How to call abstract class from non parent - c#

I have a non abstract class called 'Player', and an abstract class called 'Score' with a subclass of 'Combination'. Within Combination there is and abstract method used in further subclasses.
How can I call my abstract method from the non-parent method 'Player' without making them static?
// This is the abstract method within Combination,
// it uses the face values from rolled dice to calculate the score.
abstract public int CalculateScore(int[] faceValues);
//Array of 'Score's in Player
private Score[] scores = new Score[10];

You cannot. This is access modifier and it was designed to narrow access to a class. To use it in your case, I suggest to change accessibility from abstract to public of a Score class.

If I understand you correctly, you want to implement CalculateScore in your derived class by accessing the scores field?
Simple answer is, you can't as you designed it that way. private modifier makes sure, only your own class can access the field. If you want derived classes to have access to that field, you have to change your modifier to protected on the scores-field.
If you do not want your derived classes to have access to scores directly, you have to implement methods with at least protected access, that modify the scores-field in a defined way, on the base class.

So your situation:
Player is a normal classs
Score is an abstract class
Combination is an abstract class too that subclasses Score. It contains an abstract method CalculateScore that you want to call from inside the Player class.
Player has an array of Scores
You can check if an element in your Score array is of type Combination then cast it.
if(score[0] is Combination)
{
(score[0] as Combination).CalculateScore(/* arguments here */);
}
You might need to rethink how your classes work though. IMHO, Player shouldn't be the one calculating the scores. Maybe use a ScoreCalculatorService to handle that.

Related

Derived Classes and Protecting Member Data of Base Class

I'm wondering if there is some way to declare a variable that is member data of a base class so that it is not inherited by a class derived from it. I have some member data in my base class that should not be part of objects of the derived class, so I'd like to separate what should be inherited from what should not. Is there some way to do this?
If you're trying to 'hide' data from derived/inherited classes, use private access modifier.
Yes, even though they are inherited, you cannot access them unless they are marked protected or public.
Ric, yes. I think it's just not a feature available in C++. What I'd really like to do is create a base class with member data with some kind of prefix that prevents the data from being inherited by child classes. Something like: noinherit void func1(); or noinherit double x; Where noinherit is just some keyword I made up to define data that should not be inherited by child classes. In a way, I want to be able to determine the genes inherited by the children from the parent, instead of the children just getting the full set of the parent's genes, and simply having a certain phenotype based on which genes are private, and which are public or protected, to use a genetics analogy.

What is difference between initiate a class and inherit a class

I have a three classes A, B, and C shown below
public class A
{
public void add(int i, int k)
{
}
}
public class B:A
{
public void AddInt()
{
add(1, 2);
}
}
public class C
{
public void AddInt()
{
A objA = new A();
objA.add(1, 2);
}
}
We want access the "A" class method Add, there are two ways
1) Initiate the "A" class, then access the Add method
2) Inherit the "A" class, then access the Add method
If both those ways provide the same functionality, then why does C# provide two ways to achieve the same functionality.
What is the difference between initiating a class and inheriting a class?
First off, the word you're looking for is instantiate, not initiate.
What is the difference between instantiating a class and inheriting a class?
Inheritance expresses the "is a kind of" relationship between two classes:
The New York Times is a kind of newspaper.
A giraffe is a kind of animal.
An apple is a kind of fruit.
In each of these cases the first kind of thing is the "more derived" type -- it is more specific -- and the second thing is the "less derived" type, or "base" type. It is more general. More things are fruits than are apples.
In C# when you establish an inheritance relationship between two classes, you get two things:
Assignment compatibility: you can use an expression of the more derived type where an expression of the base type is needed.
Member inheritance: all methods, events, indexers, operators, fields, properties and nested types of the base class are automatically members of the derived class. (Constructors and destructors are not inheritable).
Instantiation is the process of making a new instance of a type.
Here, let me give you a copy of today's New York Times.
Here, let me give you a giraffe.
Here, let me give you an apple.
So in C#:
class Fruit {}
class Apple : Fruit { } // Apple inherits from Fruit
class Program {
static void Main() {
Apple apple = new Apple(); // Instantiating a new Apple
}
}
Make sense?
It's not about C# at all, it's about basic OOP concepts, that C#, in this case, simply manifests, being object oriented and strong typed language.
"Initialization" is a creation of an instance of a given type: A in your case.
Second example is a Polymorphism , where you derive from a given type A, and creating derived type B, is able to access public/protected members of the A class.
The access behaviour is the same in this case, but origin of that is completely different.
you are comparing Humans with food ... right no comparison
Initiating cost you some RAM of your system.
Inheriting lets you enable reuseability of common code
These two ways are available because your add method is public in class A. Change it to protected if you want to use it only in inherited classes. Simply saying inheritance makes all properties and methods except of private ones available in inherited classes. In your case class B is inherited from class A and instance of class B itself would be your instance to call method add on. In class C you simply created an instance of class A and called method add on it. All of this concepts would be much cleaner to you if you'll read about Access Modifiers and Inheritance.
Think of a class as a template, or plan, for how to build something. When you then use the template or plan to build one (think of architect plans for a house, and one of the many houses built from those plans), the words we use to describe this process are "Instantiation" and "Initialization".
You instantiate an instance of the object (build the house) using the class template (architects plan), and then initialize it (paint and decorate the house).
Inheritance, on the other hand, refers to something completely unrelated, in how classes are defined, using another existing class as a foundation or *base*line from which to start the definition of a new class that will extend the foundation or base class. When one class inherits from another, it means that "instances" of the derived class automatically get all the stuff that was defined in the parent base class without having to redefine it in the child.
A class is a type and acts as a template that allows you to create objects of this type. The creation of such objects is also called instantiation. This instantiation process involves allocating memory for this object (allocation) and then initializing this object, i.e. give its fields initial values. The latter is called initialization.
Inheritance is something completely different. Inheritance is about creating a new class (template) by inheriting existing code from a base class (also called superclass, or parent class).
This new derived class (also called subclass or child class) serves as template for the creation of a new type of objects.
The derived class can modify the behavior inherited from its base class and extend its possibilities. Inheritance creates a relation between the classes. Subclasses are assignment compatible with the superclasses above them in the inheritance hierarchy.

How do I solve the issue of inheriting 2 abstract classes in my game?

My problem lies in inheriting the playable character's attributes. I have an abstract class named Being that states that all inheriting classes need to contain attributes like Strength, Dexterity, etc. The player needs to choose a race, e.g. Orc that raises the Strength from 0 to 10. Then the player needs to choose a class, such as brute, that adds 7 more points to the Hero's Strength. As far as I see it, I would be stuck with my Hero class inheriting 2 abstract classes? This is an extract of my Orc class:
public abstract class Orc:Being
{
private int _strength = 10;
//Another question, is it okay to declare an abstract property in my base abstract
//class to force the inheriting class Orc to override the property? I wanted to
//find a way to force subclasses to have strength attributes
public override int Strength
{
get {return _strength;}
set {_strength = value;}
}
}
You can use Composition as a solution for multiple inheritance:
This answer here explains it best: https://stackoverflow.com/a/178368/340128
If your abstract class has only abstract properties, you can just make it an interface instead. This forces implementing classes to provide an implementation, and you can implement as many interfaces as you would like.
Otherwise, I would take a look at the decorator pattern, or the strategy pattern. Both use composition as an alternative to inheritance.
the component pattern may be what you are looking for.
you can have beings contain a race component and a class component (i.e. field), and make the strength field getter return a sum of the race's strength bonus + the class's strength bonus.

Abstract Method in Non Abstract Class

I want to know the reason behind the design of restricting Abstract Methods in Non Abstract Class (in C#).
I understand that the class instance won't have the definition and thus they wont be callable, but when static methods are defined,they are excluded from the instance too. Why abstract methods are not handled that way, any specific reason for the same?
They could be allowed in concrete class and the deriving class can be forced to implement methods, basically that is what, is done in case of abstract methods in an abstract class.
First, I think that what you're asking doesn't logically make sense. If you have an abstract method, it basically means that the method is unfinished (as #ChrisSinclair pointed out). But that also means the whole class is unfinished, so it also has to be abstract.
Or another way to put it: if you had an abstract method on a class that wasn't abstract, that would mean you had a method that cannot be called. But that means the method is not useful, you could remove it and it would all work the same.
Now, I'll try to be more concrete by using an example: imagine the following code:
Animal[] zoo = new Animal[] { new Monkey(), new Fish(), new Animal() };
foreach (Animal animal in zoo)
animal.MakeSound();
Here, Animal is the non-abstract base class (which is why I can put it directly into the array), Monkey and Fish are derived from Animal and MakeSound() is the abstract method. What should this code do? You didn't state that clearly, but I can imagine few options:
You can't call MakeSound() on a variable typed as Animal, you can call it only using a variable typed as one of the derived classes, so this is a compile error.
This is not a good solution, because the whole point of abstract is to be able to treat instances of derived classes as the base class, and still get behaviour that's specific to the derived class. If you want this, just put a normal (no abstract, virtual or override) method into each derived class and don't do anything with the base class.
You can't call MakeSound() on an object whose runtime type is actually Animal, so this is a runtime error (an exception).
This is also not a good solution. C# is a statically typed language and so it tries to catch errors like “you can't call this method” at compile time (with obvious exceptions like reflection and dynamic), so making this into a runtime error wouldn't fit with the rest of the language. Besides, you can do this easily by creating a virtual method in the base class that throws an exception.
To sum up, you want something that doesn't make much sense, and smells of bad design (a base class that behaves differently than its derived classes) and can be worked around quite easily. These are all signs of a feature that should not be implemented.
So, you want to allow
class C { abstract void M(); }
to compile. Suppose it did. What do you then want to happen when someone does
new C().M();
? You want an execution-time error? Well, in general C# prefers compile-time errors to execution-time errors. If you don't like that philosophy, there are other languages available...
I think you've answered your own question, an abstract method isn't defined initially. Therefore the class cannot be instanciated. You're saying it should ignore it, but by definition when adding an abstract method you're saying "every class created from this must implement this {abstract method}" hence the class where you define the abstract class must also be abstract because the abstract method is still undefined at that point.
The abstract class may contain abstract member. There is the only method declaration if any method has an abstract keyword we can't implement in the same class. So the abstract class is incompleted. That is why the object is not created for an abstract class.
Non-abstract class can't contain abstract member.
Example:
namespace InterviewPreparation
{
public abstract class baseclass
{
public abstract void method1(); //abstract method
public abstract void method2(); //abstract method
public void method3() { } //Non- abstract method----->It is necessary to implement here.
}
class childclass : baseclass
{
public override void method1() { }
public override void method2() { }
}
public class Program //Non Abstract Class
{
public static void Main()
{
baseclass b = new childclass(); //create instance
b.method1();
b.method2();
b.method3();
}
}
}
You can achieve what you want using "virtual" methods but using virtual methods can lead to more runtime business logic errors as a developer is not "forced" to implement the logic in the child class.
I think there's a valid point here. An abstract method is the perfect solution as it would "enforce" the requirement of defining the method body in children.
I have come across many many situations where the parent class had to (or it would be more efficient to) implement some logic but "Only" children could implement rest of the logic"
So if the opportunity was there I would happily mix abstract methods with complete methods.
#AakashM, I appreciate C# prefers compile time errors. So do I. And so does anybody. This is about thinking out-of-the-box.
And supporting this will not affect that.
Let's think out of the box here, rather than saying "hurrah" to big boy decisions.
C# compiler can detect and deny someone of using an abstract class directly because it uses the "abstract" keyword.
C# also knows to force any child class to implement any abstract methods. How? because of the use of the "abstract" keyword.
This is pretty simple to understand to anyone who has studied the internals of a programming language.
So, why can't C# detect an "abstract" keyword next to a method in a normal class and handle it at the COMPILE TIME.
The reason is it takes "reworking" and the effort is not worth supporting the small demand.
Specially in an industry that lacks people who think out of the boxes that big boys have given them.
It's still not clear why you would want that, but an alternative approach could be to force derived classes to provide a delegate instance. Something like this
class MyConcreteClass
{
readonly Func<int, DateTime, string> methodImpl;
// constructor requires a delegate instance
public MyConcreteClass(Func<int, DateTime, string> methodImpl)
{
if (methodImpl == null)
throw new ArgumentNullException();
this.methodImpl = methodImpl;
}
...
}
(The signature string MethodImpl(int, DateTime) is just an example, of course.)
Otherwise, I can recommend the other answers to explain why your wish probably isn't something which would make the world better.
So the answers above are correct: having abstract methods makes the class inherently abstract. If you cannot instance part of a class, then you cannot instance the class itself. However, the answers above didn't really discuss your options here.
First, this is mainly an issue for public static methods. If the methods aren't intended to be public, then you could have protected non-abstract methods, which are allowed in an abstract class declaration. So, you could just move these static methods to a separate static class without much issue.
As an alternative, you could keep those methods in the class, but then instead of having abstract methods, declare an interface. Essentially, you have a multiple-inheritance problem as you want the derived class to inherit from two conceptually different objects: a non-abstract parent with public static members, and an abstract parent with abstract methods. Unlike some other frameworks, C# does permit multiple inheritance. Instead, C# offers a formal interface declaration that is intended to fill this purpose. Moreover, the whole point of abstract methods, really, is just to impose a certain conceptual interface.
I have a scenario very similar to what the OP is trying to achieve. In my case the method that I want to make abstract would be a protected method and would only be known to the base class. So the "new C().M();" does not apply because the method in question is not public. I want to be able to instantiate and call public methods on the base class (therefore it needs to be non-abstract), but I need these public methods to call a protected implementation of the protected method in the child class and have no default implementation in the parent. In a manner of speaking, I need to force descendants to override the method. I don't know what the child class is at compile time due to dependency injection.
My solution was to follow the rules and use a concrete base class and a virtual protected method. For the default implementation, though, I throw a NotImplementedException with the error "The implementation for method name must be provided in the implementation of the child class."
protected virtual void MyProtectedMethod()
{
throw new NotImplementedException("The implementation for MyProtectedMethod must be provided in the implementation of the child class.");
}
In this way a default implementation can never be used and implementers of descendant implementations will quickly see that they missed an important step.

C# Abstract Method Inheritance and Hiding Methods Unintentionally

I've got a question about accidentally hiding abstract methods.
I'm creating a basic Entity class as an interface from which to create all other entities in the game I'm working on.
From this Entity class, I have created several derived classes. There are things like MovingEntity, Trigger, Door, etc... Many of these children classes also have children derived from them. For example, MovingEntity has classes like Projectile and EnemyUnit as children.
In my base Entity class, I have methods like Update() and Render() that are abstract, because I want every entity to implement these methods.
Once I get down to the second level, however, -that's- where I hit my question/problem. I'll use the Trigger class, for example. Trigger derives from the base Entity class, but Trigger still has its own children (like TriggerRespawning and TriggerLimitedLifetime). I don't want to instantiate a Trigger object, so I can keep that class abstract - I will only create objects from Trigger's children classes. But what do I do with the abstract methods that Trigger is supposed to implement from Entity?
I thought I could just basically use the same code in Trigger as I did in Entity. Declare the same method, same name, same parameters, and just call it abstract. Then, Trigger's children would be forced to implement the actual functions.
This didn't work, however, because in the Trigger class, my build errors say that I am hiding the abstract methods from the base Entity class.
How can I pass down the idea of forcing the eventual children to implement these abstract methods without making all of the parents in-between implement them? Do I need to use virtual on the first round of children classes?
I haven't been able to find a good answer on this so far, so I decided to break down and ask. Thanks in advance, guys.
Just don't redeclare the methods at all - the eventual concrete classes will have to implement all the abstract methods still unimplemented all the way up the tree:
public abstract class Foo
{
public abstract int M();
}
public abstract class Bar : Foo
{
// Concrete methods can call M() in here
}
public class Baz : Bar
{
public override int M() { return 0; }
}

Categories