Converting Byte[] to drawing the waves in a picturebox (overflow error) - c#

ive currently got a live voice call application using UDP and im trying to get the incoming voice to be plotted like a wave form in a picturebox. I looked at 2 open source ways for doing this and both bring back the overflow error when i try to draw a line. My code is below:
Incoming Voice via UDP:
while (LISTENING)
{
byte[] b = UDP_LISTENER.Receive(ref endPoint); //incoming audio bytes
byte[] decoded = listenerThreadState.Codec.Decode(b, 0, b.Length);
WAVE_PLAYER.AddSamples(decoded, 0, decoded.Length);//plays it out the speakers
float[] x = FloatArrayFromByteArray(decoded);//converts to a float array
DrawNormalizedAudios(ref x, PBWaveForm, Color.Red);//plots the wave form
}
Function to produce the waveform:
public static void DrawNormalizedAudios(ref float[] data, PictureBox pb,
Color color)
{
Bitmap bmp;
if (pb.Image == null)
{
bmp = new Bitmap(pb.Width, pb.Height);
}
else
{
bmp = (Bitmap)pb.Image;
}
int BORDER_WIDTH = 5;
int width = bmp.Width - (2 * BORDER_WIDTH);
int height = bmp.Height - (2 * BORDER_WIDTH);
using (Graphics g = Graphics.FromImage(bmp))
{
g.Clear(Color.Black);
Pen pen = new Pen(color);
int size = data.Length;
for (int iPixel = 0; iPixel < width; iPixel++)
{
// determine start and end points within WAV
int start = (int)((float)iPixel * ((float)size / (float)width));
int end = (int)((float)(iPixel + 1) * ((float)size / (float)width));
float min = float.MaxValue;
float max = float.MinValue;
for (int i = start; i < end; i++)
{
float val = data[i];
min = val < min ? val : min;
max = val > max ? val : max;
}
int yMax = BORDER_WIDTH + height - (int)((max + 1) * .5 * height);
int yMin = BORDER_WIDTH + height - (int)((min + 1) * .5 * height);
g.DrawLine(pen, iPixel + BORDER_WIDTH, yMax,
iPixel + BORDER_WIDTH, yMin);
}
}
pb.Image = bmp;
}
Now there was 2 funcitons but both of them gave the same error which was this exacly: "An unhandled exception of type 'System.OverflowException' occurred in System.Drawing.dll
Additional information: Overflow error."
So its gotta be a problem with the bytes of audio right? i tried putting the byte[] b instead of decoded but that didnt make it far and i dont think thats the problem. The audio being sent is sending every 50ms, so is it a fact that it just cant keep up? theres apps for drawing which keep up with more than 50ms so that cant be it. When i googled the error it said something to do with the boundarys but i didnt really understand it, any help is appriciated

Related

C# RGB[,] to picturebox

I have a data that is (2448*2048) 5Mpixel image data, but the picturebox only has (816*683) about 500,000 pixels, so I lowered the pixels and I only need a black and white image, so I used the G value to create the image, but The image I output is shown in the following figure. Which part of my mistake?
public int[,] lowered(int[,] greenar)
{
int[,] Sy = new int[816, 683];
int x = 0;
int y = 0;
for (int i = 1; i < 2448; i += 3)
{
for (int j = 1; j < 2048; j += 3)
{
Sy[x, y] = greenar[i, j];
y++;
}
y = 0;
x++;
}
return Sy;
}
static Bitmap Create(int[,] R, int[,] G, int[,] B)
{
int iWidth = G.GetLength(1);
int iHeight = G.GetLength(0);
Bitmap Result = new Bitmap(iWidth, iHeight,
System.Drawing.Imaging.PixelFormat.Format24bppRgb);
Rectangle rect = new Rectangle(0, 0, iWidth, iHeight);
System.Drawing.Imaging.BitmapData bmpData = Result.LockBits(rect,
System.Drawing.Imaging.ImageLockMode.ReadWrite, System.Drawing.Imaging.PixelFormat.Format24bppRgb);
IntPtr iPtr = bmpData.Scan0;
int iStride = bmpData.Stride;
int iBytes = iWidth * iHeight * 3;
byte[] PixelValues = new byte[iBytes];
int iPoint = 0;
for (int i = 0; i < iHeight; i++)
{
for (int j = 0; j < iWidth; j++)
{
int iG = G[i, j];
int iB = G[i, j];
int iR = G[i, j];
PixelValues[iPoint] = Convert.ToByte(iB);
PixelValues[iPoint + 1] = Convert.ToByte(iG);
PixelValues[iPoint + 2] = Convert.ToByte(iR);
iPoint += 3;
}
}
System.Runtime.InteropServices.Marshal.Copy(PixelValues, 0, iPtr, iBytes);
Result.UnlockBits(bmpData);
return Result;
}
https://upload.cc/i1/2018/04/26/WHOXTJ.png
You don't need to downsample your image, you can do it in this way. Set picturebox property BackgroundImageLayout as either zoom or stretch and assign it as:
picturebox.BackgroundImageLayout = System.Windows.Forms.ImageLayout.Zoom;
picturebox.BackgroundImage = bitmap;
System.Windows.Forms.ImageLayout.Zoom will automatically adjust your bitmap to the size of picturebox.
You seem to be constantly mixing up your x and y offsets, which can easily be avoided simply by actually calling your loop variables x and y whenever you loop through image data. Also, image data is generally saved line by line, so your outer loop should be the Y loop going over the height, and the inner loop should process the X coordinates on one line, and should thus loop over the width.
Also, I'm not sure where your original data comes from, but in most of the cases I've seen where the image data is in multidimensional arrays like this, the Y is actually the first index in the array. Your actual image building function also assumes this, since it uses G.GetLength(0) to get the height of the image. But your channel resize function doesn't; it makes a multidimensional array as new int[816, 683], which would be a 683*816 image, not 816*683 as you said. So that certainly seems wrong.
Since you confirmed it to be [x,y], I adapted this solution to use it like that.
That aside, you hardcoded a lot of values in your functions, which is very bad practice. If you know you will reduce the image to 1/3rd by taking only one in three pixels, just give that 3 as parameter.
The reduction code:
public static Int32[,] ResizeChannel(Int32[,] origChannel, Int32 lossfactor)
{
Int32 newWidth = origChannel.GetLength(0) / lossfactor;
Int32 newHeight = origChannel.GetLength(1) / lossfactor;
// to avoid rounding errors
Int32 origHeight = newHeight * lossfactor;
Int32 origWidth = newWidth *lossfactor;
Int32[,] newChannel = new Int32[newWidth, newHeight];
Int32 newX = 0;
Int32 newY = 0;
for (Int32 y = 1; y < origHeight; y += lossfactor)
{
newX = 0;
for (Int32 x = 1; x < origWidth; x += lossfactor)
{
newChannel[newX, newY] = origChannel[x, y];
newX++;
}
newY++;
}
return newChannel;
}
The actual build code, as was remarked by GSerg in the comments, is wrong because you don't take the stride into account. The stride is the actual byte length of each line of pixels, and this is not just width * BytesPerPixel, since it gets rounded up to the next multiple of 4 bytes.
So you need to initialize your array as height * stride, not as height * width * 3, and you need to skip your write offset to the next multiple of the stride whenever you go to a lower Y line, rather than assuming it will just get there automatically because your X processing adds 3 for each pixel. Because it will not get there automatically, unless, by pure coincidence, your image width happens to be a multiple of 4 pixels.
Also, if you only use one channel for this, there is no reason to give it all three channels. Just give a single one.
public static Bitmap CreateGreyImage(Int32[,] greyChannel)
{
Int32 width = greyChannel.GetLength(0);
Int32 height = greyChannel.GetLength(1);
Bitmap result = new Bitmap(width, height, PixelFormat.Format24bppRgb);
Rectangle rect = new Rectangle(0, 0, width, height);
BitmapData bmpData = result.LockBits(rect, ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);
Int32 stride = bmpData.Stride;
// stride is the actual line width in bytes.
Int32 bytes = stride * height;
Byte[] pixelValues = new Byte[bytes];
Int32 offset = 0;
for (Int32 y = 0; y < height; y++)
{
Int32 workOffset = offset;
for (Int32 x = 0; x < width; x++)
{
pixelValues[workOffset + 0] = (Byte)greyChannel[x, y];
pixelValues[workOffset + 1] = (Byte)greyChannel[x, y];
pixelValues[workOffset + 2] = (Byte)greyChannel[x, y];
workOffset += 3;
}
// Add stride to get the start offset of the next line
offset += stride;
}
Marshal.Copy(pixelValues, 0, bmpData.Scan0, bytes);
result.UnlockBits(bmpData);
return result;
}
Now, this works as expected if your R, G and B channels are indeed identical, But if they are not, you have to realize there is a difference between reducing the image to grayscale and just building a grey image from the green channel. On a colour image, you will get totally different results if you take the blue or red channel instead.
This was the code I executed for this:
Int32[,] greyar = ResizeChannel(greenar, 3);
Bitmap newbm = CreateGreyImage(greyar);

Unable to get wave form image for audio using NAudio

Unable to get wave form image for smaller duration audio stream using this code.
I am getting totally blank image. Is there any way to get correct wave form image for smaller duration audio stream. I am using NAudio's AudioFileReader function here.
Bitmap bim = new Bitmap(1800,200);
System.Drawing.Graphics g = Graphics.FromImage(bim);
using (var reader = new AudioFileReader("D:\\Test-Songs\\DawnJay.mp3"))
{
var samples = reader.Length / (reader.WaveFormat.Channels * reader.WaveFormat.BitsPerSample / 8);
var f = 0.0f;
var max = 0.0f;
// waveform will be a maximum of 4000 pixels wide:
var batch = (int)Math.Max(40, samples / 4000);
var mid = 100;
var yScale = 100;
float[] buffer = new float[batch];
int read;
var xPos = 0;
Pen pen = new Pen(Color.Red, 2.0f);
g.Clear(Color.Black);
while ((read = reader.Read(buffer, 0, batch)) == batch)
{
for (int n = 0; n < read; n++)
{
max = Math.Max(Math.Abs(buffer[n]), max);
}
int X1 = xPos;
int X2 = xPos;
float Y1 = mid + (max * yScale);
float Y2 = mid - (max * yScale);
g.DrawLine(pen,X1, Y1, X2, Y2);
max = 0;
xPos++;
}
}
bim.Save("D:\\Images\\waveform.png");
Your code here:
var batch = (int)Math.Max(40, samples / 4000);
This says that you are going to accept a minimum of 40 samples per column. For a small file this might mean that your data gets reduced to only a small number of columns of data in the output bitmap. If you are then scaling that data down to fit into a display area on screen, your audio data might disappear.
Try changing your minimum number of samples per block to a smaller value, which should give you a chance at actually visualizing small audio files. You should probably do full Min-Max calculations, or else your plots for very small files will look totally wrong.

unsafe image noise removal in c# (error : Bitmap region is already locked)

public unsafe Bitmap MedianFilter(Bitmap Img)
{
int Size =2;
List<byte> R = new List<byte>();
List<byte> G = new List<byte>();
List<byte> B = new List<byte>();
int ApetureMin = -(Size / 2);
int ApetureMax = (Size / 2);
BitmapData imageData = Img.LockBits(new Rectangle(0, 0, Img.Width, Img.Height), ImageLockMode.ReadOnly, PixelFormat.Format32bppRgb);
byte* start = (byte*)imageData.Scan0.ToPointer ();
for (int x = 0; x < imageData.Width; x++)
{
for (int y = 0; y < imageData.Height; y++)
{
for (int x1 = ApetureMin; x1 < ApetureMax; x1++)
{
int valx = x + x1;
if (valx >= 0 && valx < imageData.Width)
{
for (int y1 = ApetureMin; y1 < ApetureMax; y1++)
{
int valy = y + y1;
if (valy >= 0 && valy < imageData.Height)
{
Color tempColor = Img.GetPixel(valx, valy);// error come from here
R.Add(tempColor.R);
G.Add(tempColor.G);
B.Add(tempColor.B);
}
}
}
}
}
}
R.Sort();
G.Sort();
B.Sort();
Img.UnlockBits(imageData);
return Img;
}
I tried to do this. but i got an error call "Bitmap region is already locked" can anyone help how to solve this. (error position is highlighted)
GetPixel is the slooow way to access the image and doesn't work (as you noticed) anymore if someone else starts messing with the image buffer directly. Why would you want to do that?
Check Using the LockBits method to access image data for some good insight into fast image manipulation.
In this case, use something like this instead:
int pixelSize = 4 /* Check below or the site I linked to and make sure this is correct */
byte* color =(byte *)imageData .Scan0+(y*imageData .Stride) + x * pixelSize;
Note that this gives you the first byte for that pixel. Depending on the color format you are looking at (ARGB? RGB? ..) you need to access the following bytes as well. Seems to suite your usecase anyway, since you just care about byte values, not the Color value.
So, after having some spare minutes, this is what I'd came up with (please take your time to understand and check it, I just made sure it compiles):
public void SomeStuff(Bitmap image)
{
var imageWidth = image.Width;
var imageHeight = image.Height;
var imageData = image.LockBits(new Rectangle(0, 0, imageWidth, imageHeight), ImageLockMode.ReadOnly, PixelFormat.Format32bppRgb);
var imageByteCount = imageData.Stride*imageData.Height;
var imageBuffer = new byte[imageByteCount];
Marshal.Copy(imageData.Scan0, imageBuffer, 0, imageByteCount);
for (int x = 0; x < imageWidth; x++)
{
for (int y = 0; y < imageHeight; y++)
{
var pixelColor = GetPixel(imageBuffer, imageData.Stride, x, y);
// Do your stuff
}
}
}
private static Color GetPixel(byte[] imageBuffer, int imageStride, int x, int y)
{
int pixelBase = y*imageStride + x*3;
byte blue = imageBuffer[pixelBase];
byte green = imageBuffer[pixelBase + 1];
byte red = imageBuffer[pixelBase + 2];
return Color.FromArgb(red, green, blue);
}
This
Relies on the PixelFormat you used in your sample (regarding both the pixelsize/bytes per pixel and the order of the values). If you change the PixelFormat this will break.
Doesn't need the unsafe keyword. I doubt that it makes a lot of difference, but you are free to use the pointer based access instead, the method would be the same.

C# display waveform

Using this:
public static void DrawNormalizedAudio(ref float[] data, PictureBox pb,
Color color)
{
Bitmap bmp;
if (pb.Image == null)
{
bmp = new Bitmap(pb.Width, pb.Height);
}
else
{
bmp = (Bitmap)pb.Image;
}
int BORDER_WIDTH = 5;
int width = bmp.Width - (2 * BORDER_WIDTH);
int height = bmp.Height - (2 * BORDER_WIDTH);
using (Graphics g = Graphics.FromImage(bmp))
{
g.Clear(Color.Black);
Pen pen = new Pen(color);
int size = data.Length;
for (int iPixel = 0; iPixel < width; iPixel++)
{
// determine start and end points within WAV
int start = (int)((float)iPixel * ((float)size / (float)width));
int end = (int)((float)(iPixel + 1) * ((float)size / (float)width));
float min = float.MaxValue;
float max = float.MinValue;
for (int i = start; i < end; i++)
{
float val = data[i];
min = val < min ? val : min;
max = val > max ? val : max;
}
int yMax = BORDER_WIDTH + height - (int)((max + 1) * .5 * height);
int yMin = BORDER_WIDTH + height - (int)((min + 1) * .5 * height);
g.DrawLine(pen, iPixel + BORDER_WIDTH, yMax,
iPixel + BORDER_WIDTH, yMin);
}
}
pb.Image = bmp;
}
I got an error at this line:
g.DrawLine(pen, iPixel + BORDER_WIDTH, yMax,
iPixel + BORDER_WIDTH, yMin);
It says operation overflow(cannot divide by zero) or something like that. Any clue on the problem? Thanks.
UPDATE:
The codes i use to call the function is:
fileName = "c:\\sound\\happy_birthday.wav";
byte[] bytes = File.ReadAllBytes(fileName);
float[] getval = FloatArrayFromByteArray(bytes);
DrawNormalizedAudio(ref getval, pictureBox1, Color.White);
You are dividing by zero. Don't do it, as this operation is invalid. Check the values you pass to DrawLine are not 0.
int yMin = BORDER_WIDTH + height - (int)((min + 1) * .5 * height);
You are using the signed int data type - what happens is that this calculation overflows and results in a negative value, you get -2147483572 which is int.MaxValue+75 (overflow), could it be that min is a large negative value that causes the result to be 75 larger than int.MaxValue ?
The min and max were wrong, should be
float min = float.MinValue;
float max = float.MaxValue;

Multiply two images in C# as multiply two layers in Photoshop

I have two images and I want to multiply these two images together in C# as we multiply two layers in Photoshop.
I have found the method by which the layers are multiplied in photoshop or any other application.
Following is the formula that I have found on GIMP documentation. It says that
E=(M*I)/255
where M and I are the color component(R,G,B) values of the two layers. We have to apply this to every color component. E will be the resultant value for that color component.
If the color component values are >255 then it should be set to white i.e. 255 and if it is <0 then it should be set as Black i.e. 0
Here I have a suggestion - I didn't test it, so sorry for any errors - I'm also assuming that both images have the same size and are greylevel.
Basically I'm multiplying the image A for the relative pixel percentage of image B.
You can try different formulas like:
int result = ptrB[0] * ( (ptrA[0] / 255) + 1);
or
int result = (ptrB[0] * ptrA[0]) / 255;
Never forget to check for overflow (above 255)
public void Multiply(Bitmap srcA, Bitmap srcB, Rectangle roi)
{
BitmapData dataA = SetImageToProcess(srcA, roi);
BitmapData dataB = SetImageToProcess(srcB, roi);
int width = dataA.Width;
int height = dataA.Height;
int offset = dataA.Stride - width;
unsafe
{
byte* ptrA = (byte*)dataA.Scan0;
byte* ptrB = (byte*)dataB.Scan0;
for (int y = 0; y < height; ++y)
{
for (int x = 0; x < width; ++x, ++ptrA, ++ptrB)
{
int result = ptrA[0] * ( (ptrB[0] / 255) + 1);
ptrA[0] = result > 255 ? 255 : (byte)result;
}
ptrA += offset;
ptrB += offset;
}
}
srcA.UnlockBits(dataA);
srcB.UnlockBits(dataB);
}
static public BitmapData SetImageToProcess(Bitmap image, Rectangle roi)
{
if (image != null)
return image.LockBits(
roi,
ImageLockMode.ReadWrite,
image.PixelFormat);
return null;
}

Categories