I have an array where the first two smallest values have to be added, and consequently the result has to be added to next smallest and so on until it reaches the end of the array to give a final total.
However, how can I dynamically modify the method/function so if the values changes and I have 6 vehicles and 6 specs values in the array, the return of the method/function total is not restricted to just 4 indexes.
The array values are unsorted, so in order to add the first smallest, it has to be sorted. Once that's done it adds the values of the new array.
Here's what I've tried:
public static int vehicles = 4;
public static int[] specs = new int[] { 40, 8, 16, 6 };
public static int time(int vehicles, int[] specs)
{
int newValue = 0;
for (int i = 1; i < vehicles; i++)
{
newValue = specs[i];
int j = i;
while (j > 0 && specs[j - 1] > newValue)
{
specs[j] = specs[j - 1];
j--;
}
specs[j] = newValue;
}
// How can I dynamically change this below:
int result1 = specs[0] + specs[1];
int result2 = result1 + specs[2];
int result3 = result2 + specs[3];
int total = result1 + result2 + result3;
return total; // Returns 114
}
Here's the idea of how it works:
4, [40, 8, 16, 6] = 14 --> [40, 14, 16] = 30 --> [40, 30] = 70 ==>> 14 + 30 + 70 = 114
6, [62, 14, 2, 6, 28, 41 ] = 8 --> [62, 14, 8, 28, 41 ] --> 22 [62, 22, 28, 41 ] --> 50
[62, 50, 41 ] --> 91 [62, 91 ] --> 153 ==> 8 + 22 + 50 + 91 + 153 = 324
First off, if you are not restricted to arrays for some weird reason use List<int> and your life will be easier.
List<int> integers = { 14, 6, 12, 8 };
integers.Sort();
integers.Reverse();
while( integers.Count > 1 )
{
int i = integers[integers.Count - 1];
int j = integers[integers.Count - 2];
integers[integers.Count - 2] = i + j;
integers.RemoveAt(integers.Count - 1);
}
var result = integers[0];
P.S.: This can be easily modified to operate on the array version, you can't RemoveAt() from an array but can separately maintain a lastValidIndex.
I would go with the simplest version of a one line solution using LINQ:
Array.Sort(specs);
int total = specs.Select((n, i) => specs.Take(i + 1).Sum()).Sum() - (specs.Length > 1 ? specs[0] : 0);
I would use Linq.
Enumerable.Range(2, specs.Length - 1)
.Select(i => specs
.Take(i)
.Sum())
.Sum();
Explanation:
We take a range starting from 2 ending with specs.Length.
We sum the first i values of specs where i is the current value in the range.
After we have all those sums, we sum them up as well.
To learn more about linq, start here.
This code only works if the values have been sorted already.
If you want to sort the values using linq, you should use this:
IEnumerable<int> sorted = specs.OrderBy(x => x);
Enumerable.Range(2, sorted.Count() - 1)
.Select(i => sorted
.Take(i)
.Sum())
.Sum();
The OrderBy function needs to know how to get the value it should use to compare the array values. Because the array values are the values we want to compare we can just select them using x => x. This lamba takes the value and returns it again.
See comments in code for explanation.
using System;
using System.Linq;
class Program
{
static void Main()
{
//var inputs = new [] { 40, 8, 16, 6 }; // total = 114
var inputs = new[] { 62, 14, 2, 6, 28, 41 }; // total = 324
var total = 0;
var query = inputs.AsEnumerable();
while (query.Count() > 1)
{
// sort the numbers
var sorted = query.OrderBy(x => x).ToList();
// get sum of the first two smallest numbers
var sumTwoSmallest = sorted.Take(2).Sum();
// count total
total += sumTwoSmallest;
// remove the first two smallest numbers
query = sorted.Skip(2);
// add the sum of the two smallest numbers into the numbers
query = query.Append(sumTwoSmallest);
}
Console.WriteLine($"Total = {total}");
Console.WriteLine("Press any key...");
Console.ReadKey(true);
}
}
I benchmark my code and the result was bad when dealing with large dataset. I suspect it was because of the sorting in the loop. The sorting is needed because I need to find the 2 smallest numbers in each iteration. So I think I need a better way to solve this. I use a PriorityQueue (from visualstudiomagazine.com) because the elements are dequeued based on priority, smaller numbers have higher priority in this case.
long total = 0;
while (pq.Count() > 0)
{
// get two smallest numbers when the priority queue is not empty
int sum = (pq.Count() > 0 ? pq.Dequeue() : 0) + (pq.Count() > 0 ? pq.Dequeue() : 0);
total += sum;
// put the sum of two smallest numbers in the priority queue if the queue is not empty
if (pq.Count() > 0) pq.Enqueue(sum);
}
Here's some benchmark results of the new (priority queue) code and the old code in release build. Results are in milliseconds. I didn't test the 1 million data with the old code because it's too slow.
+---------+----------+-------------+
| Data | New | Old |
+---------+----------+-------------+
| 10000 | 3.9158 | 5125.9231 |
| 50000 | 16.8375 | 147219.4267 |
| 1000000 | 406.8693 | |
+---------+----------+-------------+
Full code:
using System;
using System.Diagnostics;
using System.IO;
using System.Linq;
class Program
{
static void Main()
{
const string fileName = #"numbers.txt";
using (var writer = new StreamWriter(fileName))
{
var random = new Random();
for (var i = 0; i < 10000; i++)
writer.WriteLine(random.Next(100));
writer.Close();
}
var sw = new Stopwatch();
var pq = new PriorityQueue<int>();
var numbers = File.ReadAllLines(fileName);
foreach (var number in numbers)
pq.Enqueue(Convert.ToInt32(number));
long total = 0;
sw.Start();
while (pq.Count() > 0)
{
// get two smallest numbers when the priority queue is not empty
int sum = (pq.Count() > 0 ? pq.Dequeue() : 0) + (pq.Count() > 0 ? pq.Dequeue() : 0);
total += sum;
// put the sum of two smallest numbers in the priority queue if the queue is not empty
if (pq.Count() > 0) pq.Enqueue(sum);
}
sw.Stop();
Console.WriteLine($"Total = {total}");
Console.WriteLine($"Time = {sw.Elapsed.TotalMilliseconds}");
total = 0;
var query = File.ReadAllLines(fileName).Select(x => Convert.ToInt32(x));
sw.Restart();
while (query.Count() > 0)
{
// sort the numbers
var sorted = query.OrderBy(x => x).ToList();
// get sum of the first two smallest numbers
var sumTwoSmallest = sorted.Take(2).Sum();
// count total
total += sumTwoSmallest;
// remove the first two smallest numbers
query = sorted.Skip(2);
// add the sum of the two smallest numbers into the numbers
if (query.Count() > 0)
query = query.Append(sumTwoSmallest);
}
sw.Stop();
Console.WriteLine($"Total = {total}");
Console.WriteLine($"Time = {sw.Elapsed.TotalMilliseconds}");
Console.WriteLine("Press any key...");
Console.ReadKey(true);
}
}
PriorityQueue code:
using System;
using System.Collections.Generic;
// From http://visualstudiomagazine.com/articles/2012/11/01/priority-queues-with-c.aspx
public class PriorityQueue<T> where T : IComparable<T>
{
private List<T> data;
public PriorityQueue()
{
this.data = new List<T>();
}
public void Enqueue(T item)
{
data.Add(item);
int ci = data.Count - 1; // child index; start at end
while (ci > 0)
{
int pi = (ci - 1) / 2; // parent index
if (data[ci].CompareTo(data[pi]) >= 0)
break; // child item is larger than (or equal) parent so we're done
T tmp = data[ci];
data[ci] = data[pi];
data[pi] = tmp;
ci = pi;
}
}
public T Dequeue()
{
// assumes pq is not empty; up to calling code
int li = data.Count - 1; // last index (before removal)
T frontItem = data[0]; // fetch the front
data[0] = data[li];
data.RemoveAt(li);
--li; // last index (after removal)
int pi = 0; // parent index. start at front of pq
while (true)
{
int ci = pi * 2 + 1; // left child index of parent
if (ci > li)
break; // no children so done
int rc = ci + 1; // right child
if (rc <= li && data[rc].CompareTo(data[ci]) < 0) // if there is a rc (ci + 1), and it is smaller than left child, use the rc instead
ci = rc;
if (data[pi].CompareTo(data[ci]) <= 0)
break; // parent is smaller than (or equal to) smallest child so done
T tmp = data[pi];
data[pi] = data[ci];
data[ci] = tmp; // swap parent and child
pi = ci;
}
return frontItem;
}
public T Peek()
{
T frontItem = data[0];
return frontItem;
}
public int Count()
{
return data.Count;
}
public override string ToString()
{
string s = "";
for (int i = 0; i < data.Count; ++i)
s += data[i].ToString() + " ";
s += "count = " + data.Count;
return s;
}
public bool IsConsistent()
{
// is the heap property true for all data?
if (data.Count == 0)
return true;
int li = data.Count - 1; // last index
for (int pi = 0; pi < data.Count; ++pi)
{ // each parent index
int lci = 2 * pi + 1; // left child index
int rci = 2 * pi + 2; // right child index
if (lci <= li && data[pi].CompareTo(data[lci]) > 0)
return false; // if lc exists and it's greater than parent then bad.
if (rci <= li && data[pi].CompareTo(data[rci]) > 0)
return false; // check the right child too.
}
return true; // passed all checks
}
// IsConsistent
}
// PriorityQueue
Reference:
https://visualstudiomagazine.com/articles/2012/11/01/priority-queues-with-c.aspx
https://en.wikipedia.org/wiki/Priority_queue
You can simply sort it using Array.Sort(), then get the sums in a new array which starts with the smallest value and add each next value to the most recent sum, the total will be the value of the last sum.
public static int time(int vehicles, int[] specs)
{
int i, total;
int[] sums = new int[vehicles];
Array.Sort(spec);
sums[0] = specs[0];
for (i = 1; i < vehicles; i++)
sums[i] = sums[i - 1] + spec[i];
total = sums[spec - 1];
}
I am trying to figure out the best way to find the closest value, ROUNDED DOWN, in a List of integers using any n that is between two other numbers that are stored in a List. The all integers in this situation will ALWAYS be unsigned, in case that helps.
The assumptions are as follows:
The List always starts at 0
The List is always sorted ASC
All integers in the List are unsigned (no need for Math.Abs)
The number for comparison is always unsigned
For example:
List<int> numbers = new List<int>() { 0, 2000, 4000, 8000, 8500, 9101, 10010 };
int myNumber = 9000;
int theAnswer; // should be 8500
for (int i = 0; i < numbers.Count; i++) {
if (i == numbers.Count - 1) {
theAnswer = numbers[i];
break;
} else if (myNumber < numbers[i + 1]) {
theAnswer = numbers[i];
break;
}
}
The previous code example works without any flaws.
Is there a better more succint way to do it?
You can use List<T>.BinarySearch instead of enumerating elements of list in sequence.
List<int> numbers = new List<int>() { 0, 2000, 4000, 8000, 8500, 9101, 10010 };
int myNumber = 9000;
int r=numbers.BinarySearch(myNumber);
int theAnswer=numbers[r>=0?r:~r-1];
Filter list obtaining all values less than the myNumber and return last one:
theAnswer = numbers.Where(x => x <= myNumber ).Last();
A list can be indexed.
Start at the index in the middle of the list. If you found the exact number, you are good. If the number is less than the target number, search in the middle of the range from the start of the list to one less than the middle of the list. If the number is greater than the target number, work with the opposite half of the list. Continue this binary search until you find either an exact match, or the adjacent numbers that are smaller and larger than the target number.
Select the smaller of the two.
Please try this code:
List<int> numbers = new List<int>() { 0, 2000, 4000, 8000, 8500, 9101, 10010 };
int myNumber = 9000;
int theAnswer = numbers[numbers.Count - 1];
if (theAnswer > myNumber)
{
int l = 0, h = numbers.Count - 1, m;
do
{
m = (int)((double)(myNumber - numbers[l]) / (double)(numbers[h] - numbers[l]) * (h - l) + l);
if (numbers[m] > myNumber) h = m; else l = m;
}
while ((h - l) != 1);
theAnswer = numbers[l];
}
construct the shortest possible sequence of integers ending with A,
using the following rules:
the first element of the sequence is 1, each of the successive
elements is the sum of any two preceding elements (adding a single
element to itself is also permissible), each element is larger than
all the preceding elements; that is, the sequence is increasing.
For example, for A = 42, a possible solutions is [1, 2, 3, 6, 12, 24,
30, 42]. Another possible solution is [1, 2, 4, 5, 8, 16, 21, 42].
I have written the following but it fails on input of 456, by returning[1,2,4,8,16,32,64,128,200,256,456] , there are no numbers in the sequence that can be added together to get 200.
how can I fix the below code? what am I doing wrong?
public static int[] hit(int n)
{
List<int> nums = new List<int>();
int x = 1;
while (x < n)
{
nums.Add(x);
x = x * 2;
if (x > n)
{
nums.Add(n - (x / 2));
nums.Add(n);
}
}
nums.Sort();
int[] arr = nums.ToArray();
return arr;
}
I know there is gonna be a mathematical proof behind this, but my guess would be along the lines of dividing the number by 2, if it divides equally, repeat the process. If the there is a remainder, it would be 1. So you would have the integer quotient and the quotient plus one. Since one is guaranteed to be in the set, the larger of the 2 numbers is already taken care of. So just repeat the process for the smaller. This problem certainly implies a recursive solution that should be relatively trivial, so I will leave that up to the poster to implement.
I think I got it:
public Set<Integer> shortList(int n){
Set<Integer> result = new HashSet<Integer>();
Stack<Integer> stack = new Stack<Integer>();
result.add(n);
int num=n, den=0;
while(num>1){
while(num > den){
num--; den++;
if(num%den==0)
stack.push(num);
}//num>den
if(!stack.isEmpty()){
num = stack.pop();
result.add(num);
stack.clear();
}else{
result.add(num);
result.add(den);
}
den=0;
}
return result;
}//
Results (unsorted)
for 42: [1, 2, 3, 21, 6, 7, 42, 14]
for 15: [1, 2, 4, 5, 10, 15]
for 310: [1, 2, 155, 4, 5, 310, 10, 124, 62, 31, 15, 30]
Here is my solution in C++ (may be trivially changed to C#):
void printSequenceTo(unsigned n)
{
if (n == 1) { printf("1"); return; }
if (n & 1) {
int factor = 3;
do {
if (n % factor == 0) {
printSequenceTo(n / factor * (factor-1));
factor = 0;
break;
}
factor += 2;
} while (factor * factor <= n);
if (factor) printSequenceTo(n-1);
}
else
printSequenceTo(n/2);
printf(",%u", n);
}
Demonstration: http://ideone.com/8lXxc
Naturally it could be sped up using a sieve for factorization.
Note, this is significant improvement over the accepted answer, but it still is not optimal.
Here is my attempt. It may be optimised, but it shows my idea:
private static IEnumerable<int> OptimalSequence(int lastElement)
{
var result = new List<int>();
int currentElement = 1;
do
{
result.Add(currentElement);
currentElement = currentElement * 2;
} while (currentElement <= lastElement);
var realLastElement = result.Last();
if (lastElement != realLastElement)
{
result.Add(lastElement);
FixCollection(result, lastElement - realLastElement);
}
return result;
}
private static void FixCollection(List<int> result, int difference)
{
for (int i = 0; i < result.Count; i++)
{
if (result[i] == difference) break;
if (result[i] > difference)
{
result.Insert(i, difference);
FixCollection(result, difference - result[i-1]);
break;
}
}
}
Edit
I can't prove it formally but my answer and Chris Gessler's answer give sequences of the same size (at least I checked for numbers between 1 and 10000) because both algorithms compensate odd numbers.
Some examples:
Number 1535
1,2,3,4,7,8,15,16,31,32,63,64,127,128,255,256,511,512,1024,1535
Number 2047
1,2,3,4,7,8,15,16,31,32,63,64,127,128,255,256,511,512,1023,1024,2047
Number 3071
1,2,3,4,7,8,15,16,31,32,63,64,127,128,255,256,511,512,1023,1024,2048,3071
Number 4095
1,2,3,4,7,8,15,16,31,32,63,64,127,128,255,256,511,512,1023,1024,2047,2048,4095
Number 6143
1,2,3,4,7,8,15,16,31,32,63,64,127,128,255,256,511,512,1023,1024,2047,2048,4096,6143
Number 8191
1,2,3,4,7,8,15,16,31,32,63,64,127,128,255,256,511,512,1023,1024,2047,2048,4095,4096,8191
==============
Number 1535
1,2,4,5,10,11,22,23,46,47,94,95,190,191,382,383,766,767,1534,1535
Number 2047
1,2,3,6,7,14,15,30,31,62,63,126,127,254,255,510,511,1022,1023,2046,2047
Number 3071
1,2,4,5,10,11,22,23,46,47,94,95,190,191,382,383,766,767,1534,1535,3070,3071
Number 4095
1,2,3,6,7,14,15,30,31,62,63,126,127,254,255,510,511,1022,1023,2046,2047,4094,4095
Number 6143
1,2,4,5,10,11,22,23,46,47,94,95,190,191,382,383,766,767,1534,1535,3070,3071,6142,6143
Number 8191
1,2,3,6,7,14,15,30,31,62,63,126,127,254,255,510,511,1022,1023,2046,2047,4094,4095,8190,8191
public static int[] hit(int n)
{
List<int> nums = new List<int>();
nums.Add(n);
int x = 0;
int Right = 0;
int Left = 0;
do
{
//even num
if (n % 2 == 0)
{
x = n / 2;
//result of division is also even 20/2 = 10
if (x % 2 == 0 || n>10 )
{
nums.Add(x);
n = x;
}
else
{
nums.Add(x + 1);
nums.Add(x - 1);
n = x - 1;
}
}
//numbers that can only be divided by 3
else if (n % 3 == 0)
{
x = n / 3;//46/3 =155
Right = x * 2;//155*2 = 310
Left = x;//155
nums.Add(Right);
nums.Add(Left);
n = x;
}
//numbers that can only be divided by 5
else
{
x = n / 2;
Right = x + 1;
Left = x;
nums.Add(Right);
nums.Add(Left);
n = Left;
}
} while (n > 2);
nums.Add(1);
nums.Reverse();
int[] arr = nums.ToArray();
return arr;
}