in minimum time possible, i get to the conclusion that I should replace the algorithm that each time I generate a number I have to check some lists to make sure the number was not generated before, as count of numbers were increasing these comparisons would become more and more. for example when only the number 4 is remaining, I should generate random numbers till I get 4. so I used this approach and the result was amazing.
I think you should do something like this:
public static int random_except_list(List<int> x)
{
Random r = new Random();
int result = 0;
while (true)
{
result = r.Next(1, 10);
if (!x.Contains(result))
return result;
}
}
Just trying to use what you have written (more or less), but changing the method to take a List<int> which is what you are building, I would write the method using LINQ like this (except I would create a static Random variable and keep it between calls):
public static int random_except_list(List<int> x) => Enumerable.Range(1, 9).Where(n => !x.Contains(n)).ToList()[new Random().Next(0, 9 - x.Count)];
However, you can implement the same idea in a more explicit way using procedural code:
public static int random_except_list_explicit(List<int> x) {
// First, generate a list of possible answers by skipping the except positions in x
var possibles = new List<int>();
for (int i = 1; i <= 9; i++)
if (!x.Contains(i))
possibles.Add(i);
// now pick a random member of the possible answers and return it
return possibles[new Random().Next(0, possibles.Count)];
}
I believe it is better to work with positions left. So user or computer select from all open positions:
using System;
using System.Collections.Generic;
class app
{
public static int random_except_list(List<int> openPositions)
{
Random r = new Random();
int index = r.Next(openPositions.Count - 1);
int result = openPositions[index];
openPositions.RemoveAt(index);
return result;
}
static void Main()
{
List<int> openPositions = new List<int>();
for (int i = 1; i < 10; i++)
{
openPositions.Add(i);
}
bool turn = false;
while (openPositions.Count > 0)
{
foreach (int value in openPositions)
{
Console.Write(value + " ");
}
Console.WriteLine();
if (!turn)
{
while (true)
{
Console.WriteLine("Choose your Position");
ConsoleKeyInfo key = Console.ReadKey();
int num = (int)key.KeyChar - 48;
if (openPositions.Contains(num))
{
openPositions.Remove(num);
Console.WriteLine();
break;
}
else Console.Write(" is not Valid: ");
}
}
else
{
int compPos = random_except_list(openPositions);
Console.WriteLine("Computer choose: " + compPos);
}
turn = !turn;
}
Console.WriteLine("No positions left");
Console.ReadKey();
}
}
I have a List<Keyword> where Keyword class is:
public string keyword;
public List<int> ids;
public int hidden;
public int live;
public bool worked;
Keyword has its own keyword, a set of 20 ids, live by default is set to 1 and hidden to 0.
I just need to iterate over the whole main List to invalidate those keywords whose number of same ids is greater than 6, so comparing every pair, if the second one has more than 6 ids repeated respect to the first one, hidden is set to 1 and live to 0.
The algorithm is very basic but it takes too long when the main list has many elements.
I'm trying to guess if there could be any method I could use to increase the speed.
The basic algorithm I use is:
foreach (Keyword main_keyword in lista_de_keywords_live)
{
if (main_keyword.worked) {
continue;
}
foreach (Keyword keyword_to_compare in lista_de_keywords_live)
{
if (keyword_to_compare.worked || keyword_to_compare.id == main_keyword.id) continue;
n_ids_same = 0;
foreach (int id in main_keyword.ids)
{
if (keyword_to_compare._lista_models.IndexOf(id) >= 0)
{
if (++n_ids_same >= 6) break;
}
}
if (n_ids_same >= 6)
{
keyword_to_compare.hidden = 1;
keyword_to_compare.live = 0;
keyword_to_compare.worked = true;
}
}
}
The code below is an example of how you would use a HashSet for your problem. However, I would not recommend using it in this scenario. On the other hand, the idea of sorting the ids to make the comparison faster still.
Run it in a Console Project to try it out.
Notice that once I'm done adding new ids to a keyword, I sort them. This makes the comparison faster later on.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
namespace KeywordExample
{
public class Keyword
{
public List<int> ids;
public int hidden;
public int live;
public bool worked;
public Keyword()
{
ids = new List<int>();
hidden = 0;
live = 1;
worked = false;
}
public override string ToString()
{
StringBuilder s = new StringBuilder();
if (ids.Count > 0)
{
s.Append(ids[0]);
for (int i = 1; i < ids.Count; i++)
{
s.Append(',' + ids[i].ToString());
}
}
return s.ToString();
}
}
public class KeywordComparer : EqualityComparer<Keyword>
{
public override bool Equals(Keyword k1, Keyword k2)
{
int equals = 0;
int i = 0;
int j = 0;
//based on sorted ids
while (i < k1.ids.Count && j < k2.ids.Count)
{
if (k1.ids[i] < k2.ids[j])
{
i++;
}
else if (k1.ids[i] > k2.ids[j])
{
j++;
}
else
{
equals++;
i++;
j++;
}
}
return equals >= 6;
}
public override int GetHashCode(Keyword keyword)
{
return 0;//notice that using the same hash for all keywords gives you an O(n^2) time complexity though.
}
}
class Program
{
static void Main(string[] args)
{
List<Keyword> listOfKeywordsLive = new List<Keyword>();
//add some values
Random random = new Random();
int n = 10;
int sizeOfMaxId = 20;
for (int i = 0; i < n; i++)
{
var newKeyword = new Keyword();
for (int j = 0; j < 20; j++)
{
newKeyword.ids.Add(random.Next(sizeOfMaxId) + 1);
}
newKeyword.ids.Sort(); //sorting the ids
listOfKeywordsLive.Add(newKeyword);
}
//solution here
HashSet<Keyword> set = new HashSet<Keyword>(new KeywordComparer());
set.Add(listOfKeywordsLive[0]);
for (int i = 1; i < listOfKeywordsLive.Count; i++)
{
Keyword keywordToCompare = listOfKeywordsLive[i];
if (!set.Add(keywordToCompare))
{
keywordToCompare.hidden = 1;
keywordToCompare.live = 0;
keywordToCompare.worked = true;
}
}
//print all keywords to check
Console.WriteLine(set.Count + "/" + n + " inserted");
foreach (var keyword in set)
{
Console.WriteLine(keyword);
}
}
}
}
The obvious source of inefficiency is the way you calculate intersection of two lists (of ids). The algorithm is O(n^2). This is by the way problem that relational databases solve for every join and your approach would be called loop join. The main efficient strategies are hash join and merge join. For your scenario the latter approach may be better I guess, but you can also try HashSets if you like.
The second source of inefficiency is repeating everything twice. As (a join b) is equal to (b join a), you do not need two cycles over the whole List<Keyword>. Actually, you only need to loop over the non duplicate ones.
Using some code from here, you can write the algorithm like:
Parallel.ForEach(list, k => k.ids.Sort());
List<Keyword> result = new List<Keyword>();
foreach (var k in list)
{
if (result.Any(r => r.ids.IntersectSorted(k.ids, Comparer<int>.Default)
.Skip(5)
.Any()))
{
k.hidden = 1;
k.live = 0;
k.worked = true;
}
else
{
result.Add(k);
}
}
If you replace the linq with just the index manipulation approach (see the link above), it would be a tiny bit faster I guess.
I have a c# class like so
internal class QueuedMinimumNumberFinder : ConcurrentQueue<int>
{
private readonly string _minString;
public QueuedMinimumNumberFinder(string number, int takeOutAmount)
{
if (number.Length < takeOutAmount)
{
throw new Exception("Error *");
}
var queueIndex = 0;
var queueAmount = number.Length - takeOutAmount;
var numQueue = new ConcurrentQueue<int>(number.ToCharArray().Where(m => (int) Char.GetNumericValue(m) != 0).Select(m=>(int)Char.GetNumericValue(m)).OrderBy(m=>m));
var zeroes = number.Length - numQueue.Count;
while (queueIndex < queueAmount)
{
int next;
if (queueIndex == 0)
{
numQueue.TryDequeue(out next);
Enqueue(next);
} else
{
if (zeroes > 0)
{
Enqueue(0);
zeroes--;
} else
{
numQueue.TryDequeue(out next);
Enqueue(next);
}
}
queueIndex++;
}
var builder = new StringBuilder();
while (Count > 0)
{
int next = 0;
TryDequeue(out next);
builder.Append(next.ToString());
}
_minString = builder.ToString();
}
public override string ToString() { return _minString; }
}
The point of the program is to find the minimum possible integer that can be made by taking out any x amount of characters from a string(example 100023 is string, if you take out any 3 letters, the minimum int created would be 100). My question is, is this the correct way to do this? Is there a better data structure that can be used for this problem?
First Edit:
Here's how it looks now
internal class QueuedMinimumNumberFinder
{
private readonly string _minString;
public QueuedMinimumNumberFinder(string number, int takeOutAmount)
{
var queue = new Queue<int>();
if (number.Length < takeOutAmount)
{
throw new Exception("Error *");
}
var queueIndex = 0;
var queueAmount = number.Length - takeOutAmount;
var numQueue = new List<int>(number.Where(m=>(int)Char.GetNumericValue(m)!=0).Select(m=>(int)Char.GetNumericValue(m))).ToList();
var zeroes = number.Length - numQueue.Count;
while (queueIndex < queueAmount)
{
if (queueIndex == 0)
{
var nextMin = numQueue.Min();
numQueue.Remove(nextMin);
queue.Enqueue(nextMin);
} else
{
if (zeroes > 1)
{
queue.Enqueue(0);
zeroes--;
} else
{
var nextMin = numQueue.Min();
numQueue.Remove(nextMin);
queue.Enqueue(nextMin);
}
}
queueIndex++;
}
var builder = new StringBuilder();
while (queue.Count > 0)
{
builder.Append(queue.Dequeue().ToString());
}
_minString = builder.ToString();
}
public override string ToString() { return _minString; }
}
A pretty simple and efficient implementation can be made, once you realize that your input string digits map to the domain of only 10 possible values: '0' .. '9'.
This can be encoded as the number of occurrences of a specific digit in your input string using a simple array of 10 integers: var digit_count = new int[10];
#MasterGillBates describes this idea in his answer.
You can then regard this array as your priority queue from which you can dequeue the characters you need by iteratively removing the lowest available character (decreasing its occurrence count in the array).
The code sample below provides an example implementation for this idea.
public static class MinNumberSolver
{
public static string GetMinString(string number, int takeOutAmount)
{
// "Add" the string by simply counting digit occurrance frequency.
var digit_count = new int[10];
foreach (var c in number)
if (char.IsDigit(c))
digit_count[c - '0']++;
// Now remove them one by one in lowest to highest order.
// For the first character we skip any potential leading 0s
var selected = new char[takeOutAmount];
var start_index = 1;
selected[0] = TakeLowest(digit_count, ref start_index);
// For the rest we start in digit order at '0' first.
start_index = 0;
for (var i = 0; i < takeOutAmount - 1; i++)
selected[1 + i] = TakeLowest(digit_count, ref start_index);
// And return the result.
return new string(selected);
}
private static char TakeLowest(int[] digit_count, ref int start_index)
{
for (var i = start_index; i < digit_count.Length; i++)
{
if (digit_count[i] > 0)
{
start_index = ((--digit_count[i] > 0) ? i : i + 1);
return (char)('0' + i);
}
}
throw new InvalidDataException("Input string does not have sufficient digits");
}
}
Just keep a count of how many times each digit appears. An array of size 10 will do. Count[i] gives the count of digit i.
Then pick the smallest non-zero i first, then pick the smallest etc and form your number.
Here's my solution using LINQ:
public string MinimumNumberFinder(string number, int takeOutAmount)
{
var ordered = number.OrderBy(n => n);
var nonZero = ordered.SkipWhile(n => n == '0');
var zero = ordered.TakeWhile(n => n == '0');
var result = nonZero.Take(1)
.Concat(zero)
.Concat(nonZero.Skip(1))
.Take(number.Length - takeOutAmount);
return new string(result.ToArray());
}
You could place every integer into a list and find all possible sequences of these values. From the list of sequences, you could sort through taking only the sets which have the number of integers you want. From there, you can write a quick function which parses a sequence into an integer. Next, you could store all of your parsed sequences into an array or an other data structure and sort based on value, which will allow you to select the minimum number from the data structure. There may be simpler ways to do this, but this will definitely work and gives you options as far as how many digits you want your number to have.
If I'm understanding this correctly, why don't you just pick out your numbers starting with the smallest number greater than zero. Then pick out all zeroes, then any remaining number if all the zeroes are picked up. This is all depending on the length of your ending result
In your example you have a 6 digit number and you want to pick out 3 digits. This means you'll only have 3 digits left. If it was a 10 digit number, then you would end up with a 7 digit number, etc...
So have an algorithm that knows the length of your starting number, how many digits you plan on removing, and the length of your ending number. Then just pick out the numbers.
This is just quick and dirty code:
string startingNumber = "9999903040404"; // "100023";
int numberOfCharactersToRemove = 3;
string endingNumber = string.Empty;
int endingNumberLength = startingNumber.Length - numberOfCharactersToRemove;
while (endingNumber.Length < endingNumberLength)
{
if (string.IsNullOrEmpty(endingNumber))
{
// Find the smallest digit in the starting number
for (int i = 1; i <= 9; i++)
{
if (startingNumber.Contains(i.ToString()))
{
endingNumber += i.ToString();
startingNumber = startingNumber.Remove(startingNumber.IndexOf(i.ToString()), 1);
break;
}
}
}
else if (startingNumber.Contains("0"))
{
// Add any zeroes
endingNumber += "0";
startingNumber = startingNumber.Remove(startingNumber.IndexOf("0"), 1);
}
else
{
// Add any remaining numbers from least to greatest
for (int i = 1; i <= 9; i++)
{
if (startingNumber.Contains(i.ToString()))
{
endingNumber += i.ToString();
startingNumber = startingNumber.Remove(startingNumber.IndexOf(i.ToString()), 1);
break;
}
}
}
}
Console.WriteLine(endingNumber);
100023 starting number resulted in 100 being the end result
9999903040404 starting number resulted in 3000044499 being the end result
Here's my version to fix this problem:
DESIGN:
You can sort your list using a binary tree , there are a lot of
implementations , I picked this one
Then you can keep track of the number of the Zeros you have in your
string Finally you will end up with two lists: I named one
SortedDigitsList and the other one ZeroDigitsList
perform a switch case to determine which last 3 digits should be
returned
Here's the complete code:
class MainProgram2
{
static void Main()
{
Tree theTree = new Tree();
Console.WriteLine("Please Enter the string you want to process:");
string input = Console.ReadLine();
foreach (char c in input)
{
// Check if it's a digit or not
if (c >= '0' && c <= '9')
{
theTree.Insert((int)Char.GetNumericValue(c));
}
}
//End of for each (char c in input)
Console.WriteLine("Inorder traversal resulting Tree Sort without the zeros");
theTree.Inorder(theTree.ReturnRoot());
Console.WriteLine(" ");
//Format the output depending on how many zeros you have
Console.WriteLine("The final 3 digits are");
switch (theTree.ZeroDigitsList.Count)
{
case 0:
{
Console.WriteLine("{0}{1}{2}", theTree.SortedDigitsList[0], theTree.SortedDigitsList[1], theTree.SortedDigitsList[2]);
break;
}
case 1:
{
Console.WriteLine("{0}{1}{2}", theTree.SortedDigitsList[0], 0, theTree.SortedDigitsList[2]);
break;
}
default:
{
Console.WriteLine("{0}{1}{2}", theTree.SortedDigitsList[0], 0, 0);
break;
}
}
Console.ReadLine();
}
}//End of main()
}
class Node
{
public int item;
public Node leftChild;
public Node rightChild;
public void displayNode()
{
Console.Write("[");
Console.Write(item);
Console.Write("]");
}
}
class Tree
{
public List<int> SortedDigitsList { get; set; }
public List<int> ZeroDigitsList { get; set; }
public Node root;
public Tree()
{
root = null;
SortedDigitsList = new List<int>();
ZeroDigitsList = new List<int>();
}
public Node ReturnRoot()
{
return root;
}
public void Insert(int id)
{
Node newNode = new Node();
newNode.item = id;
if (root == null)
root = newNode;
else
{
Node current = root;
Node parent;
while (true)
{
parent = current;
if (id < current.item)
{
current = current.leftChild;
if (current == null)
{
parent.leftChild = newNode;
return;
}
}
else
{
current = current.rightChild;
if (current == null)
{
parent.rightChild = newNode;
return;
}
}
}
}
}
//public void Preorder(Node Root)
//{
// if (Root != null)
// {
// Console.Write(Root.item + " ");
// Preorder(Root.leftChild);
// Preorder(Root.rightChild);
// }
//}
public void Inorder(Node Root)
{
if (Root != null)
{
Inorder(Root.leftChild);
if (Root.item > 0)
{
SortedDigitsList.Add(Root.item);
Console.Write(Root.item + " ");
}
else
{
ZeroDigitsList.Add(Root.item);
}
Inorder(Root.rightChild);
}
}
I'm making a dice game. There are 5 dice in which I have all the values for and I need to determine if they make up a full house (3 of one and 2 of another), small straight (1-4, 2-6 or 3-6) or a large straight (1-5, 2-6).
Perhaps the best way to approach this seems to be to use regular expressions.
Does anyone know how I would go about representing these rules in regex?
Or if you can provide a better solution, I'd appreciate that.
Examples:
Full house = 44422 or 11166 or 12212 etc.
Small Straight = 12342 or 54532 etc.
Large Straight = 12345 or 52643 etc.
Edit
Changed wording to highlight that this is my inexperienced opinion.
I know how to achieve this using code, but it seems like such a long winded solution, I'm wondering if there's a more simplistic approach.
I would order all the numbers decreasing and then do some linear criteria matching on each value as you go along it whether it be in an int[] or a string.
Don't know about c#, but in a scripting language I'd take the regexp route. For each side, calculate how many times it occurs in the combination and join the results together. For example, for the combination 12342 the counter string will be 121100. Then match the counter string against these patterns:
/5/ = Five of a kind
/4/ = Four of a kind
/20*3|30*2/ = Full house
/1{5}/ = Large Straight
/[12]{4}/ = Small Straight
/3/ = Three of a kind
/2[013]*2/ = Two pair
/2/ = One pair
You could always do a LINQ aggregate query and count the number of same cards. It would be something similar to (can't test it):
var query = from card in hand
group card by card into groupedCards
select new { Card = groupedCards.Key, Count = groupedCards.Count() };
This way you would easily know if you are dealing with a possible straight (or nothing at all), a pair, a triple, etc.
I am no LINQ expert and I can not test this bit of code at the moment, so I am not sure if it will compile as it is, but it might help you or give you an idea on how to approach the problem at hand.
For example:
if count query = 5 : We are dealing with an empty hand, a flush or a straight => Run particular flush/straight logic.
if count query = 4 : We are dealing with a single pair.
if count query = 3 : We are dealing with a double pair or a triple => if max count =3 then triple
if count query = 2 : We are dealing with a full house / poker. If max count = 4 then poker
I won't comment on how you seek the results, but rather on how you store the result for later lookup.
Since you have only 46656 possible combinations and one byte can store the resulting hand strength, this problem is much easier than a poker hand problem.
You can have a lookup table, consisting of hands as indexes and associated with results (some hands can have multiple results) of that hand. Each byte can store all hand types as a binary representation (hopefully, if not use a short).
Each number you get (eg. 66655 - full house) is a number in base six (1-6), convert it into a base 10 number to get the index in the lookup table.
It will require about 46656 bytes (+ CPU alignment), and can fit into CPU L2 cache. Speed would be enourmous, since the only operation you would need to do is convert number base, and the binary OR operation to extract a hand strenght.
What you will miss is the real strength of a hand. Eg. 66655 is better than 66644. You can easily figure that out - you will need a bigger type to store result into :)
I decided to try myself, and I ended up not using regular expressions -- I thought maybe with the simplicity of the searches required, regular expressions would add more complexity than they save. I used similar logic to another answer though: count the quantity of each number and base all the scoring on that:
enum RollScoreType
{
HighDie,
Pair,
TwoPair,
ThreeOfAKind,
SmallStright,
PairSmallStriaght,
FullHouse,
LargeStraight,
FourOfAKind,
FiveOfAKind
}
struct RollScore
{
public RollScoreType type;
public byte highestDie;
public byte nextHighestDie;
public RollScore(RollScoreType type, byte highest, byte next)
{
this.type = type;
this.highestDie = highest;
this.nextHighestDie = next;
}
public override string ToString()
{
return string.Format("{0} {1} {2}", type, highestDie, nextHighestDie);
}
}
static RollScore GetDiceScore(string input)
{
char[] dice = input.ToCharArray();
byte[] diceCount = new byte[6];
for (int i = 0; i < dice.Length; i++)
diceCount[int.Parse(dice[i].ToString())-1]++;
if (Array.IndexOf(diceCount, (byte)5) >= 0)
return new RollScore(RollScoreType.FiveOfAKind, (byte)(Array.IndexOf(diceCount, (byte)5) + 1), 0);
else if (Array.IndexOf(diceCount, (byte)4) >= 0)
return new RollScore(RollScoreType.FourOfAKind, (byte)(Array.IndexOf(diceCount, (byte)4) + 1), (byte)(Array.IndexOf(diceCount, (byte)1) + 1));
else if (Array.IndexOf(diceCount, (byte)3) >= 0)
{
byte three = (byte)(Array.IndexOf(diceCount, (byte)3) + 1);
if (Array.IndexOf(diceCount, (byte)2) >= 0)
{
byte pair = (byte)(Array.IndexOf(diceCount, (byte)2) + 1);
return new RollScore(RollScoreType.FullHouse, Math.Max(pair, three), Math.Min(pair, three));
}
else
return new RollScore(RollScoreType.ThreeOfAKind, three, (byte)(Array.LastIndexOf(diceCount, (byte)1) + 1));
}
else if (Array.IndexOf(diceCount, (byte)2) >= 0)
{
byte pair = (byte)(Array.IndexOf(diceCount, (byte)2) + 1);
byte highPair = (byte)(Array.LastIndexOf(diceCount, (byte)2) + 1);
if (highPair != pair)
return new RollScore(RollScoreType.TwoPair, highPair, pair);
else
{
byte lowMissingDie = (byte)Array.IndexOf(diceCount, (byte)0);
byte highMissingDie = (byte)Array.LastIndexOf(diceCount, (byte)0);
switch (lowMissingDie)
{
case 0:
if (highMissingDie == 5)
return new RollScore(RollScoreType.PairSmallStriaght, 5, 4);
if (highMissingDie == 1)
return new RollScore(RollScoreType.PairSmallStriaght, 6, 5);
break;
case 4:
return new RollScore(RollScoreType.PairSmallStriaght, 4, 3);
}
return new RollScore(RollScoreType.Pair, pair, (byte)(Array.LastIndexOf(diceCount, (byte)1) + 1));
}
}
byte missingDie = (byte)Array.IndexOf(diceCount, (byte)0);
switch(missingDie)
{
case 0:
return new RollScore(RollScoreType.LargeStraight, 6, 5);
case 1:
return new RollScore(RollScoreType.SmallStright, 6, 5);
case 4:
return new RollScore(RollScoreType.SmallStright, 4, 3);
case 5:
return new RollScore(RollScoreType.LargeStraight, 5, 4);
default:
return new RollScore(RollScoreType.HighDie, 6, (byte)(Array.LastIndexOf(diceCount, (byte)1, 3) + 1));
}
}
I discovered, to my surprise, that the probability of a small straight and a large straight are equal in 5-die rolls. Is that true!?
EDIT: Fixed; I see that when I include small straights that include a pair, the probability of a small straight goes up significantly.
When I think about it, a pair and a small straight should probably use the pair as the highest die and the highest number in the straight as the next highest (in order to [properly compare two rolls that are both a pair with a small straight). If so, I'd replace the block of code for handling PairSmallStraight with this:
switch (lowMissingDie)
{
case 0:
if (highMissingDie == 5)
return new RollScore(RollScoreType.PairSmallStriaght, pair, 5);
if (highMissingDie == 1)
return new RollScore(RollScoreType.PairSmallStriaght, pair, 6);
break;
case 4:
return new RollScore(RollScoreType.PairSmallStriaght, pair, 4);
}
You could try to put your values in to a list. This would allow you to quickly sort your values. And if you add the values that would give you the hand. 111AA = 29 and 222KK = 30. Just an idea.
Here is my Code:
public static int CalculateTotalOfSingles (int pipNumber)
{
//
var myScore = 0;
foreach (var myDie in Roll5Player.MyHand.Dice)
{
{ if (myDie.Pips == pipNumber)
myScore+= pipNumber;
}
}
//
return myScore;
}
public static int CalculateDicePips ()
{
//
var myScore = 0;
foreach (var myDie in Roll5Player.MyHand.Dice)
{
{myScore += myDie.Pips;
}
}
//
return myScore;
}
//
//
//
public static int CalculateTotalOfAllSingles (int pipNumber)
{
//
var myScore = 0;
for (int i = 1; i <= 6; i++)
{
myScore += pipNumber;
}
//
return myScore;
}
public static bool CalculateIsNOfaKind (int count)
{
//
for (var index = 1; index <= 6; index++)
{
var cntr = 0;
foreach (var myDie in Roll5Player.MyHand.Dice)
{
if (myDie.Pips == index)
cntr++;
}
//
if (cntr == count)
{
return true;
;
}
}
//
return false;
}
public static int CalculateNOfaKind (int count )
{
//
var myScore = 0;
for (var index = 1; index <= 6; index++)
{
var cntr = 0;
foreach (var myDie in Roll5Player.MyHand.Dice)
{
if (myDie.Pips == index)
cntr++;
}
//
if (cntr >= count)
{ myScore = CalculateDicePips();
return myScore;
;
}
}
//
return myScore;
}
///
public static int CaluclateFullHouse ( )
{
//
var myScore = 0;
var cntr = new int[6];
for (var index = 1; index <= 6; index++)
{
foreach (var myDie in Roll5Player.MyHand.Dice)
{
if (myDie.Pips == index)
cntr[index-1]++;
}
}
//
var boolCondA = false;
var boolCondB = false;
foreach (var i in cntr)
{
if (i == 3)
{boolCondA = true;
break;
}
}
if (boolCondA)
{
foreach (var i in cntr)
{
if (i == 2)
{boolCondB = true;
break;
}
}
}
//
if (boolCondB )
myScore = CalculateDicePips();
//
//
//
return myScore;
}
public static int CaluclateStraights (int straightCount, int score)
{
//
var tempPip = 0;
var myScore = 0;
var isFirstIteration = true;
var cntr = 0;
int[] sortedDice = new int[5];
var sortedDiceLise = new List<int>();
foreach (var myDie in Roll5Player.MyHand.Dice)
{
sortedDiceLise.Add(myDie.Pips);
}
sortedDiceLise.Sort();
foreach (var myDie in sortedDiceLise)
{
//
//
if (!isFirstIteration)
{
if (myDie == tempPip + 1)
cntr++;
}
//
isFirstIteration = false;
tempPip = myDie;
}
if (cntr == straightCount - 1)
{myScore = score;
}
//
//
//
return myScore;
}
public static int CalculateYahtzee ()
{
//
for (var index = 1; index <= 6; index++)
{
var cntr = 0;
foreach (var myDie in Roll5Player.MyHand.Dice)
{
if (myDie.Pips == index)
cntr++;
}
//
if (cntr == 5)
{
return 50;
;
}
}
//
return 0;
}