Here is my code in doing so but it seems like I could not do other things once it started calling the async function and then the app will not respond. I would like to just run it to the background.
I'm doing a search and in every 3 letters, it will call the api to get datas if have match. Once I have input 3 letters, it then it calls to the API and I could not input more letters because the app is not responding.
How to call the async function and will just run in the background so that I could still search.
void Entry_TextChanged(object sender, TextChangedEventArgs e)
{
var newText = e.NewTextValue;
//once 3 keystroke is visible by 3
if (newText.Length % 3 == 0)
{
//Call the web services
var result = GettingModel(newText);
if (result != null || result != string.Empty)
{
ModelVIN.Text = result;
}
}
}
private string GettingModel(string vinText)
{
var task = getModelForVIN(vinText);
var result = task.Result;
return result.Model;
}
private async Task<VINLookUp> getModelForVIN(string vinText)
{
var deviceId = CrossDeviceInfo.Current.Model;
deviceId = deviceId.Replace(" ", "");
var requestMgr = new RequestManager(deviceId);
var VinData = new VINLookUp();
VinData = await requestMgr.getModelForVIN(vinText);
return VinData;
}
Thanks in advance for the help.
You don't need the GettingModel(string vinText) method.
By calling the Task.Result you are blocking the main thread.
Calling .Result in the UI thread will likely deadlock everything which is what you are experiencing. Use ContinueWith or async void with await.
You can make your Entry_TextChanged async and await the web request so that it doesn't block the UI.
You can even run it on a separate thread and use ContinueWith() if you don't require to make the make user wait for the operation to complete. If you are going that route make sure you use Device.BeginInvookeOnMainThread() to run any code that needs to be run on UI thread.
The better code would be :
private async void Entry_TextChanged(object sender, TextChangedEventArgs e)
{
var newText = e.NewTextValue;
//once 3 keystroke is visible by 3
if (newText.Length % 3 == 0)
{
//Call the web services
var result = await GetModelStringForVIN(newText);
if (string.IsNullOrEmpty(result) == false)
{
ModelVIN.Text = result;
}
}
}
private async Task<string> GetModelStringForVIN(string vinText)
{
var deviceId = CrossDeviceInfo.Current.Model;
deviceId = deviceId.Replace(" ", string.Empty);
var requestMgr = new RequestManager(deviceId);
var VinData = await requestMgr.getModelForVIN(vinText);
return VinData?.Model;
}
The following links would help you understand the concepts better :
Xamarin Async Support Overview
Asynchronous Operations with Xamarin
Related
I'm trying to use System.Net.Http.HttpClient to return the results of a call to a webpage, so that it implements a POST request. I don't really want to perform this asynchronously. My requirement is to wait until all the data is returned before continuing, so ideally I want synchronous method. However, sadly, it is not possible to just use HttpClient that way.
I've declared the following method, which is asynchronous, which takes a URL and key-value pairs to populate $_POST in the PHP:
private async Task<string> PostRequest(string cUrl, params string[] aParams)
{
HttpClient oClient;
Dictionary<string, string> oArgs;
int iA;
FormUrlEncodedContent oContent;
HttpResponseMessage oResponse;
// check we have an event number of parameters
if ((aParams.GetUpperBound(0) % 2) != 1) throw new Exception(
"Non-even number of parameters passed. Parameters are key-value pairs.");
// put the parameters into a dictionary
oArgs = new Dictionary<string, string>();
for (iA = 0; iA < aParams.GetUpperBound(0); iA += 2)
oArgs.Add(aParams[iA], aParams[iA + 1]);
oClient = new HttpClient();
oContent = new FormUrlEncodedContent(oArgs);
oClient.Timeout = new TimeSpan(0, 0, 10);
oResponse = await oClient.PostAsync(cUrl, oContent);
return await oResponse.Content.ReadAsStringAsync();
}
Now, annoyingly this has to be an asynchonous method. Ho hum. Ideally, I'd like to call it thus:
private void button2_Click(object sender, EventArgs e)
{
var cResult = await PostRequest("http://mywebsite.com/mypage.php",
"MagicToken", "12345",
"Method", "GetSomeData");
txt.Text = cResult.ToString();
}
But I have the compile time error:
The 'await' operator can only be used within an async method. Consider marking this method with the 'async' modifier and changing its return type to 'Task'.
What I'm doing above is (obviously) a test. In reality the button that kicks this off is a "Next >" in a wizard. It will use the results to populate a structure with data that other code in the wizard then accesses. I don't the above to occur asynchronously as I don't want other code touching that structure until it is populated.
My question is, how can I wrap a call to PostRequest so that I can wait for all the results to come in (some sort of ...while still processing...wait... loop) and then just return the results of the call, and use that without having to bubble async declarations up through my code?
As a second question, if I have to declare my cmdNext_Click as async, what happens if the user clicks it twice? I specifically want the UI thread to stop until the data is returned and processed.
Edit:
I've tried creating a wrapper function (which is non-async) thus:
private bool PostRequest2(string cUrl, ref string cResponse, params string[] aParams)
{
// This posts a request to the URL, using the parameters passed in aArgs. The response is returned in cResponse.
// cUrl - the URL to POST to
// cResponse - the response returned
// aParams - an even number of parameters, which are key-value pairs. The first of each pair is the name of the item. The second is its value.
int iWaitCount;
try
{
var response = PostRequest(cUrl, aParams);
Console.WriteLine(response);
iWaitCount = 0;
while (!response.IsCompleted)
{
Console.WriteLine("iWaitCount = " + iWaitCount.ToString());
Console.WriteLine("Status = " + response.Status.ToString());
response.Wait(500);
iWaitCount++;
}
cResponse = response.Result;
return true;
}
catch (Exception ex)
{
_g.Errs.Raise(ex);
return false;
}
}
This compiles correctly, but sits in the wait loop indefinitely with response.Status = WaitingForActivation.
There has to be a way to wrap an asynchronouns function in a synchrnous one. The alternative is to have to change all the return types (which are mostly bool - true on success) to Task, which I cannot then use in conditional statements - I have to await them instead. I've realised that this is the fundimental question, and this is a duplicate of: How to call asynchronous method from synchronous method in C#? which refers to await being a zombie virus that infects your code; this appears to be the case.
You can make your button void async (I would maybe return Task instead of void though)
await should mean that your method waits for the PostAsync call to complete.
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/await
The await operator suspends evaluation of the enclosing async method until the asynchronous operation represented by its operand completes.
So this is essentially a synchronous call.
Now if you really don't want that void to be async, here's what I can remember off the top of my head:
In .NET 5+, you can use HttpClient.Send which is synchronous. (takes HttpRequestMessage)
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.send?view=net-5.0
Otherwise, you would need to do a .Result if you wanted to get the response. This type of consumption of async methods has been frowned upon in my experience.
Disable button2 until the operation is completed and use async inside the button2 click event.
change button2_Click to :
private async void button2_Click(object sender, EventArgs e)
{
button2.Enabled = false;
var cResult = await PostRequest("http://mywebsite.com/mypage.php",
"MagicToken", "12345",
"Method", "GetSomeData");
txt.Text = cResult.ToString();
button2.Enabled = true;
}
After much reading, and thank you to those above, I've got a working method now. It's nor perfect, but it works in this scenario where I'm calling one async method at a time, and wait processing to stop until it returns.
PostRequest above works correctly, but it must be declared async and called with await. Within my app, I have a variety of callers of it, which must also be declared async and use await when they call it. An example is:
private async Task<bool> ReadProductPrice()
{
string cCsv = "";
try
{
cProductCode = scSubscriptionType.GetSelectedKey().ToString();
var oResponse = await PostRequest("http://mywebsite.com/mywebpage.php",
"MagicToken", "12345",
"Query", "GetProductPrice",
"ProductCode", cProductCode);
if (oResponse == null) throw new Exception("Could not acquire product price from server. (1)");
cCsv = oResponse.ToString();
moProductPrice = new Dataset(_g);
if (!moProductPrice.ReadFromCsv(cCsv)) throw new Exception("Could not decode server response.");
if (moProductPrice.RecordCount != 1) throw new Exception("Could not acquire product price from server. (2)");
return true;
}
catch (Exception ex)
{
_g.Errs.Raise(ex);
return false;
}
}
This works correctly and populates moProductPrice with the data returned from PostRequest. However, it is async.
I've create a wrapper function thus:
private bool ReadProductPrice2()
{
Task<bool> oTask;
frmWaitForTaskCompletion frm;
try
{
oTask = ReadProductPrice();
frm = new frmWaitForTaskCompletion();
frm.WaitForTaskCompletion(oTask, "Waiting for product price from server...");
return true;
}
catch (Exception ex)
{
_g.Errs.Raise(ex);
return false;
}
}
This passes the Task<bool> returned from ReadProductPrice through to a form. The form contains a Label and a Timer, named lblMessage and tmr, containing the following code:
public partial class frmWaitForTaskCompletion : Form
{
private Task _task;
public frmWaitForTaskCompletion()
{
InitializeComponent();
}
public void WaitForTaskCompletion<TResult>(Task<TResult> oTask, string cMessage)
{
_task = oTask;
lblMessage.Text = cMessage;
this.ShowDialog();
return;
}
private void frmWaitForTaskCompletion_Load(object sender, EventArgs e)
{
tmr.Enabled = true;
}
private void tmr_Tick(object sender, EventArgs e)
{
if (_task.Status == TaskStatus.RanToCompletion)
this.Close();
}
}
The timer is set to an Interval of 1000 so that it shows for enough time for the user to recognise that a popup has occurred and to scan the message.
Ideally, I would like to replace the call to the wait form with this:
while (oTask.Status != TaskStatus.RanToCompletion) Thread.Sleep(100);
And I don't actually understand why this doesn't now work, but recognise that it doesn't; code never continues after this point, despite the fact that the wait form is effectively performing the same check.
In this way, I'm able to stop the await/async propogating up my call stack indefinitely; IMO should be the compiler's job to sort that out, not mine, and it signifcantly breaks the concept of encapsulation. I dislike the fact that I need to show a wait form for a short while, but in this context the user should be aware of the communication that is going on, so it's an ok solution.
You can try doing something like this
private void button2_Click(object sender, EventArgs e)
{
PostRequest(
"http://mywebsite.com/mypage.php",
"MagicToken",
"12345",
"Method",
"GetSomeData"
)
.ContinueWith(async request => {
var cResult = await request;
txt.Text = cResult.ToString();
})
.Wait();
}
I've written a class that asynchronously pings a subnet. It works, however, the number of hosts returned will sometimes change between runs. Some questions:
Am I doing something wrong in the code below?
What can I do to make it work better?
The ScanIPAddressesAsync() method is called like this:
NetworkDiscovery nd = new NetworkDiscovery("192.168.50.");
nd.RaiseIPScanCompleteEvent += HandleScanComplete;
nd.ScanIPAddressesAsync();
namespace BPSTestTool
{
public class IPScanCompleteEvent : EventArgs
{
public List<String> IPList { get; set; }
public IPScanCompleteEvent(List<String> _list)
{
IPList = _list;
}
}
public class NetworkDiscovery
{
private static object m_lockObj = new object();
private List<String> m_ipsFound = new List<string>();
private String m_ipBase = null;
public List<String> IPList
{
get { return m_ipsFound; }
}
public EventHandler<IPScanCompleteEvent> RaiseIPScanCompleteEvent;
public NetworkDiscovery(string ipBase)
{
this.m_ipBase = ipBase;
}
public async void ScanIPAddressesAsync()
{
var tasks = new List<Task>();
m_ipsFound.Clear();
await Task.Run(() => AsyncScan());
return;
}
private async void AsyncScan()
{
List<Task> tasks = new List<Task>();
for (int i = 2; i < 255; i++)
{
String ip = m_ipBase + i.ToString();
if (m_ipsFound.Contains(ip) == false)
{
for (int x = 0; x < 2; x++)
{
Ping p = new Ping();
var task = HandlePingReplyAsync(p, ip);
tasks.Add(task);
}
}
}
await Task.WhenAll(tasks).ContinueWith(t =>
{
OnRaiseIPScanCompleteEvent(new IPScanCompleteEvent(m_ipsFound));
});
}
protected virtual void OnRaiseIPScanCompleteEvent(IPScanCompleteEvent args)
{
RaiseIPScanCompleteEvent?.Invoke(this, args);
}
private async Task HandlePingReplyAsync(Ping ping, String ip)
{
PingReply reply = await ping.SendPingAsync(ip, 1500);
if ( reply != null && reply.Status == System.Net.NetworkInformation.IPStatus.Success)
{
lock (m_lockObj)
{
if (m_ipsFound.Contains(ip) == false)
{
m_ipsFound.Add(ip);
}
}
}
}
}
}
One problem I see is async void. The only reason async void is even allowed is only for event handlers. If it's not an event handler, it's a red flag.
Asynchronous methods always start running synchronously until the first await that acts on an incomplete Task. In your code, that is at await Task.WhenAll(tasks). At that point, AsyncScan returns - before all the tasks have completed. Usually, it would return a Task that will let you know when it's done, but since the method signature is void, it cannot.
So now look at this:
await Task.Run(() => AsyncScan());
When AsyncScan() returns, then the Task returned from Task.Run completes and your code moves on, before all of the pings have finished.
So when you report your results, the number of results will be random, depending on how many happened to finish before you displayed the results.
If you want make sure that all of the pings are done before continuing, then change AsyncScan() to return a Task:
private async Task AsyncScan()
And change the Task.Run to await it:
await Task.Run(async () => await AsyncScan());
However, you could also just get rid of the Task.Run and just have this:
await AsyncScan();
Task.Run runs the code in a separate thread. The only reason to do that is in a UI app where you want to move CPU-heavy computations off of the UI thread. When you're just doing network requests like this, that's not necessary.
On top of that, you're also using async void here:
public async void ScanIPAddressesAsync()
Which means that wherever you call ScanIPAddressesAsync() is unable to wait until everything is done. Change that to async Task and await it too.
This code needs a lot of refactoring and bugs like this in concurrency are hard to pinpoint. My bet is on await Task.Run(() => AsyncScan()); which is wrong because AsyncScan() is async and Task.Run(...) will return before it is complete.
My second guess is m_ipsFound which is called a shared state. This means there might be many threads simultaneously reading and writing on this. List<T> is not a data type for this.
Also as a side point having a return in the last line of a method is not adding to the readability and async void is a prohibited practice. Always use async Task even if you return nothing. You can read more on this very good answer.
What I am trying to do here is loop a listview full of URLs, check if the source code contains a string, if it does then update the UI listview with YES or NO.
I had forgotten about the Parallel.ForEach method, so decided to try it out (I'm not even sure if it's the best solution for this)
Parallel.ForEach(listViewMain.Items.Cast<ListViewItem>(), row =>
{
try
{
string html = Helpers.GetRequest(row.Text);
if (html.Contains(txtBoxFind.Text))
{
row.SubItems[3].Text = "YES";
}
else
{
row.SubItems[3].Text = "NO";
}
} catch(Exception) {
}
});
The process is fairly simple doing it without the Parallel.ForEach but the UI is still locking up, have i implemented it right? Helpers.GetRequest simply returns the raw HTML to be checked, i thought using the Parallel.ForEach would stop the UI locking while processing or have i got it wrong, any help is appreciated.
Before we begin, do note that Parallel.ForEach in itself is a blocking call, so that is why you experience the UI being not responsive.
A good read is Avoid Executing Parallel Loops on the UI Thread from the MS docs:
... the parallel loop blocks the UI thread on which it’s executing until all iterations are complete.
That said, you should use a Task based approach if not dealing with CPU bound work but with I/O bound work. Since you are dealing with network calls you should stick to tasks. Try this:
public async Task DoSomething()
{
// Process the items parallel
await Task.WhenAll(listViewMain.Items.Cast<ListViewItem>().Select(async row =>
{
// wrap the long running call in a async Task
string html = await Task.Run(() => Helpers.GetRequest(row.Text));
// no need for context capturing and invokes, this is running on the UI thread
var containsText = html.Contains(txtBoxFind.Text);
if (containsText)
{
row.SubItems[3].Text = "YES";
}
else
{
row.SubItems[3].Text = "NO";
}
}));
}
It would be even better when you can make Helpers.GetRequest(row.Text) a Task based method, then you could do:
public async Task DoSomething()
{
// Process the items parallel
await Task.WhenAll(listViewMain.Items.Cast<ListViewItem>().Select(async row =>
{
// wrap the long running call in a async Task
string html = await Helpers.GetRequestAsync(row.Text);
// no need for context capturing and invokes, this is running on the UI thread
var containsText = html.Contains(txtBoxFind.Text);
if (containsText)
{
row.SubItems[3].Text = "YES";
}
else
{
row.SubItems[3].Text = "NO";
}
}));
}
but we need to see the code of Helpers.GetRequest(row.Text) to assist you with that.
EDIT
You've shown the code of GetRequest. WebClient is not task based, try HttpClient:
public async Task<string> GetRequestAsync(string url)
{
var html = "";
using (HttpClient wc = new HttpClient())
{
html = await wc.GetStringAsync(url);
}
return html;
}
the Parallel.ForEach is executing on the UI thread (current thread) and it will not provide more performance for you in case of non-blocking UI. If you want to avoid the UI block, you could try using the async methods, for sample:
Task.Run(() => CheckItems());
Given you can implement an async version of the GetRequest method, you could implement an async method to do this, for sample:
public async Task CheckItems()
{
foreach (var row in listViewMain.Items.Cast<ListViewItem>())
{
try
{
string html = await Helpers.GetRequestAsync(row.Text);
if (html.Contains(txtBoxFind.Text))
{
row.SubItems[3].Text = "YES";
}
else
{
row.SubItems[3].Text = "NO";
}
} catch(Exception ex) {
}
}
}
Don't use the Parallel.ForEach() for this. Parallel.ForEach() is used for CPU bound work. Not IO.
I would do something like: (I didn't tested it, might contains some typo's) (used notepad)
So you might use this for the idea:
public async void Button_Click(object sender, EventArg e)
{
await CheckItems(listViewMain.Items.Cast<ListViewItem>());
}
public async Task CheckItems(IEnumerable<ListViewItem> items)
{
// Capture the UI thread synchronization.
var context = SynchronizationContext.Current;
var tasks = new List<Task>();
// create tasks.
foreach (var row in items)
{
tasks.Add(Task.Run(() =>
{
// the lookup on a (probably) threadpool thread
string html = Helpers.GetRequest(row.Text);
// the processing here..
var containsText = html.Contains(txtBoxFind.Text);
// post the result (and touching gui items in the UI thread)
// this.Invoke() is also and might be the best solution.
context.Post(() =>
{
if (containsText)
{
row.SubItems[3].Text = "YES";
}
else
{
row.SubItems[3].Text = "NO";
}
});
}));
}
// wait for them
await Task.WhenAll(tasks);
}
While I was adding some comment, you could also use the this.Invoke() for this (instead of the SynchronizationContext)
gtg.
I have a question regarding Task.WaitAll. At first I tried to use async/await to get something like this:
private async Task ReadImagesAsync(string HTMLtag)
{
await Task.Run(() =>
{
ReadImages(HTMLtag);
});
}
Content of this function doesn't matter, it works synchronously and is completely independent from outside world.
I use it like this:
private void Execute()
{
string tags = ConfigurationManager.AppSettings["HTMLTags"];
var cursor = Mouse.OverrideCursor;
Mouse.OverrideCursor = System.Windows.Input.Cursors.Wait;
List<Task> tasks = new List<Task>();
foreach (string tag in tags.Split(';'))
{
tasks.Add(ReadImagesAsync(tag));
//tasks.Add(Task.Run(() => ReadImages(tag)));
}
Task.WaitAll(tasks.ToArray());
Mouse.OverrideCursor = cursor;
}
Unfortunately I get deadlock on Task.WaitAll if I use it that way (with async/await). My functions do their jobs (so they are executed properly), but Task.WaitAll just stays here forever because apparently ReadImagesAsync doesn't return to the caller.
The commented line is approach that actually works correctly. If I comment the tasks.Add(ReadImagesAsync(tag)); line and use tasks.Add(Task.Run(() => ReadImages(tag))); - everything works well.
What am I missing here?
ReadImages method looks like that:
private void ReadImages (string HTMLtag)
{
string section = HTMLtag.Split(':')[0];
string tag = HTMLtag.Split(':')[1];
List<string> UsedAdresses = new List<string>();
var webClient = new WebClient();
string page = webClient.DownloadString(Link);
var siteParsed = Link.Split('/');
string site = $"{siteParsed[0]} + // + {siteParsed[1]} + {siteParsed[2]}";
int.TryParse(MinHeight, out int minHeight);
int.TryParse(MinWidth, out int minWidth);
int index = 0;
while (index < page.Length)
{
int startSection = page.IndexOf("<" + section, index);
if (startSection < 0)
break;
int endSection = page.IndexOf(">", startSection) + 1;
index = endSection;
string imgSection = page.Substring(startSection, endSection - startSection);
int imgLinkStart = imgSection.IndexOf(tag + "=\"") + tag.Length + 2;
if (imgLinkStart < 0 || imgLinkStart > imgSection.Length)
continue;
int imgLinkEnd = imgSection.IndexOf("\"", imgLinkStart);
if (imgLinkEnd < 0)
continue;
string imgAdress = imgSection.Substring(imgLinkStart, imgLinkEnd - imgLinkStart);
string format = null;
foreach (var imgFormat in ConfigurationManager.AppSettings["ImgFormats"].Split(';'))
{
if (imgAdress.IndexOf(imgFormat) > 0)
{
format = imgFormat;
break;
}
}
// not an image
if (format == null)
continue;
// some internal resource, but we can try to get it anyways
if (!imgAdress.StartsWith("http"))
imgAdress = site + imgAdress;
string imgName = imgAdress.Split('/').Last();
if (!UsedAdresses.Contains(imgAdress))
{
try
{
Bitmap pic = new Bitmap(webClient.OpenRead(imgAdress));
if (pic.Width > minHeight && pic.Height > minWidth)
webClient.DownloadFile(imgAdress, SaveAdress + "\\" + imgName);
}
catch { }
finally
{
UsedAdresses.Add(imgAdress);
}
}
}
}
You are synchronously waiting for tasks to finish. This is not gonna work for WPF without a little bit of ConfigureAwait(false) magic. Here is a better solution:
private async Task Execute()
{
string tags = ConfigurationManager.AppSettings["HTMLTags"];
var cursor = Mouse.OverrideCursor;
Mouse.OverrideCursor = System.Windows.Input.Cursors.Wait;
List<Task> tasks = new List<Task>();
foreach (string tag in tags.Split(';'))
{
tasks.Add(ReadImagesAsync(tag));
//tasks.Add(Task.Run(() => ReadImages(tag)));
}
await Task.WhenAll(tasks.ToArray());
Mouse.OverrideCursor = cursor;
}
If this is WPF, then I'm sure you would call it when some kind of event happens. The way you should call this method is from event handler, e.g.:
private async void OnWindowOpened(object sender, EventArgs args)
{
await Execute();
}
Looking at the edited version of your question I can see that in fact you can make it all very nice and pretty by using async version of DownloadStringAsync:
private async Task ReadImages (string HTMLtag)
{
string section = HTMLtag.Split(':')[0];
string tag = HTMLtag.Split(':')[1];
List<string> UsedAdresses = new List<string>();
var webClient = new WebClient();
string page = await webClient.DownloadStringAsync(Link);
//...
}
Now, what's the deal with tasks.Add(Task.Run(() => ReadImages(tag)));?
This requires knowledge of SynchronizationContext. When you create a task, you copy the state of thread that scheduled the task, so you can come back to it when you are finished with await. When you call method without Task.Run, you say "I want to come back to UI thread". This is not possible, because UI thread is already waiting for the task and so they are both waiting for themselves. When you add another task to the mix, you are saying: "UI thread must schedule an 'outer' task that will schedule another, 'inner' task, that I will come back to."
Use WhenAll instead of WaitAll, Turn your Execute into async Task and await the task returned by Task.WhenAll.
This way it never blocks on an asynchronous code.
I found some more detailed articles explaining why actually deadlock happened here:
https://medium.com/bynder-tech/c-why-you-should-use-configureawait-false-in-your-library-code-d7837dce3d7f
https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
Short answer would be making a small change in my async method so it looks like that:
private async Task ReadImagesAsync(string HTMLtag)
{
await Task.Run(() =>
{
ReadImages(HTMLtag);
}).ConfigureAwait(false);
}
Yup. That's it. Suddenly it doesn't deadlock. But these two articles + #FCin response explain WHY it actually happened.
It's like you are saying i do not care when ReadImagesAsync() finishes but you have to wait for it .... Here is a definition
The Task.WaitAll blocks the current thread until all other tasks have completed execution.
The Task.WhenAll method is used to create a task that will complete if and only if all the other tasks are complete.
So, if you are using Task.WhenAll you would get a task object that isn't complete. However, it will not block and would allow the program to execute. On the contrary, the Task.WaitAll method call actually blocks and waits for all other tasks to complete.
Essentially, Task.WhenAll would provide you a task that isn't complete but you can use ContinueWith as soon as the specified tasks have completed their execution. Note that neither the Task.WhenAll method nor the Task.WaitAll would run the tasks, i.e., no tasks are started by any of these methods.
Task.WhenAll(taskList).ContinueWith(t => {
// write your code here
});
Please forgive me for any noobish mistakes seen below, I'm learning some of the concepts I'm attempting to work with.
Problem:
While debugging my app, I was able to call an async function with Task.Start(). I felt that the app was in a working state for the phase I'm in so removed all breakpoints with CTRL + SHIFT + F9.
Once I ran the app with no breakpoints it would fail due to a property not getting populated. Now when I try to debug any breakpoint I set in the async function that handles most of the work is longer hit. It's like it is getting skipped. Can anyone see a reason why GetWowAuctionFileInfo isn't being called?
GetWowAuctionFileInfo is what is not getting called, or at least appears to be not getting called.
Thanks.
Relevant Code
Caller Function
private void buttonTestJSFCHI_Click(object sender, RoutedEventArgs e)
{
JSON_Worker w = new JSON_Worker();
w.StartTask("FileInfo", "https://us.api.battle.net/wow/auction/data/medivh?locale=en_US&apikey=<guid>");
foreach (string res in w.ReturnedData)
{
textBoxResults.Text += res;
}
}
Called Functions
public void StartTask(string TaskName, string optionalUri= "no_uri_passed")
{
if (TaskName == "FileInfo")
{
//Need to use a lamba expression to call a delegate with a parameter
if (!(optionalUri == "no_uri_passed"))
{
Task t = new Task(() => GetWowAuctionFileInfo(optionalUri));
t.Start();
//Func<string> function = new Func<string>(() => GetWowAuctionFileInfo(optionalUri));
//Task<string> tInfo = Task<string>.Factory.StartNew(() => GetWowAuctionFileInfo(optionalUri));
}
}
}
private async void GetWowAuctionFileInfo(string auctionInfoUri)
{
RealmJSFileCheck realmInfoObject;
List<string> returnValue = new List<string>();
try
{
using (HttpClient client = new HttpClient())
{
for (int attempt = 0; attempt < 3; attempt++)
{
var response = await client.GetAsync(auctionInfoUri);
if (response.IsSuccessStatusCode)
{
string content = await response.Content.ReadAsStringAsync();
realmInfoObject = JsonConvert.DeserializeObject<RealmJSFileCheck>(content);
returnValue = ConvertFileInfoToConsumableList(realmInfoObject);
//returnValue = realmInfoObject.files.ToString();
break;
}
}
}
}
catch (InvalidOperationException iOpEx)
{
//recieved this when an invalid uri was passed in
}
ReturnedData = returnValue;
}
private List<string> ConvertFileInfoToConsumableList(RealmJSFileCheck jsfc)
{
List<string> returnData = new List<string>();
if (jsfc.files.Count > 0)
{
StringBuilder sb = new StringBuilder();
sb.Append("File URL: ");
sb.Append(jsfc.files[0].url);
returnData.Add(sb.ToString());
sb = new StringBuilder();
sb.AppendLine("Last Modified: ");
sb.Append(jsfc.files[0].lastModified);
returnData.Add(sb.ToString());
}
else
{
returnData.Add("No File Info Found");
}
return returnData;
}
UPDATE
Thanks again all for the detailed commentary. I've gone through much documentation regarding Task usage and learned a lot in this exercise. I'm marking the answer from #Johnathon as the solution because it provided exactly what I was asking for and provided a very helpful link for more information.
Your GetWowAuctionFileInfo method is an asynchronous method, and you await an async call within it without returning a Task. In general it is bad practice to use async void. Instead, turn your GetWowAuctionFileInfo method into async Task<List<string>> GetWowAuctionFileInfo. This will let you await the GetAsync call, parse the data, and return the collection to the caller without having to use a ReturnObject.
private async Task<List<string>> GetWowAuctionFileInfo(string auctionInfoUri)
{
RealmJSFileCheck realmInfoObject;
List<string> returnValue = new List<string>();
try
{
using (HttpClient client = new HttpClient())
{
for (int attempt = 0; attempt < 3; attempt++)
{
var response = await client.GetAsync(auctionInfoUri);
if (response.IsSuccessStatusCode)
{
string content = await response.Content.ReadAsStringAsync();
realmInfoObject = JsonConvert.DeserializeObject<RealmJSFileCheck>(content);
// You can just return the List<T> now.
return ConvertFileInfoToConsumableList(realmInfoObject);
//returnValue = realmInfoObject.files.ToString();
break;
}
}
}
}
catch (InvalidOperationException iOpEx)
{
//recieved this when an invalid uri was passed in
}
}
Because the method was originally async void, you could not await the calling of it in your buttonTestJSFCHI_Click. Now that we've made it all Task based, you can await it within your event handler. Note that event handlers are generally the only acceptable place to use async void. Any time you are responsible for the creation of the methods, and not constrained by a contract (like event handlers), you should always return a Task on your async methods.
private async void buttonTestJSFCHI_Click(object sender, RoutedEventArgs e)
{
JSON_Worker w = new JSON_Worker();
List<string> results = await w.StartTask("FileInfo", "https://us.api.battle.net/wow/auction/data/medivh?locale=en_US&apikey=<guid>");
foreach (string res in results)
{
textBoxResults.Text += res;
}
}
public async Task<List<string>> StartTask(string TaskName, string optionalUri= "no_uri_passed")
{
if (TaskName == "FileInfo")
{
//Need to use a lamba expression to call a delegate with a parameter
if (!(optionalUri == "no_uri_passed"))
{
// Since the GetWowAuctionFileInfo now returns Task, we don't need to create a new one. Just await the Task given back to us, and return the given result.
return await GetWowAuctionFileInfo(optionalUri);
}
}
}
The reason you saw the expected result while debugging is because the debug session was slow enough that the async operation completed in time for your code to use it. When running the app outside of the debugger, it runs faster than the async operation could complete, preventing you from seeing the data. Thus the need to await the entire async call stack, so you can prevent further execution from happening down that code-path until you receive all of the desired data.
Microsoft has a good write up on Task based programming, I'd take a read through it to help you understand it some.
EDIT
Just to clarify, when you return a Task<T> on your methods, you will be given the result when you await. For example:
List<string> result = await StartTask();
Even though StartTask returns Task<List<string>>, the await operation will wait for the StartTask() method to complete, and then unwrap the result from the Task<T> object and give you the result back automatically. So don't let the method signature fool you, if you await it, you will be given back the resulting data, and not the actual Task itself. There won't be any need for you to pull the data out of the Task manually.
Because you not waiting for result.
You loop with ReturnedData before it was assigned with data.
I think you don't need to create new Task at all. Make GetWowAuctionFileInfo method properly asynchronous which returns Task.
private async Task GetWowAuctionFileInfo(string auctionInfoUri)
{
// same code
}
Change StartTask to return Task. Because we not awaiting result here we don't need make method asynchronous.
Suggest to change name of this method to LoadData for example, which give more information about what this method does.
public Task StartTask(string TaskName, string optionalUri= "no_uri_passed")
{
if (TaskName == "FileInfo")
{
//Need to use a lamba expression to call a delegate with a parameter
if (!(optionalUri == "no_uri_passed"))
{
return GetWowAuctionFileInfo(optionalUri) // this will return Task
}
}
// if validation fails - return completed task or throw exception
return Task.CompletedTask;
}
Then you can call it in Button_Click event handler
private async void buttonTestJSFCHI_Click(object sender, RoutedEventArgs e)
{
JSON_Worker w = new JSON_Worker();
await w.StartTask("FileInfo", "yourUrl");
// This line will be executed only after asynchronous methods completes succesfully
// or exception will be thrown
foreach (string res in w.ReturnedData)
{
textBoxResults.Text += res;
}
}