Is it safe to reuse a SqlDataRecord? - c#

When implementing table-valued parameters, one of the most common ways to generate an IEnumerable<SqlDataRecord> for use by the parameter is code like this (e.g., https://stackoverflow.com/a/10779567/18192 ):
public static IEnumerable<SqlDataRecord> Rows(List<int> simpletable)
{
var smd = new []{ new SqlMetaData("id", SqlDbType.Int)};
var sqlRow = new SqlDataRecord(smd);
foreach (int i in simpletable)
{
sqlRow.SetInt32(0, i);
yield return sqlRow;
}
}
//...
var param = sqlCmd.Parameters.AddWithValue("#retailerIDs", Rows(mydata));
param.SqlDbType = SqlDbType.Structured;
param.TypeName = "myTypeName";
This code does seem to work. While reusing SqlMetaData does not set off too many alarm bells, declaring the SqlDataRecord outside the foreach loop feels incredibly suspicious to me:
A mutable object is modified and then yielded repeatedly.
As an example of why this is concerning, calling var x = Rows(new[] { 100, 200}.ToList()).ToList().Dump() in LinqPad spits out 200,200. This approach seems to rely on an implementation detail (that rows are processed individually), but I don't see any documentation which promises this.
Is there some mitigating factor which renders this approach safe?

This approach seems to rely on an implementation detail (that rows are
processed individually), but I don't see any documentation which
promises this.
Is there some mitigating factor which renders this approach safe?
As user1249190 points out, Reusing SQLDataRecord is explicitly recommended in the remarks section of https://learn.microsoft.com/en-us/dotnet/api/microsoft.sqlserver.server.sqldatarecord#remarks :
This class is used together with SqlPipe to send result sets to the
client from managed code stored-procedures. When writing common
language runtime (CLR) applications, you should re-use existing
SqlDataRecord objects instead of creating new ones every time.
Creating many new SqlDataRecord objects could severely deplete memory
and adversely affect performance.
Obviously this recommendation does not apply to usage across threads: The documentation also explicitly warns that "Any instance members are not guaranteed to be thread safe."

If you don't need it outside of the foreach loop at all, I don't see why you would want to re-use it.
I found this question Is there a reason for C#'s reuse of the variable in a foreach? which links to this answer in another question Is it better coding practice to define variables outside a foreach even though more verbose? where Jon Skeet answered saying:
There's no advantage to declaring the variables outside the loop, unless you want to maintain their values between iterations.
(Note that usually this makes no behavioural difference, but that's not true if the variables are being captured by a lambda expression or anonymous method.)

void Main()
{
//This code proves that the object is being modified.
Thing prevRow = null;
foreach (var curRow in Rows(new List<int>() { 1, 2, 3 }))
{
Console.WriteLine(curRow);
Console.WriteLine(prevRow);
prevRow = curRow;
}
//Because the object is modified instead of a new object being returned,
// this code does something unexpected; it returns the same object 3
// times! Instead of three unique objects representing the values 1, 2, 3.
var rowsAsList = Rows(new List<int>() { 1, 2, 3 }).ToList();
foreach (var curRow in rowsAsList)
{
Console.WriteLine(curRow);
}
}
public class Thing
{
public int i;
}
IEnumerable<Thing> Rows(List<int> simpletable)
{
// Bad: Reusing the object will cause problems. Comment out the next line to fix the bug.
var sqlRow = new Thing() {i=-1};
foreach (int x in simpletable)
{
// Good: Do this instead! Uncomment the following line to fix the bug.
// var sqlRow = new Thing() {i=x};
sqlRow.i = x;
yield return sqlRow;
}
}

Related

Unable to get separate references during iteration

I am attempting to iterate through the members of a list which implement a particular interface, called ImplementsGraphics and then call the method GetModels and add the return result to a list.
However, whenever I attempt to iterate through my objects, and perform the casting operation, I appear to be overwriting the same reference during my iteration. I have deduced that my problem is something to do with where, when and how I am instantiating my variables, but I can not decipher exactly what the intended behavior is.
I've tried numerous permutations of the following code:
public List<Model> GetModels()
{
var models = new List<Model>();
foreach (Actor actor in registeredActors.Where(n=>n is ImplementsGraphics))
{
var graphicActor = (ImplementsGraphics)actor;
models.AddRange(graphicActor.GetModels());
}
return models;
}
The problem line is var graphicActor = (ImplementsGraphics)actor; but I don't know how to write it such that declaring graphicsActor does not overwrite the existing instances of it stored in models.
Before my first several rounds of troubleshooting, I had
public List<Model> GetModels()
{
var models = new List<Model>();
foreach (Actor actor in registeredActors)
{
if((ImplementsGraphics)actor != null)
models.AddRange(((ImplementsGraphics)actor).GetModels());
}
return models;
}
Which I expected to work, as I had thought actor was safe across iteration, but apparently not.
Desired Behavior:
Return a list, which is all the return results of GetModels() for ever Actor in RegisteredActors which implements ImplementsGraphics
Actual Behavior:
Returns a list, which is the same return value repeated for each Actor in Registered Actor, which implements ImplementsGraphics.
EDIT:
In the class StaticActor which is a child of Actor and implements ImplementsGraphics its defined as follows:
public List<Model> GetModels()
{
foreach (ModelMesh mesh in model.Meshes)
{
foreach (BasicEffect effect in mesh.Effects)
{
effect.World = this.Transform.WorldMatrix;
}
}
return new List<Model> { Model };
}
Additonally, I have tried two other approaches which also failed. A for loop, which itereated through all of RegisteredActors, and checked if they implemented ImplementsGraphics, explicitly calling them by their index within RegisteredActors
And a LINQ query, which went
var models = RegisteredActors.Where(n=>n is ImplementsGraphics).SelectMany(n=>((ImplementsGraphics)n).GetModels())
EDIT 2:
The deinfitions of my classes are largely irrelevant, if you want a reproducable example of the behaviour I'm having trouble with, here is a far simpler example.
class MyClass
{
MyOtherClass foo = new MyOtherClass();
int bar = 0;
MyOtherClass GetOtherClass()
{
foo.bar = bar;
return foo;
}
}
class MyOtherClass
{
int bar = 0;
}
List<MyClass> MyCollection = new List<MyClass> {new MyClass(bar = 1), new MyClass(bar = 2), new Myclass(bar = 3)};
List<MyOtherClass> MyOtherCollection = new List<MyOtherClass>();
foreach(MyClass member in MyCollection)
{
MyOtherCollection.Add(member.GetOtherClass());
}
If you were to execute the above code, I expect that the value of MyOtherCollection's bar properties would be: 1, 2, 3
However, the actual result is that:
During the first iteration the values are 1
During the second iteration the values are 2, 2
During the third iteration the values are 3, 3, 3
I would appear, since none of the provided code states, only implies, that you are attempting to reuse a reference to single Model instance to draw multiple objects. Then you are adding multiple references of the same instance to the List.
The solution may be as simple as removing the static modifier from all Model variables and/or container objects.
Normally, the solution would be to create a Deep Copy of the object when it is added to the List, however, it is not directly possible to do this in XNA *1. (not that you would want to)
It would be better to allow each Actor, or StaticActor, object to directly pass its own Model(s) through the GetModels() method in the interface implementation, instead of using the additional class MyOtherClass.
*1. XNA does not expose a public constructor for the Model class. It is possible to do this using reflection. In MonoGame, there is a public Constructor available.
I tend to split my derived Classes and subsequent Lists based on properties like "StaticCollidables","DrawableStaticCollidables" and "DrawableMovingCollidables"...
This technique may require more upfront coding(and therefore is not as "elegant"), but, it is more efficient in terms of memory overhead(8 bytes + (4(32 bit) or 8(64 bit) bytes depending on sizeof(Object)) per List) and CPU overhead(no casting or is).
If you are attempting to reuse the same model, but place it in different locations, use the DrawInstancedPrimitives method using the VertexBuffers contained within each Mesh of the model.
Please comment on which of the above solutions worked for you(if any). If I have missed something please let me know, so I can correct the answer.

Initialize nested Object from a list

I have a list of integers (Levels). I want to initialize a nested Object of Filter called myFilter as below(Filter is a class with two properties: Value and NextFilter):
var myFilter = new Fliter{
Value = Levels[0],
NextFilter = new Filter{
Value = Levels[1],
NextFilter = new Filter{
Value = Levels[2],
NextFilter = new Filter{
Value = Levels[n],
NextFilter = null
}
}
}
}
Level's count is not static and depends on the input list (I have a multi select list that generates Level)
How can I do that?
This is a classic event for using - the technique of a method that calls itself:
public static Filter CreateFilter(List<int> values) => values.Any() ? new Filter //If the list contains elements, create the filter
{
Value = values.First(), //assign the first item of the values to the value property
NextFilter = CreateFilter(values.Skip(1).ToList()) //Create the rest of the nested object with the rest of the values
} : null; //If there aren't any items left in the list, return null and stop the recursion
You could of course do it in the constructor as well:
public Filter(List<int> values)
{
if (!values.Any()) return;
Value = values.First();
NextFilter = values.Count > 1 ? new Filter(values.Skip(1).ToList()) : null;
}
For more information about recursion, take a look at this: https://www.dotnetperls.com/recursion, for more information on nested classes read through this: https://www.dotnetperls.com/nested-class.
A few more information on recursion:
You can actually achieve everything through recursion - you don't even need loops. That's the reason why in languages like Haskell loops don't exist.
The simplest recursive function is:
public static void EndlessLoop()
{
//Loop body
EndlessLoop();
}
However, even Resharper suggests to convert it to a loop:
Another example, if you want to get the sum of a list you could do:
public static int Sum(List<int> summands) => summands.Count > 0
? summands.First() + Sum(summands.Skip(1).ToList())
: 0;
But those examples aren't useful in C#, as C# isn't a functional programming language, which causes recursion to be slower than loops. Furthermore recursion often causes a StackOverflowException (fitting to this site). If you run the endless loop recursion, it doesn't even take a second till your stack is full.
The reason for this is, that C# adds the address, from which a method got called, to the stack. If a method is called very often (and in 1 second a lot of recursive calls are made) a lot of addresses are added to the stack, so that it overflows.
However I still think, even though those examples aren't useful in c#, that it's quite useful to be able to handle recursion. Recursion is for example the only way to explore a directory structure, for getting for example all files:
public static List<FileInfo> GetAllFiles(DirectoryInfo directory) => directory.GetFiles()
.Concat(directory.GetDirectories().SelectMany(GetAllFiles))
.ToList();
And, as you experienced, it's the only way to fill a nested class from a list properly.
Just make a constructor of Filter, that will get Levels array as a parameter, that will set it's Value as level[0], and init NextFilter = new Filter(level.Skip(1)). Something like that. And it will recursively initialize your object.

Should this list initializer behavior be reported as bug in the Visual Studio C# Compiler?

First of all I will say that I've changed my design and no longer need that but getting a good answer for that will still be nice
I have the following class, ListContainer, in my code (The attached codes are all mcve):
class ListContainer
{
public object ContainedList
{
get; private set;
}
public int Value
{
get; private set;
}
public ListContainer(object list, int value)
{
ContainedList = list;
Value = value;
}
}
And in some other class in my code I have a List<ListContainer> and I need each ListContainer to contain this List<ListContainer>, so I can implement it like that:
//Field in the class
List<ListContainer> mContainers = null;
//In the constructor:
mContainers = new List<ListContainer>();
mContainers.Add(new ListContainer(mContainers, SOME_CONST));
mContainers.Add(new ListContainer(mContainers, SOME_OTHER_CONST));
Than it works fine, but when I've tried to use list initializer:
//Field in the class
List<ListContainer> mContainers = null;
//In the constructor:
mContainers = new List<ListContainer>
{
new ListContainer(mContainers, SOME_CONST),
new ListContainer(mContainers, SOME_OTHER_CONST)
}
You would expect the results to be equivalent but in reality the result looks like that:
mContainers
[0] - ListContainer
ContainedList = null
Value = SOME_CONST
[1] - ListContainer
ContainedList = null
Value = SOME_OTHER_CONST
Seeing this results I've inspected the output MSIL of this C# compilation and seen the following code:
Now, this explains why the problem occurs, and I've even checked out in the CSharp Language Specification document and this is the defined behavior:
A List can be created and initialized as follows:
var contacts = new List<Contact> {
new Contact {
Name = "Chris Smith",
PhoneNumbers = { "206-555-0101", "425-882-8080" }
},
new Contact {
Name = "Bob Harris",
PhoneNumbers = { "650-555-0199" }
}
};
which has the same effect as
var __clist = new List<Contact>();
Contact __c1 = new Contact();
__c1.Name = "Chris Smith";
__c1.PhoneNumbers.Add("206-555-0101");
__c1.PhoneNumbers.Add("425-882-8080");
__clist.Add(__c1);
Contact __c2 = new Contact();
__c2.Name = "Bob Harris";
__c2.PhoneNumbers.Add("650-555-0199");
__clist.Add(__c2);
var contacts = __clist;
where __clist, __c1 and __c2 are temporary variables that are otherwise invisible and inaccessible.
So obviously this behaviour is intended. Is there a good reason everything is done on the temporary variable and not on the original one? since it seems like a wrong behaviour to me.
The reason is to avoid race conditions with concurrent threads accessing the original variable where you would add your elements. An inconsistency would appear if a thread accesses the variable while not all elements are added to it yet.
Two threads accessing the same variable would therefore get an inconsistent list, with different elements in it.
This would not come as a shock if the elements are added on different lines, but since you use an object initializer, it is normal to perceive the object as directly initialized with all its elements in it, hence the need of a temporary, invisible, variable.
Is there a good reason everything is done on the temporary List and not on the original one?
There is no original list:
var __clist = new List<Contact>();
// …
__clist.Add(__c1);
// …
__clist.Add(__c2);
var contacts = __clist;
Only one list is ever created. What you probably mean is that it’s done on a temporary variable instead of the original variable, but that has no practical effect—other than probably being easier to implement. This is especially true if you think about that collection initialization is not limited to the context of variable assignments:
SomeMethodCall(new List<int>() { 1, 2, 3 });
Since there is no reference to that list, the simplest solution to implement this is just to use a temporary variable that holds the list, and put that variable at the place of the initializer then.
What’s also important about this is that the old value is completely overwritten. So in your mContainers = new List<ListContainer>, the old value of mContainers is never being looked at for the purpose of the initializer syntax.
It’s probably a good idea to think about the collection initialization as an “atomic” operation. The list only exists (at least to you) once the whole initializer completes. So you cannot reference itself from within the initializer.
Assignments are first evaluated on the right side of the = and then the assignment takes place. So mContainers is still null.

Parallel.ForEach and IGrouping source item issue

I am trying to parallelize a query with a groupby statement in it. The query is similar to
var colletionByWeek = (
from item in objectCollection
group item by item.WeekStartDate into weekGroups
select weekGroups
).ToList();
If I use Parallel.ForEach with shared variable like below, it works fine. But I don't want to use shared variables in parallel query.
var pSummary=new List<object>();
Parallel.ForEach(colletionByWeek, week =>
{
pSummary.Add(new object()
{
p1 = week.First().someprop,
p2= week.key,
.....
});
}
);
So, I have changed the above parallel statement to use local variables. But the compiler complains about the source type <IEnumerable<IGrouping<DateTime, object>> can not be converted into System.Collections.Concurrent.OrderablePartitioner<IEnumerable<IGrouping<DateTime, object>>.
Am I giving a wrong source type? or is this type IGouping type handled differently? Any help would be appreciated. Thanks!
Parallel.ForEach<IEnumerable<IGrouping<DateTime, object>>, IEnumerable<object>>
(spotColletionByWeek,
() => new List<object>(),
(week, loop, summary) =>
{
summary.Add(new object()
{
p1 = week.First().someprop,
p2= week.key,
.....
});
return new List<object>();
},
(finalResult) => pSummary.AddRange(finalResult)
);
The type parameter TSource is the element type, not the collection type. And the second type parameter represents the local storage type, so it should be List<T>, if you want to Add() to it. This should work:
Parallel.ForEach<IGrouping<DateTime, object>, List<object>>
That's assuming you don't actually have objects there, but some specific type.
Although explicit type parameters are not even necessary here. The compiler should be able to infer them.
But there are other problems in the code:
you shouldn't return new List from the main delegate, but summary
the delegate that processes finalResult might be executed concurrently on multiple threads, so you should use locks or a concurrent collection there.
I'm going to skip the 'Are you sure you even need to optimize this' stage, and assume you have a performance issue which you hope to solve by parallelizing.
First of all, you're not doing yourself any favors trying to use Parallel.Foreach<> for this task. I'm pretty sure you will get a readable and more optimal result using PLINQ:
var random = new Random();
var weeks = new List<Week>();
for (int i=0; i<1000000; i++)
{
weeks.Add(
new Week {
WeekStartDate = DateTime.Now.Date.AddDays(7 * random.Next(0, 100))
});
}
var parallelCollectionByWeek =
(from item in weeks.AsParallel()
group item by item.WeekStartDate into weekGroups
select new
{
p1 = weekGroups.First().WeekStartDate,
p2 = weekGroups.Key,
}).ToList();
It's worth noting that there is some overhead associated with parallelizing the GroupBy operator, so the benefit will be marginal at best. (Some crude benchmarks hint at a 10-20% speed up)
Apart from that, the reason you're getting a compile error is because the first Type parameter is supposed to be an IGrouping<DateTime, object> and not an IE<IG<..,..>>.

c# modifying structs in a List<T>

Short question: How can I modify individual items in a List? (or more precisely, members of a struct stored in a List?)
Full explanation:
First, the struct definitions used below:
public struct itemInfo
{
...(Strings, Chars, boring)...
public String nameStr;
...(you get the idea, nothing fancy)...
public String subNum; //BTW this is the element I'm trying to sort on
}
public struct slotInfo
{
public Char catID;
public String sortName;
public Bitmap mainIcon;
public IList<itemInfo> subItems;
}
public struct catInfo
{
public Char catID;
public String catDesc;
public IList<slotInfo> items;
public int numItems;
}
catInfo[] gAllCats = new catInfo[31];
gAllCats is populated on load, and so on down the line as the program runs.
The issue arises when I want to sort the itemInfo objects in the subItems array.
I'm using LINQ to do this (because there doesn't seem to be any other reasonable way to sort lists of a non-builtin type).
So here's what I have:
foreach (slotInfo sInf in gAllCats[c].items)
{
var sortedSubItems =
from itemInfo iInf in sInf.subItems
orderby iInf.subNum ascending
select iInf;
IList<itemInfo> sortedSubTemp = new List<itemInfo();
foreach (itemInfo iInf in sortedSubItems)
{
sortedSubTemp.Add(iInf);
}
sInf.subItems.Clear();
sInf.subItems = sortedSubTemp; // ERROR: see below
}
The error is, "Cannot modify members of 'sInf' because it is a 'foreach iteration variable'".
a, this restriction makes no sense; isn't that a primary use of the foreach construct?
b, (also out of spite) what does Clear() do if not modify the list? (BTW, the List does get cleared, according to the debugger, if I remove the last line and run it.)
So I tried to take a different approach, and see if it worked using a regular for loop. (Apparently, this is only allowable because gAllCats[c].items is actually an IList; I don't think it will allow you to index a regular List this way.)
for (int s = 0; s < gAllCats[c].items.Count; s++)
{
var sortedSubItems =
from itemInfo iInf in gAllCats[c].items[s].subItems
orderby iInf.subNum ascending
select iInf;
IList<itemInfo> sortedSubTemp = new List<itemInfo>();
foreach (itemInfo iInf in sortedSubItems)
{
sortedSubTemp.Add(iInf);
}
//NOTE: the following two lines were incorrect in the original post
gAllCats[c].items[s].subItems.Clear();
gAllCats[c].items[s].subItems = sortedSubTemp; // ERROR: see below
}
This time, the error is, "Cannot modify the return value of 'System.Collections.Generic.IList.this[int]' because it is not a variable." Ugh! What is it, if not a variable? and when did it become a 'return value'?
I know there has to be a 'correct' way to do this; I'm coming to this from a C background and I know I could do it in C (albeit with a good bit of manual memory management.)
I searched around, and it seems that ArrayList has gone out of fashion in favor of generic types (I'm using 3.0) and I can't use an array since the size needs to be dynamic.
Looking at the for-loop approach, the reason (and solution) for this is given in the documentation for the compilation error:
An attempt was made to modify a value
type that is produced as the result of
an intermediate expression but is not
stored in a variable. This error can
occur when you attempt to directly
modify a struct in a generic
collection.
To modify the struct, first assign it
to a local variable, modify the
variable, then assign the variable
back to the item in the collection.
So, in your for-loop, change the following lines:
catSlots[s].subItems.Clear();
catSlots[s].subItems = sortedSubTemp; // ERROR: see below
...into:
slotInfo tempSlot = gAllCats[0].items[s];
tempSlot.subItems = sortedSubTemp;
gAllCats[0].items[s] = tempSlot;
I removed the call to the Clear method, since I don't think it adds anything.
The problem you are having in your foreach is that structs are value types, and as a result, the loop iteration variable isn't actually a reference to the struct in the list, but rather a copy of the struct.
My guess would be the compiler is forbidding you change it because it most likely would not do what you expect it to anyway.
subItems.Clear() is less of a problem, because altho the field may be a copy of the element in the list, it is also a reference to the list (shallow copy).
The simplest solution would probably be to change from a struct to a class for this. Or use a completely different approach with a for (int ix = 0; ix < ...; ix++), etc.
The foreach loop doesn't work because sInf is a copy of the struct inside items. Changing sInf will not change the "actual" struct in the list.
Clear works because you aren't changing sInf, you are changing the list inside sInf, and Ilist<T> will always be a reference type.
The same thing happens when you use the indexing operator on IList<T> - it returns a copy instead of the actual struct. If the compiler did allow catSlots[s].subItems = sortedSubTemp;, you'll be modifying the subItems of the copy, not the actual struct. Now you see why the compiler says the return value is not a variable - the copy cannot be referenced again.
There is a rather simple fix - operate on the copy, and then overwrite the original struct with your copy.
for (int s = 0; s < gAllCats[c].items.Count; s++)
{
var sortedSubItems =
from itemInfo iInf in gAllCats[c].items[s].subItems
orderby iInf.subNum ascending
select iInf;
IList<itemInfo> sortedSubTemp = new List<itemInfo>();
foreach (itemInfo iInf in sortedSubItems)
{
sortedSubTemp.Add(iInf);
}
var temp = catSlots[s];
temp.subItems = sortedSubTemp;
catSlots[s] = temp;
}
Yes, this results in two copy operations, but that's the price you pay for value semantics.
The two errors you specified have to do with the fact that you are using structs, which in C# are value types, not reference types.
You absolutely can use reference types in foreach loops. If you change your structs to classes, you can simply do this:
foreach(var item in gAllCats[c].items)
{
item.subItems = item.subItems.OrderBy(x => x.subNum).ToList();
}
With structs this would need to change to:
for(int i=0; i< gAllCats[c].items.Count; i++)
{
var newitem = gAllCats[c].items[i];
newitem.subItems = newitem.subItems.OrderBy(x => x.subNum).ToList();
gAllCats[c].items[i] = newitem;
}
The other answers have better information on why structs work different than classes, but I thought I could help with the sorting part.
If subItems was changed to a concrete List instead of the interface IList, then you'd be able to use the Sort method.
public List<itemInfo> subItems;
So your whole loop becomes:
foreach (slotInfo sInf in gAllCats[c].items)
sInf.subItems.Sort();
This won't require the contents of the struct to be modified at all (generally a good thing). The struct's members will still point to exactly the same objects.
Also, there are very few good reasons to use struct in C#. The GC is very, very good, and you'd be better off with class until you've demonstrated a memory allocation bottleneck in a profiler.
Even more succinctly, if items in gAllCats[c].items is also a List, you can write:
gAllCats[c].items.ForEach(i => i.subItems.Sort());
Edit: you give up too easily! :)
Sort is very easy to customise. For example:
var simpsons = new[]
{
new {Name = "Homer", Age = 37},
new {Name = "Bart", Age = 10},
new {Name = "Marge", Age = 36},
new {Name = "Grandpa", Age = int.MaxValue},
new {Name = "Lisa", Age = 8}
}
.ToList();
simpsons.Sort((a, b) => a.Age - b.Age);
That sorts from youngest to oldest. (Isn't the type inference good in C# 3?)

Categories