Displaying mulitples of 3 and 5 under 1000 into a textbox C# - c#

We are working on the Project Euler problems and there is one part of the code I cannot get to work.
I have displayed and calculated the sum for multiples of 3 and 5 under 10, and I have calculated the sum for the same numbers under 1000 but I cannot initially display the numbers used for the calculation within a textbox or equivalent field.
Here's a link to the code.
http://pastebin.com/MZAA88UP

I think, it's a good task for Linq:
int n = 1000;
var numbers = Enumerable
.Range(1, n - 1)
.Where(item => item % 3 == 0 || item % 5 == 0);
Having numbers as a source you can easily play with it. If you want to sum up:
// 233168
var sum = numbers.Sum();
If you want to print out the numbers:
// 3, 5, 6, 9, 10, 12, ..., 996, 999
string report = string.Join(", ", numbers);

If you want to use loops instead of Linq:
private void BtnDisplay1000_Click(object sender, RoutedEventArgs e)
{
var stringBuilder = new StringBuilder();
for (int i = 0; i < 1000; i++)
{
if (i % 3 == 0 || i % 5 == 0)
{
stringBuilder.Append(i);
stringBuilder.Append(", ");
}
}
TxtDisplay1000.Text = (stringBuilder.ToString());
}

Related

How do I select multiple values in an array?

int[] numbers = new int[]
{
1, 2, 33, 44, 55, 68, 77, 96, 100
};
if (numbers[] % 2 == 0)
{
Console.WriteLine("EVEN");
}
I want to make the code say even when the value in the array is an even number.
How could I do this?
Your question is vague one:
...the code say even when the value in the array is an even number
You may want to query numbers (with a help of Linq):
If array contains at least one even value:
using System.Linq;
...
if (numbers.Any(item => item % 2 == 0))
Console.WriteLine("EVEN");
If array values are all even:
if (numbers.All(item => item % 2 == 0))
Console.WriteLine("EVEN");
Obtain even values (let's have an int[] even array):
int[] even = numbers
.Where(item => item % 2 == 0)
.ToArray();
if (even.Length > 0)
Console.WriteLine($"EVEN: {string.Join(", ", even)}");
Finally, you may want to scan the numbers array and do something on each even item:
foreach (int item in numbers) {
if (item % 2 == 0) {
Console.WriteLine("EVEN:");
}
}
You need loop
for (int i = 0; i < numbers.Length; i++)
{
if (numbers[i] % 2 == 0)
{
Console.WriteLine("EVEN");
}
}
I would do it:
var evenNumbers = numbers.Where(x => x % 2 == 0).ToArray();

How to dynamically add indexes values of an array in C#?

I have an array where the first two smallest values have to be added, and consequently the result has to be added to next smallest and so on until it reaches the end of the array to give a final total.
However, how can I dynamically modify the method/function so if the values changes and I have 6 vehicles and 6 specs values in the array, the return of the method/function total is not restricted to just 4 indexes.
The array values are unsorted, so in order to add the first smallest, it has to be sorted. Once that's done it adds the values of the new array.
Here's what I've tried:
public static int vehicles = 4;
public static int[] specs = new int[] { 40, 8, 16, 6 };
public static int time(int vehicles, int[] specs)
{
int newValue = 0;
for (int i = 1; i < vehicles; i++)
{
newValue = specs[i];
int j = i;
while (j > 0 && specs[j - 1] > newValue)
{
specs[j] = specs[j - 1];
j--;
}
specs[j] = newValue;
}
// How can I dynamically change this below:
int result1 = specs[0] + specs[1];
int result2 = result1 + specs[2];
int result3 = result2 + specs[3];
int total = result1 + result2 + result3;
return total; // Returns 114
}
Here's the idea of how it works:
4, [40, 8, 16, 6] = 14 --> [40, 14, 16] = 30 --> [40, 30] = 70 ==>> 14 + 30 + 70 = 114
6, [62, 14, 2, 6, 28, 41 ] = 8 --> [62, 14, 8, 28, 41 ] --> 22 [62, 22, 28, 41 ] --> 50
[62, 50, 41 ] --> 91 [62, 91 ] --> 153 ==> 8 + 22 + 50 + 91 + 153 = 324
First off, if you are not restricted to arrays for some weird reason use List<int> and your life will be easier.
List<int> integers = { 14, 6, 12, 8 };
integers.Sort();
integers.Reverse();
while( integers.Count > 1 )
{
int i = integers[integers.Count - 1];
int j = integers[integers.Count - 2];
integers[integers.Count - 2] = i + j;
integers.RemoveAt(integers.Count - 1);
}
var result = integers[0];
P.S.: This can be easily modified to operate on the array version, you can't RemoveAt() from an array but can separately maintain a lastValidIndex.
I would go with the simplest version of a one line solution using LINQ:
Array.Sort(specs);
int total = specs.Select((n, i) => specs.Take(i + 1).Sum()).Sum() - (specs.Length > 1 ? specs[0] : 0);
I would use Linq.
Enumerable.Range(2, specs.Length - 1)
.Select(i => specs
.Take(i)
.Sum())
.Sum();
Explanation:
We take a range starting from 2 ending with specs.Length.
We sum the first i values of specs where i is the current value in the range.
After we have all those sums, we sum them up as well.
To learn more about linq, start here.
This code only works if the values have been sorted already.
If you want to sort the values using linq, you should use this:
IEnumerable<int> sorted = specs.OrderBy(x => x);
Enumerable.Range(2, sorted.Count() - 1)
.Select(i => sorted
.Take(i)
.Sum())
.Sum();
The OrderBy function needs to know how to get the value it should use to compare the array values. Because the array values are the values we want to compare we can just select them using x => x. This lamba takes the value and returns it again.
See comments in code for explanation.
using System;
using System.Linq;
class Program
{
static void Main()
{
//var inputs = new [] { 40, 8, 16, 6 }; // total = 114
var inputs = new[] { 62, 14, 2, 6, 28, 41 }; // total = 324
var total = 0;
var query = inputs.AsEnumerable();
while (query.Count() > 1)
{
// sort the numbers
var sorted = query.OrderBy(x => x).ToList();
// get sum of the first two smallest numbers
var sumTwoSmallest = sorted.Take(2).Sum();
// count total
total += sumTwoSmallest;
// remove the first two smallest numbers
query = sorted.Skip(2);
// add the sum of the two smallest numbers into the numbers
query = query.Append(sumTwoSmallest);
}
Console.WriteLine($"Total = {total}");
Console.WriteLine("Press any key...");
Console.ReadKey(true);
}
}
I benchmark my code and the result was bad when dealing with large dataset. I suspect it was because of the sorting in the loop. The sorting is needed because I need to find the 2 smallest numbers in each iteration. So I think I need a better way to solve this. I use a PriorityQueue (from visualstudiomagazine.com) because the elements are dequeued based on priority, smaller numbers have higher priority in this case.
long total = 0;
while (pq.Count() > 0)
{
// get two smallest numbers when the priority queue is not empty
int sum = (pq.Count() > 0 ? pq.Dequeue() : 0) + (pq.Count() > 0 ? pq.Dequeue() : 0);
total += sum;
// put the sum of two smallest numbers in the priority queue if the queue is not empty
if (pq.Count() > 0) pq.Enqueue(sum);
}
Here's some benchmark results of the new (priority queue) code and the old code in release build. Results are in milliseconds. I didn't test the 1 million data with the old code because it's too slow.
+---------+----------+-------------+
| Data | New | Old |
+---------+----------+-------------+
| 10000 | 3.9158 | 5125.9231 |
| 50000 | 16.8375 | 147219.4267 |
| 1000000 | 406.8693 | |
+---------+----------+-------------+
Full code:
using System;
using System.Diagnostics;
using System.IO;
using System.Linq;
class Program
{
static void Main()
{
const string fileName = #"numbers.txt";
using (var writer = new StreamWriter(fileName))
{
var random = new Random();
for (var i = 0; i < 10000; i++)
writer.WriteLine(random.Next(100));
writer.Close();
}
var sw = new Stopwatch();
var pq = new PriorityQueue<int>();
var numbers = File.ReadAllLines(fileName);
foreach (var number in numbers)
pq.Enqueue(Convert.ToInt32(number));
long total = 0;
sw.Start();
while (pq.Count() > 0)
{
// get two smallest numbers when the priority queue is not empty
int sum = (pq.Count() > 0 ? pq.Dequeue() : 0) + (pq.Count() > 0 ? pq.Dequeue() : 0);
total += sum;
// put the sum of two smallest numbers in the priority queue if the queue is not empty
if (pq.Count() > 0) pq.Enqueue(sum);
}
sw.Stop();
Console.WriteLine($"Total = {total}");
Console.WriteLine($"Time = {sw.Elapsed.TotalMilliseconds}");
total = 0;
var query = File.ReadAllLines(fileName).Select(x => Convert.ToInt32(x));
sw.Restart();
while (query.Count() > 0)
{
// sort the numbers
var sorted = query.OrderBy(x => x).ToList();
// get sum of the first two smallest numbers
var sumTwoSmallest = sorted.Take(2).Sum();
// count total
total += sumTwoSmallest;
// remove the first two smallest numbers
query = sorted.Skip(2);
// add the sum of the two smallest numbers into the numbers
if (query.Count() > 0)
query = query.Append(sumTwoSmallest);
}
sw.Stop();
Console.WriteLine($"Total = {total}");
Console.WriteLine($"Time = {sw.Elapsed.TotalMilliseconds}");
Console.WriteLine("Press any key...");
Console.ReadKey(true);
}
}
PriorityQueue code:
using System;
using System.Collections.Generic;
// From http://visualstudiomagazine.com/articles/2012/11/01/priority-queues-with-c.aspx
public class PriorityQueue<T> where T : IComparable<T>
{
private List<T> data;
public PriorityQueue()
{
this.data = new List<T>();
}
public void Enqueue(T item)
{
data.Add(item);
int ci = data.Count - 1; // child index; start at end
while (ci > 0)
{
int pi = (ci - 1) / 2; // parent index
if (data[ci].CompareTo(data[pi]) >= 0)
break; // child item is larger than (or equal) parent so we're done
T tmp = data[ci];
data[ci] = data[pi];
data[pi] = tmp;
ci = pi;
}
}
public T Dequeue()
{
// assumes pq is not empty; up to calling code
int li = data.Count - 1; // last index (before removal)
T frontItem = data[0]; // fetch the front
data[0] = data[li];
data.RemoveAt(li);
--li; // last index (after removal)
int pi = 0; // parent index. start at front of pq
while (true)
{
int ci = pi * 2 + 1; // left child index of parent
if (ci > li)
break; // no children so done
int rc = ci + 1; // right child
if (rc <= li && data[rc].CompareTo(data[ci]) < 0) // if there is a rc (ci + 1), and it is smaller than left child, use the rc instead
ci = rc;
if (data[pi].CompareTo(data[ci]) <= 0)
break; // parent is smaller than (or equal to) smallest child so done
T tmp = data[pi];
data[pi] = data[ci];
data[ci] = tmp; // swap parent and child
pi = ci;
}
return frontItem;
}
public T Peek()
{
T frontItem = data[0];
return frontItem;
}
public int Count()
{
return data.Count;
}
public override string ToString()
{
string s = "";
for (int i = 0; i < data.Count; ++i)
s += data[i].ToString() + " ";
s += "count = " + data.Count;
return s;
}
public bool IsConsistent()
{
// is the heap property true for all data?
if (data.Count == 0)
return true;
int li = data.Count - 1; // last index
for (int pi = 0; pi < data.Count; ++pi)
{ // each parent index
int lci = 2 * pi + 1; // left child index
int rci = 2 * pi + 2; // right child index
if (lci <= li && data[pi].CompareTo(data[lci]) > 0)
return false; // if lc exists and it's greater than parent then bad.
if (rci <= li && data[pi].CompareTo(data[rci]) > 0)
return false; // check the right child too.
}
return true; // passed all checks
}
// IsConsistent
}
// PriorityQueue
Reference:
https://visualstudiomagazine.com/articles/2012/11/01/priority-queues-with-c.aspx
https://en.wikipedia.org/wiki/Priority_queue
You can simply sort it using Array.Sort(), then get the sums in a new array which starts with the smallest value and add each next value to the most recent sum, the total will be the value of the last sum.
public static int time(int vehicles, int[] specs)
{
int i, total;
int[] sums = new int[vehicles];
Array.Sort(spec);
sums[0] = specs[0];
for (i = 1; i < vehicles; i++)
sums[i] = sums[i - 1] + spec[i];
total = sums[spec - 1];
}

Pick a varying number of item combinations from a List

Assume I have a list of integers of any length, for an example I have the list of 1,3,5 and 7.
I would like an algorithm to pick a combination of X elements from the list.
For example, X = 1 would return:
1
3
5
7
x = 2 would return:
1 + 1
1 + 3
1 + 5
1 + 7
3 + 3
3 + 5
3 + 7
5 + 5
5 + 7
7 + 7
var listOfInts = new List<int> { 1, 3, 5, 7 };
var combinedInts = new List<int>();
// x = 1 solution
// This is only picking one item from the list.
for (int i = 0; i < listOfInts.Count(); i++)
{
combinedInts.Add(listOfInts[i]);
}
// x = 2 solution
// This is how to pick two. I wrap it around another for loop.
for (int i = 0; i < listOfInts.Count(); i++)
{
for (int j = i; j < listOfInts.Count(); j++)
{
combinedInts.Add(listOfInts[i] + listOfInts[j]);
}
}
// x = 3 solution
// If I go up another level I have to wrap it around another for loop. This solution won't scale.
for (int i = 0; i < listOfInts.Count(); i++)
{
for (int j = i; j < listOfInts.Count(); j++)
{
for (int k = j; k < listOfInts.Count(); k++)
{
combinedInts.Add(listOfInts[i] + listOfInts[j] + listOfInts[k]);
}
}
}
This solution doesn't scale as I have to continually wrap around another for loop for each number of element I'm picking. For example X = 7 would need 7-nested for loops. Is there a better way to write this method that doesn't involve nesting for loops?
You can use the following to get combinations of the sequences:
public static class LinqHelper
{
public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int? k = null)
{
if (!k.HasValue)
k = elements.Count();
return k == 0 ? new[] { new T[0] } :
elements.SelectMany((e, i) => elements.Skip(i).Combinations(k - 1).Select(c => (new[] { e }).Concat(c)));
}
}
var list = new List<int> { 1, 3, 5, 7 };
int x = 2; //Change to 3, 4, 5, etc
var result = list.Combinations(x);
Yields:
1 1
1 3
1 5
1 7
3 3
3 5
3 7
5 7
7 7
To get the sum of each one, you'd aggregate the result:
var result = list.Combinations(x).Select(g => g.Aggregate((left, right) => left + right));
Which produces:
2
4
6
8
6
8
10
10
12
14
There is also a purely iterative way to do this. It requires a great deal more thought and complexity, but can be made very efficient. The basic idea is to simulate the same nested loops, but track the iterations of each nested loop as an array of loop counters, which are iterated forward in the same manner as the original nested loop code. Here is a fully working example:
var listOfInts = new List<int> { 1, 3, 5, 7 };
var combinedInts = new List<int>();
var numInts = listOfInts.Count;
var numElements = 5; // number of "nested loops", or ints selected in each combination
var loopCounters = new int[numElements]; // make one loop counter for each "nested loop"
var lastCounter = numElements - 1; // iterate the right-most counter by default
// maintain current sum in a variable for efficiency, since most of the time
// it is changing only by the value of one loop counter change.
var tempSum = listOfInts[0] * numElements;
// we are finished when the left/outer-most counter has looped past number of ints
while (loopCounters[0] < numInts) {
// you can use this to verify the output is iterating correctly:
// Console.WriteLine(string.Join(",", loopCounters.Select(x => listOfInts[x])) + ": " + loopCounters.Select(x => listOfInts[x]).Sum() + "; " + tempSum);
combinedInts.Add(tempSum);
tempSum -= listOfInts[loopCounters[lastCounter]];
loopCounters[lastCounter]++;
if (loopCounters[lastCounter] < numInts) tempSum += listOfInts[loopCounters[lastCounter]];
// if last element reached in inner-most counter, increment previous counter(s).
while (lastCounter > 0 && loopCounters[lastCounter] == numInts) {
lastCounter--;
tempSum -= listOfInts[loopCounters[lastCounter]];
loopCounters[lastCounter]++;
if (loopCounters[lastCounter] < numInts) tempSum += listOfInts[loopCounters[lastCounter]];
}
// if a previous counter was advanced, reset all future counters to same
// starting number to start iteration forward again.
while (lastCounter < numElements - 1) {
lastCounter++;
if (loopCounters[lastCounter] < numInts) tempSum -= listOfInts[loopCounters[lastCounter]];
loopCounters[lastCounter] = loopCounters[lastCounter - 1];
if (loopCounters[lastCounter] < numInts) tempSum += listOfInts[loopCounters[lastCounter]];
}
}
At the end of the iteration, combinedInts should contains a list of all sum combinations, similar to the original code or the other recursive solutions. If you are working with small sets, and small combinations, then this level of efficiency is unnecessary and you should prefer a recursive solution which is easier to reason about correctness. I present this as an alternative way to think about the problem. Cheers!
This works for me:
Func<IEnumerable<int>, int, IEnumerable<IEnumerable<int>>> generate = null;
generate = (xs, n) =>
(xs == null || !xs.Any())
? Enumerable.Empty<IEnumerable<int>>()
: n == 1
? xs.Select(x => new [] { x })
: xs.SelectMany(x => generate(xs, n - 1).Select(ys => ys.Concat(new [] { x })));
int[] array = { 1, 3, 5, 7, };
var results =
generate(array, 3)
.Select(xs => String.Join("+", xs));
With this call I get:
1+1+1, 3+1+1, 5+1+1, 7+1+1, 1+3+1, 3+3+1, 5+3+1, 7+3+1, 1+5+1, 3+5+1, 5+5+1, 7+5+1, 1+7+1, 3+7+1, 5+7+1, 7+7+1, 1+1+3, 3+1+3, 5+1+3, 7+1+3, 1+3+3, 3+3+3, 5+3+3, 7+3+3, 1+5+3, 3+5+3, 5+5+3, 7+5+3, 1+7+3, 3+7+3, 5+7+3, 7+7+3, 1+1+5, 3+1+5, 5+1+5, 7+1+5, 1+3+5, 3+3+5, 5+3+5, 7+3+5, 1+5+5, 3+5+5, 5+5+5, 7+5+5, 1+7+5, 3+7+5, 5+7+5, 7+7+5, 1+1+7, 3+1+7, 5+1+7, 7+1+7, 1+3+7, 3+3+7, 5+3+7, 7+3+7, 1+5+7, 3+5+7, 5+5+7, 7+5+7, 1+7+7, 3+7+7, 5+7+7,7+7+7

Replace byte 10 by 10 10

Hi I want to replace a byte[] where ever there is 10 by 10 10. here is my code.
if i have my data as "10 20 10 20 40 50 50 50 50 10 03" i want to replce it by
"10 20 10 10 20 40 50 50 50 50 10 10 03"
note: first byte is untouched
plse follow my comment, my idea is to push the byte array to nxt position and add another 10.
foreach (var b in command.ToBytes())
{
// var c = b;
transmitBuffer[count++] = b; data is formed here
addedbuffer[addall++] = b; duplication is made
}
if (addedbuffer[0] == 16 && addedbuffer[1] == 32 || addedbuffer[50] == 16 && addedbuffer[51] == 03) /
{
/condition on which to enter here
addedbuffer[0] = 0; //making 1st and 2nd value as null
addedbuffer[1] = 0;
for (int i = 0; i < addedbuffer.Length; i++) //till length i will chk
{
if (addedbuffer[i] == 10) //replace 10 by 10 10
addedbuffer[i] = 1010; // error,
}
}
You can't insert into array (you can do it with List<T>), so it looks that you have to create a new array; Linq solution:
Byte[] source = new Byte[] {
20, 10, 20, 40, 50, 50, 50, 50, 10, 03
};
var result = source
.SelectMany((item, index) =>
item == 10 && index != 0 ? new Byte[] { item, item } : new Byte[] { item })
.ToArray();
However, using List<Byte> (in order just to insert 10's) instead of Byte[] is a better way out:
List<Byte> list = List<Byte>() {
20, 10, 20, 40, 50, 50, 50, 50, 10, 03
};
// In order not to read inserted 10's we loop backward
// i >= 1: 1st byte should be preserved as is even if its == 10
for (int i = list.Count - 1; i >= 1; --i)
if (list[i] == 10)
list.Insert(i + 1, 10);
It helps to think of sequences like arrays (IEnumerable<T> in C#) as things that can be transformed into new sequences. Much like numbers can be transformed when you send them into a function, sequences can be, too.
Consider if I have a function that is defined as Add10If10(Byte b). It might looks like this:
public static Byte Add10If10(Byte b)
{
if (b == 10)
{
return b + 10;
}
return b;
}
Numbers which go into this are transformed based on the condition, and come out either 10 larger or the same. The same can be done with sequences, you can take a sequence with some number of elements, and transform it so it has more elements. The result is a new sequence:
public static IEnumerable<Byte> AddAdditional10If10(IEnumerable<Byte> values)
{
foreach (var b in values)
{
if (b == 10)
{
yield return 10;
}
yield return b;
}
}
This function returns an additional 10 for every 10 it encounters. Now that you have the right sequence, you can change how it is stored by changing it to an array:
AddAdditional10If10(addedbuffer).ToArray();
This works via conversion to strings, using String.Replace and converting back:
byte[] source = new Byte[] { 20, 10, 20, 40, 50, 50, 50, 50, 10, 03 };
string[] strArr = Array.ConvertAll(source, b => b.ToString());
string[] replArr = String.Join(" ", strArr).Replace("10", "10 10").Split();
byte[] newArr = Array.ConvertAll(replArr, str => Byte.Parse(str));
Edit:
Another approach with LINQ - elements at first and last indexes and all elements not equal to 10 are unchanged, for all remaining 10s it returns a sequence of 2 10s:
byte[] res = source.SelectMany((b, index) => index == 0
|| index == source.Length - 1
|| b != 10 ?
Enumerable.Repeat(b, 1) : Enumerable.Repeat(b, 2))
.ToArray();
This is a fairly efficient way to do it (requires two passes over the input array, but does not require any resizing of the output array):
public static byte[] Replace10With1010ExcludingFirstByte(byte[] input)
{
// Count 10s excluding first byte.
int count = input.Skip(1).Count(b => b == 10);
// Create output array of appropriate size.
byte[] result = new byte[input.Length + count];
// Copy input to output, duplicating all 10s that are not the first byte.
result[0] = input[0];
for (int i = 1, j = 1; i < input.Length; ++i, ++j)
{
result[j] = input[i];
if (input[i] == 10)
result[++j] = 10;
}
return result;
}
Call it with your original array, and use the returned array instead.
Test code (for use in a Console app):
byte[] input = {10, 20, 10, 20, 40, 50, 50, 50, 50, 10, 03};
var result = Replace10With1010ExcludingFirstByte(input);
Console.WriteLine(string.Join(", ", result));
[EDIT] It seems from one of your comments to another answer that you also want to also exclude the last byte from conversion too.
If so, use this code instead:
public static byte[] Replace10With1010ExcludingFirstAndLastByte(byte[] input)
{
// Count 10s excluding first and last byte.
int count = input.Skip(1).Take(input.Length-2).Count(b => b == 10);
// Create output array of appropriate size.
byte[] result = new byte[input.Length + count];
// Copy input to output, duplicating all 10s that are not the first byte.
result[0] = input[0];
for (int i = 1, j = 1; i < input.Length; ++i, ++j)
{
result[j] = input[i];
if ((input[i] == 10) && (i != (input.Length-1)))
result[++j] = 10;
}
return result;
}

Find all the addition and subtraction combinations from an array of numbers

I need to make a function to take in an array of numbers and a target number and return how many different ways you can add or subtract those numbers to get the target number.
ie.
Values = 2, 4, 6, 8 Target = 12
2 + 4 + 6 = 12,
4 + 8 = 12,
6 + 8 - 2 = 12,
2 - 4 + 6 + 8 = 12,
Return 4
Here is what I have so far, but it only counts addition problems.
private void RecursiveSolve(int goal, int currentSum, List<int> included, List<int> notIncluded, int startIndex)
{
for (int index = startIndex; index < notIncluded.Count; index++)
{
int nextValue = notIncluded[index];
if (currentSum + nextValue == goal)
{
List<int> newResult = new List<int>(included);
newResult.Add(nextValue);
mResults.Add(newResult);
}
else if (currentSum - nextValue == goal)
{
List<int> newResult = new List<int>(included);
newResult.Add(nextValue);
mResults.Add(newResult);
}
if (currentSum - nextValue < goal && currentSum - nextValue > 0 )
{
List<int> nextIncluded = new List<int>(included);
nextIncluded.Add(nextValue);
List<int> nextNotIncluded = new List<int>(notIncluded);
nextNotIncluded.Remove(nextValue);
RecursiveSolve(goal, currentSum - nextValue, nextIncluded, nextNotIncluded, startIndex++);
}
if (currentSum + nextValue < goal)
{
List<int> nextIncluded = new List<int>(included);
nextIncluded.Add(nextValue);
List<int> nextNotIncluded = new List<int>(notIncluded);
nextNotIncluded.Remove(nextValue);
RecursiveSolve(goal, currentSum + nextValue, nextIncluded, nextNotIncluded, startIndex++);
}
}
}
Well, the simple way would be to try all of the combinations. If you have N numbers, you have 3^N combinations. The reasoning is this: You sum the numbers but put a coefficient in front of each of them. If your numbers are A1..AN, you add N coefficients (C1..CN) and sum:
Sum (Ai*Ci)
Your Cis can be 1 (meaning you add the number), -1 (meaning you subtract the number) or 0 (meaning you ignore the number).
So, go over all 3^N possible coefficient assignments, calculate the sum and compare to your target.
I am assuming all the numbers are different (as in your example). If a number can appear twice, you need to take that into account.

Categories