Injecting multiple implementations with Dependency injection - c#

I'm currently working on a ASP.NET Core Project and want to use the built-in Dependency Injection (DI) functionality.
Well, I started with an interface:
ICar
{
string Drive();
}
and want to implement the ICar interface multiple times like
public class BMW : ICar
{
public string Drive(){...};
}
public class Jaguar : ICar
{
public string Drive(){...};
}
and add the following in the Startup class
public void ConfigureServices(IServiceCollection services)
{
// Add framework services.
services.AddMvc();
services.AddTransient<ICar, BMW>();
// or
services.AddTransient<ICar, Jaguar>();
}
Now I have to make a decision between two implementations and my decided class will set in every constructor that needs an ICar implementation. But my idea was to say, if the requested Controller is BMWController, then use BMW implementation or use Jaguar if the JaguarController is requested.
Otherwise DI don't make sense for me. How can i handle this issue properly?
For better understanding my problem take a look to this pic: https://media-www-asp.azureedge.net/media/44907/dependency-injection-golf.png?raw=true
How does the dependency resolver work and where can i set it up in ASP.NET Core?
In Unity it's possible to make something like this
container.RegisterType<IPerson, Male>("Male");
container.RegisterType<IPerson, Female>("Female");
and call the correct type like this
[Dependency("Male")]IPerson malePerson

The functionality you are looking for isn't easy to implement, at least when you are using it in the controller because controllers are treated a bit specially (By default, controllers aren't registered with ServiceCollection and hence not resolved/instantiated by the container and instead instantiated by ASP.NET Core during the request, see also the explanation and example on my related answer).
With built-in IoC container, you can only do it via factory method, here with an example on a BmwCarFactory class:
services.AddScoped<ICar, BmwCar>();
services.AddScoped<BmwCar>();
services.AddScoped<BmwCarFactory>(p => new BmwCarFactory(p.GetRequiredService<BmwCar>())));
The default IoC container is intentionally kept simple to provide basics of dependency injection to get you started and for other IoC containers to be able to easily plugin in there and replace the default implementation.
For more advanced scenarios the users are encouraged to use an IoC of their choice which supports more advanced features (assembly scan, decorators, conditional/parameterized dependencies, etc.
AutoFac (which I use in my projects) supports such advanced scenarios. In the AutoFac documentation there are 4 scenarios (altogether with the 3rd which #pwas suggested in the comments):
##1. Redesign your classes
Needs some additional overhead of refactoring your code and class hierarchy but heavily simplifies the consumption of injected services
##2. Change the registrations
The docs describe it here, if you are unwilling or unable to change the code.
// Attach resolved parameters to override Autofac's
// lookup just on the ISender parameters.
builder.RegisterType<ShippingProcessor>()
.WithParameter(
new ResolvedParameter(
(pi, ctx) => pi.ParameterType == typeof(ISender),
(pi, ctx) => ctx.Resolve<PostalServiceSender>()));
builder.RegisterType<CustomerNotifier>();
.WithParameter(
new ResolvedParameter(
(pi, ctx) => pi.ParameterType == typeof(ISender),
(pi, ctx) => ctx.Resolve<EmailNotifier>()));
var container = builder.Build();
##3. Using keyed services (here)
It is pretty similar to the previous approach to 2. but resolves the services based on a key, rather than their concrete type
##4. Use Metadata
This is quite similar to 3. but you define the keys via attribute.
Other containers like Unity have special attributes, like DependencyAttribute which you can use to annotate the dependency, like
public class BmwController : Controller
{
public BmwController([Dependency("Bmw")ICar car)
{
}
}
But this and the 4th option of Autofac make the IoC container leak into your services and you should consider the other approaches.
Alternatively you create classes and factories which resolve your services based on some conventions. For example a ICarFactory:
public ICarFactory
{
ICar Create(string carType);
}
public CarFactory : ICarFactory
{
public IServiceProvider provider;
public CarFactory(IServiceProvider provider)
{
this.provider = provider;
}
public ICar Create(string carType)
{
if(type==null)
throw new ArgumentNullException(nameof(carType));
var fullQualifedName = $"MyProject.Business.Models.Cars.{carType}Car";
Type carType = Type.GetType(fullQualifedName);
if(carType==null)
throw new InvalidOperationException($"'{carType}' is not a valid car type.");
ICar car = provider.GetService(carType);
if(car==null)
throw new InvalidOperationException($"Can't resolve '{carType.Fullname}'. Make sure it's registered with the IoC container.");
return car;
}
}
Then use it like
public class BmwController : Controller
{
public ICarFactory carFactory;
public BmwController(ICarFactory carFactory)
{
this.carFactory = carFactory;
// Get the car
ICar bmw = carFactory.Create("Bmw");
}
}
##Alternative to IServiceProvider
// alternatively inject IEnumerable<ICar>
public CarFactory : ICarFactory
{
public IEnumerable<ICar> cars;
public CarFactory(IEnumerable<ICar> cars)
{
this.cars = cars;
}
public ICar Create(string carType)
{
if(type==null)
throw new ArgumentNullException(nameof(carType));
var carName = "${carType}Car";
var car = cars.Where(c => c.GetType().Name == carName).SingleOrDefault();
if(car==null)
throw new InvalidOperationException($"Can't resolve '{carName}.'. Make sure it's registered with the IoC container.");
return car;
}
}

Related

Determining which implementation to inject at runtime using .NET Core dependency injection

I have three types of users in my application, let's say Type1, Type2 and Type3.
Then i want to create one service implementation for each type, let's say i have a service to get photos, i would have three services : Type1PhotosService, Type2PhotosService and Type3PhotosService, each of them implementing IPhotosService.
In the web api, i would inject IPhotosService :
IPhotosService _service;
public PhotosController(IPhotosService service){
_service = service;
}
The web api uses token authentication with claims. So what i want to achieve, is for each user, depending on the claim he has : type1 or type2 or type3, the correct implementation of the service will be automatically injected rather than injecting a single service in the startup file.
What i want to avoid, is having one service, with a bunch of switch and if statements to return the correct data depending on user type and the roles he has.
EDIT:
some comments were wondering what's the point of three implementations, so here are more details to give it a little more sense.
The service is a job finder service, and the application has three different profiles : candidate, employer and administration. Each of these profiles need a proper implementation. So rather than having three methods GetCandidateJobs, GetEmployerJobs and GetAdministrationJobs inside the same service and switch on the user type, i preferred to have one implementation per profile type, then depending on the profile type, use the correct implementation.
Without Using a Separate IoC Container
Here's an approach that's way easier than configuring your app to use another IoC container and then configuring that container. After working through this with Windsor this solution seems a whole lot easier.
This approach is simplest if you can use a singleton instance of each service implementation.
We'll start with an interface, some implementations, and the factory we can inject which will return an implementation selected at runtime based on some input.
public interface ICustomService { }
public class CustomServiceOne : ICustomService { }
public class CustomServiceTwo : ICustomService { }
public class CustomServiceThree : ICustomService { }
public interface ICustomServiceFactory
{
ICustomService Create(string input);
}
Here's a really crude implementation of the factory. (Didn't use string constants, or polish it at all.)
public class CustomServiceFactory : ICustomServiceFactory
{
private readonly Dictionary<string, ICustomService> _services
= new Dictionary<string, ICustomService>(StringComparer.OrdinalIgnoreCase);
public CustomServiceFactory(IServiceProvider serviceProvider)
{
_services.Add("TypeOne", serviceProvider.GetService<CustomServiceOne>());
_services.Add("TypeTwo", serviceProvider.GetService<CustomServiceTwo>());
_services.Add("TypeThree", serviceProvider.GetService<CustomServiceThree>());
}
public ICustomService Create(string input)
{
return _services.ContainsKey(input) ? _services[input] : _services["TypeOne"];
}
}
This assumes that you've already registered CustomServiceOne, CustomServiceTwo, etc. with the IServiceCollection. They would not be registered as interface implementations, since that's not how we're resolving them. This class will simply resolve each one and put them in a dictionary so that you can retrieve them by name.
In this case the factory method takes a string, but you could inspect any type or multiple arguments to determine which implementation to return. Even the use of a string as the dictionary key is arbitrary. And, just as an example, I provided fallback behavior to return some default implementation. It might make more sense to throw an exception instead if you can't determine the right implementation to return.
Another alternative, depending on your needs, would be to resolve the implementation within the factory when it's requested. To the extent possible I try to keep most classes stateless so that I can resolve and reuse a single instance.
To register the factory with the IServiceCollection at startup we would do this:
services.AddSingleton<ICustomServiceFactory>(provider =>
new CustomServiceFactory(provider));
The IServiceProvider will be injected into the factory when the factory is resolved, and then the factory will use it to resolve the service.
Here's the corresponding unit tests. The test method is the identical to the one used in the Windsor answer, which "proves" that we can transparently replace one factory implementation with another and change other stuff in the composition root without breaking stuff.
public class Tests
{
private IServiceProvider _serviceProvider;
[SetUp]
public void Setup()
{
var services = new ServiceCollection();
services.AddSingleton<CustomServiceOne>();
services.AddSingleton<CustomServiceTwo>();
services.AddSingleton<CustomServiceThree>();
services.AddSingleton<ICustomServiceFactory>(provider =>
new CustomServiceFactory(provider));
_serviceProvider = services.BuildServiceProvider();
}
[TestCase("TypeOne", typeof(CustomServiceOne))]
[TestCase("TypeTwo", typeof(CustomServiceTwo))]
[TestCase("TYPEThree", typeof(CustomServiceThree))]
[TestCase("unknown", typeof(CustomServiceOne))]
public void FactoryReturnsExpectedService(string input, Type expectedType)
{
var factory = _serviceProvider.GetService<ICustomServiceFactory>();
var service = factory.Create(input);
Assert.IsInstanceOf(expectedType, service);
}
}
As in the Windsor example, this is written to avoid any reference to the container outside of the composition root. If a class depends on ICustomServiceFactory and ICustomService you could switch between this implementation, the Windsor implementation, or any other implementation of the factory.
Using Windsor
I'm going to sidestep the questions about whether or not this makes sense in this case and just attempt to answer the question as asked:
.NET Core's IoC container isn't built particularly well for this sort of scenario. (They acknowledge this in their documentation.) You can work around it by adding another IoC container like Windsor.
The implementation ended up looking way more complicated than I would have liked, but once you get past the setup it's not bad and you get access to Windsor's features. I'm going to provide another answer that doesn't include Windsor. I had to do all of this work to see that I probably like the other approach better.
In your project, add the Castle.Windsor.MsDependencyInjection NuGet package.
Interfaces and Implementations for Testing
For testing, I added some interfaces and implementations:
public interface ICustomService { }
public interface IRegisteredWithServiceCollection { }
public class CustomServiceOne : ICustomService { }
public class CustomServiceTwo : ICustomService { }
public class CustomServiceThree : ICustomService { }
public class RegisteredWithServiceCollection : IRegisteredWithServiceCollection { }
The intent is to create a factory that will select and return an implementation of ICustomService using some runtime input.
Here's an interface which will serve as a factory. This is what we can inject into a class and call at runtime to get an implementation of ICustomService:
public interface ICustomServiceFactory
{
ICustomService Create(string input);
}
Configure the Windsor Container
Next is a class which will configure an IWindsorContainer to resolve dependencies:
public class WindsorConfiguration : IWindsorInstaller
{
public void Install(IWindsorContainer container, IConfigurationStore store)
{
container.AddFacility<TypedFactoryFacility>();
container.Register(
Component.For<ICustomService, CustomServiceOne>().Named("TypeOne"),
Component.For<ICustomService, CustomServiceTwo>().Named("TypeTwo"),
Component.For<ICustomService, CustomServiceThree>().Named("TypeThree"),
Component.For<ICustomService, CustomServiceOne>().IsDefault(),
Component.For<ICustomServiceFactory>().AsFactory(new CustomServiceSelector())
);
}
}
public class CustomServiceSelector : DefaultTypedFactoryComponentSelector
{
public CustomServiceSelector()
: base(fallbackToResolveByTypeIfNameNotFound: true) { }
protected override string GetComponentName(MethodInfo method, object[] arguments)
{
return (string) arguments[0];
}
}
Here's what's going on in here:
The TypedFactoryFacility will enable us to use Windsor's typed factories. It will create an implementation of our factory interface for us.
We're registering three implementations of ICustomService. Because we're registering more than one implementation, each must have a name. When we resolve ICustomService we can specify a name, and it will resolve the type according to that string.
For illustration I registered another implementation of ICustomService without a name. That will enable us to resolve a default implementation if we try to resolve using an unrecognized name. (Some alternatives are just throwing an exception, or returning a "null" instance of ICustomService or creating a class like UnknownCustomService that throws an exception.)
Component.For<ICustomServiceFactory>().AsFactory(new CustomServiceSelector()) tells the container to create a proxy class to implement ICustomServiceFactory. (More on that in their documentation.)
CustomServiceSelector is what takes the argument passed to the factory's Create method and returns the component name (TypeOne, TypeTwo, etc.) that will be used to select a component. In this case we're expecting that the argument passed to the factory will be the same as the registration name we've used. But we could replace this with other logic. Our factory could even take arguments of other types which we could inspect and determine which string to return.
Configure Your App To Use the Windsor Container
Now, in StartUp, modify ConfigureServices to return IServiceProvider instead of void and create an IServiceProvider that combines services registered directly with the IServiceCollection with those registered with the Windsor container:
public IServiceProvider ConfigureServices(IServiceCollection services)
{
services.AddMvc();
var container = new WindsorContainer();
container.Install(new WindsorConfiguration());
return WindsorRegistrationHelper.CreateServiceProvider(container, services);
}
container.Install(new WindsorConfiguration()) allows WindsorConfiguration to configure our container. We could just configure the container right in this method, but this is a nice way to keep our container configurations organized. We can create numerous IWindsorInstaller implementations or our own custom classes to configure the Windsor container.
WindsorRegistrationHelper.CreateServiceProvider(container, services) creates the IServiceProvider that uses container and services.
Does It Work?
I wouldn't post all this without finding out first. Here's some NUnit tests. (I usually write some basic tests for DI configuration.)
The setup creates an IServiceProvider similar to what would happen in the application startup. It creates a container and applies the WindsorConfiguration. I'm also registering a service directly with the ServiceCollection to make sure that the two play well together. Then I'm combining the two into an IServiceProvider.
Then I'm resolving an ICustomerServiceFactory from the IServiceProvider and verifying that it returns the correct implementation of ICustomService for each input string, including the fallback when the string isn't a recognized dependency name.
I'm also verifying that the service registered directly with ServiceCollection is resolved.
public class Tests
{
private IServiceProvider _serviceProvider;
[SetUp]
public void Setup()
{
var services = new ServiceCollection();
services.AddSingleton<IRegisteredWithServiceCollection, RegisteredWithServiceCollection>();
var container = new WindsorContainer();
container.Install(new WindsorConfiguration());
_serviceProvider = WindsorRegistrationHelper.CreateServiceProvider(container, services);
}
[TestCase("TypeOne", typeof(CustomServiceOne))]
[TestCase("TypeTwo", typeof(CustomServiceTwo))]
[TestCase("TYPEThree", typeof(CustomServiceThree))]
[TestCase("unknown", typeof(CustomServiceOne))]
public void FactoryReturnsExpectedService(string input, Type expectedType)
{
var factory = _serviceProvider.GetService<ICustomServiceFactory>();
var service = factory.Create(input);
Assert.IsInstanceOf(expectedType, service);
}
[Test]
public void ServiceProviderReturnsServiceRegisteredWithServiceCollection()
{
var service = _serviceProvider.GetService<IRegisteredWithServiceCollection>();
Assert.IsInstanceOf<RegisteredWithServiceCollection>(service);
}
}
Is All of This Worth It?
Now that I've figured it out, I'd probably use it if I really needed this sort of functionality. It looks worse if you're trying to assimilate both using Windsor with .NET Core and seeing it's abstract factory implementation for the first time. Here's another article with some more information on Windsor's abstract factory without all the noise about .NET Core.
I am going to go out on a limb here and say that the attempt to utilize dependency injection for this purpose is sub-optimal. Normally this would be handled by a Factory pattern that produces service implementations using the dreaded if and switch statements. A simple example is:
public interface IPhotoService {
Photo CreatePhoto(params);
}
public class PhotoServiceFactory {
private readonly IPhotoService _type1;
private readonly IPhotoService _type2;
private readonly IPhotoService _type3;
public PhotoServiceFactory(IDependency1 d1, IDependency2 d2, ...etc) {
_type1 = new ConcreteServiceA(d1);
_type2 = new ConcreteServiceB(d2);
_type3 = new ConcreteServiceC(etc);
}
public IPhotoService Create(User user) {
switch(user.Claim) {
case ClaimEnum.Type1:
return _type1;
case ClaimEnum.Type2:
return _type2;
case ClaimEnum.Type3:
return _type3;
default:
throw new NotImplementedException
}
}
}
Then in your controller:
public class PhotosController {
IPhotoServiceFactory _factory;
public PhotosController(IPhotoServiceFactory factory){
_factory = factory;
}
public IHttpActionResult GetPhoto() {
var photoServiceToUse = _factory.Create(User);
var photo = photoServiceToUse.CreatePhoto(params);
return Ok(photo);
}
}
Alternately just use the concrete classes as arguments in the constructor and follow a similar logic as to the above.
Here is one solution, i have created inside asp.net core console application.
using System;
using System.Collections.Generic;
using Microsoft.Extensions.DependencyInjection;
namespace CreationalPattern
{
class Program
{
static void Main(string[] args)
{
// Add dependency into service collection
var services = new ServiceCollection()
.AddTransient<FordFigoFactory>()
.AddTransient<AudiQ7Factory>();
/* Create CarServiceFactory as singleton because it can be used across the application more frequently*/
services.AddSingleton<ICarServiceFactory>(provider => new CarServiceFactory(provider));
// create a service provider from the service collection
var serviceProvider = services.BuildServiceProvider();
/* instantiate car*/
var factory = serviceProvider.GetService<ICarServiceFactory>();
var audiCar = factory.Create("audi").CreateACar("Blue");
Console.Read();
}
}
public interface ICarServiceFactory
{
ICreateCars Create(string input);
}
public class CarServiceFactory : ICarServiceFactory
{
private readonly Dictionary<string, ICreateCars> _services
= new Dictionary<string, ICreateCars>(StringComparer.OrdinalIgnoreCase);
public CarServiceFactory(IServiceProvider serviceProvider)
{
_services.Add("ford", serviceProvider.GetService<FordFigoFactory>());
_services.Add("audi", serviceProvider.GetService<AudiQ7Factory>());
}
public ICreateCars Create(string input)
{
Console.WriteLine(input + " car is created.");
return _services.ContainsKey(input) ? _services[input] : _services["ford"];
}
}
public interface ICreateCars
{
Car CreateACar(string color);
}
public class FordFigoFactory : ICreateCars
{
public Car CreateACar(string color)
{
Console.WriteLine("FordFigo car is created with color:" + color);
return new Fordigo { Color = color};
}
}
public class AudiQ7Factory : ICreateCars
{
public Car CreateACar(string color)
{
Console.WriteLine("AudiQ7 car is created with color:" + color);
return new AudiQ7 { Color = color };
}
}
public abstract class Car
{
public string Model { get; set; }
public string Color { get; set; }
public string Company { get; set; }
}
public class Fordigo : Car
{
public Fordigo()
{
Model = "Figo";
Company = "Ford";
}
}
public class AudiQ7 : Car
{
public AudiQ7()
{
Model = "Audi";
Company = "Q7";
}
}
}
Explanation:
To understand better try to read the program from bottom to top. We have 3 sections:
Car (Car, Fordigo, AudiQ7)
CarFactory (ICreateCars, FordFigoFactory, AudiQ7Factory)
CarService (ICarServiceFactory, CarServiceFactory)
In this Dependency injection is registered as transient for Factory classes FordFigoFactory and AudiQ7Factory. And Singleton for CarServiceFactory.

How to resolve a dependency based on attributes on a controller in ASP.NET Core MVC

I'm trying to implement caching in our Data Access layer in an ASP.NET Core MVC project as painlessly as possible. The main issue is that we don't want to read from the cache on all pages, only on some. The example below should illustrate the kind of setup we have:
[UseCache]
public class ControllerA : Controller
{
public ControllerA(IBuilder builder)
{
// Should resolve an IBuilder with a CacheService
}
}
public class ControllerB : Controller
{
public ControllerB(IBuilder builder)
{
// Should resolve an IBuilder with a NullCacheService
}
}
public class Builder : IBuilder
{
public Builder(ICacheService cacheService)
{
// The type of the resolved ICacheService depends on the UseCache
// attribute on any of the object that depends on this IBuilder
}
}
public class CacheService : ICacheService
{
public Object Get(string key, Func<Object> getValue)
{
// Check if the value is cached against Key and return it if it's not
// Obviously needs a lot more here regarding caching timeframes, expiry etc
}
}
public class NullCacheService : ICacheService
{
public Object Get(string key, Func<Object> getValue)
{
// Don't do anything with key, just do the work in getValue and return it
}
}
public class UseCacheAttribute : Attribute
{
}
I know Autofac can deal with resolving dependencies using attributes but
The Autofac.Extras.AttributeMetadata package is not support in ASP.NET Core MVC
Even if it were supported, I can't see how it would support attribute detection on the objects that contain this one.
I'm happy to introduce a new IoC framework, we're not tied to Autofac or the default IoC implemention.
Is what I'm trying to achieve possible? What would be considered a better caching solution?
I'm happy to introduce a new IoC framework, we're not tied to Autofac or the default IoC implemention.
I'm not that familiar with Autofac, but I am familiar with Simple Injector, so I can show you how to apply such registration with Simple Injector:
var cache = new CacheService();
container.RegisterConditional(typeof(IBuilder),
Lifestyle.Transient.CreateRegistration<Builder>(
() => new Builder(cache),
container),
c => c.Consumer.ImplementationType.GetCustomAttribute<UseCacheAttribute>() != null);
container.RegisterConditional(typeof(IBuilder),
Lifestyle.Transient.CreateRegistration<Builder>(
() => new Builder(new NullCacheService()),
container),
c => !c.Handled);
This registration is a bit complicated because you wish to change the dependency of the Builder type based on the consumer of Builder. Lookup up the 'chain' up to the consumer of the consumer is something that Simple Injector does not support, because it can easily result in incorrect behavior, especially when the middle consumer has a lifestyle other than transient. That's the conditional registration are for IBuilder and not for ICacheService.

Dependency Injection in Model classes (entities)

I am building an ASP.NET Core MVC application with Entity Framework Code-First.
I implemented a simple repository pattern, providing basic CRUD operations for all the model classes I have created.
I chose to follow all the recommendations provided in docs and DI is one of these.
In ~~.NET 5~~ (6 years later update: .net 5 was the alpha name of .net core 1.0) dependency injection works very well for any class that we do not directly instantiate (e.g.: controllers, data repositories, ...).
We simply inject them via the constructor, and register the mappings in the Startup class of the application :
// Some repository class
public class MyRepository : IMyRepository
{
private readonly IMyDependency _myDependency;
public MyRepository(IMyDependency myDependency)
{
_myDependency = myDependency;
}
}
// In startup.cs :
services.AddScoped<IMyDependency, MyDependency>();
services.AddScoped<IMyRepository, MyRepository>();
The problem is that in some of my model classes, I would like to inject some of the dependencies I have declared.
But I think that I cannot use the constructor injection pattern because model classes are often explicitly instantiated. Therefore, I would need to provide myself with the dependencies, which I can't.
So my question is: is there another way than constructor injection to inject dependencies, and how? I was for example thinking of an attribute pattern or something like that.
As I already explained in a comment, when creating an object using new, there is nothing from the dependency injection framework that is involved in the process. As such, it’s impossible for the DI framework to magically inject things into that object, it simply doesn’t know about it.
Since it does not make any sense to let the DI framework create your model instances (models are not a dependency), you will have to pass in your dependencies explicitly if you want the model to have them. How you do that depends a bit on what your models are used for, and what those dependencies are.
The simple and clear case would be to just have your model expect the dependencies on the constructor. That way, it is a compile time error if you do not provide them, and the model has access to them right away. As such, whatever is above, creating the models, is required to have the dependencies the model type needs. But at that level, it’s likely that this is a service or a controller which has access to DI and can request the dependency itself.
Of course, depending on the number of dependencies, this might become a bit complicated as you need to pass them all to the constructor. So one alternative would be to have some “model factory” that takes care of creating the model object. Another alternative would also be to use the service locator pattern, passing the IServiceCollection to the model which can then request whatever dependencies it needs. Note that is generally a bad practice and not really inversion of control anymore.
Both these ideas have the issue that they modify the way the object is created. And some models, especially those handled by Entity Framework, need an empty constructor in order for EF to be able to create the object. So at that point you will probably end up with some cases where the dependencies of your model are not resolved (and you have no easy way of telling).
A generally better way, which is also a lot more explicit, would be to pass in the dependency where you need it, e.g. if you have some method on the model that calculates some stuff but requires some configuration, let the method require that configuration. This also makes the methods easier to test.
Another solution would be to move the logic out of the model. For example the ASP.NET Identity models are really dumb. They don’t do anything. All the logic is done in the UserStore which is a service and as such can have service dependencies.
The pattern often used in domain driven design (rich domain model to be specific) is to pass the required services into the method you are calling.
For example if you want to calculate the vat, you'd pass the vat service into the CalculateVat method.
In your model
public void CalculateVat(IVatCalculator vatCalc)
{
if(vatCalc == null)
throw new ArgumentNullException(nameof(vatCalc));
decimal vatAmount = vatcalc.Calculate(this.TotalNetPrice, this.Country);
this.VatAmount = new Currency(vatAmount, this.CurrencySymbol);
}
Your service class
// where vatCalculator is an implementation IVatCalculator
order.CalculateVat(vatCalculator);
Finally your service can inject another services, like a repository which will fetch the tax rate for a certain country
public class VatCalculator : IVatCalculator
{
private readonly IVatRepository vatRepository;
public VatCalculator(IVatRepository vatRepository)
{
if(vatRepository == null)
throw new ArgumentNullException(nameof(vatRepository));
this.vatRepository = vatRepository;
}
public decimal Calculate(decimal value, Country country)
{
decimal vatRate = vatRepository.GetVatRateForCountry(country);
return vatAmount = value * vatRate;
}
}
I know my answer is late and may not exactly what you're asking for, but I wanted to share how I do it.
First of all: If you want to have a static class that resolves your dependencies this is a ServiceLocator and it's Antipattern so try not to use it as you can.
In my case I needed it to call MediatR inside of my DomainModel to implement the DomainEvents logic.
Anyway, I had to find a way to call a static class in my DomainModel to get an instance of some registered service from DI.
So I've decided to use the HttpContext to access the IServiceProvider but I needed to access it from a static method without mention it in my domain model.
Let's do it:
1- I've created an interface to wrap the IServiceProvider
public interface IServiceProviderProxy
{
T GetService<T>();
IEnumerable<T> GetServices<T>();
object GetService(Type type);
IEnumerable<object> GetServices(Type type);
}
2- Then I've created a static class to be my ServiceLocator access point
public static class ServiceLocator
{
private static IServiceProviderProxy diProxy;
public static IServiceProviderProxy ServiceProvider => diProxy ?? throw new Exception("You should Initialize the ServiceProvider before using it.");
public static void Initialize(IServiceProviderProxy proxy)
{
diProxy = proxy;
}
}
3- I've created an implementation for the IServiceProviderProxy which use internally the IHttpContextAccessor
public class HttpContextServiceProviderProxy : IServiceProviderProxy
{
private readonly IHttpContextAccessor contextAccessor;
public HttpContextServiceProviderProxy(IHttpContextAccessor contextAccessor)
{
this.contextAccessor = contextAccessor;
}
public T GetService<T>()
{
return contextAccessor.HttpContext.RequestServices.GetService<T>();
}
public IEnumerable<T> GetServices<T>()
{
return contextAccessor.HttpContext.RequestServices.GetServices<T>();
}
public object GetService(Type type)
{
return contextAccessor.HttpContext.RequestServices.GetService(type);
}
public IEnumerable<object> GetServices(Type type)
{
return contextAccessor.HttpContext.RequestServices.GetServices(type);
}
}
4- I should register the IServiceProviderProxy in the DI like this
public void ConfigureServices(IServiceCollection services)
{
services.AddHttpContextAccessor();
services.AddSingleton<IServiceProviderProxy, HttpContextServiceProviderProxy>();
.......
}
5- Final step is to initialize the ServiceLocator with an instance of IServiceProviderProxy at the Application startup
public void Configure(IApplicationBuilder app, IHostingEnvironment env,IServiceProvider sp)
{
ServiceLocator.Initialize(sp.GetService<IServiceProviderProxy>());
}
As a result now you can call the ServiceLocator in your DomainModel classes "Or and needed place" and resolve the dependencies that you need.
public class FakeModel
{
public FakeModel(Guid id, string value)
{
Id = id;
Value = value;
}
public Guid Id { get; }
public string Value { get; private set; }
public async Task UpdateAsync(string value)
{
Value = value;
var mediator = ServiceLocator.ServiceProvider.GetService<IMediator>();
await mediator.Send(new FakeModelUpdated(this));
}
}
The built-in model binders complain that they cannot find a default ctor. Therefore you need a custom one.
You may find a solution to a similar problem here, which inspects the registered services in order to create the model.
It is important to note that the snippets below provide slightly different functionality which, hopefully, satisfies your particular needs. The code below expects models with ctor injections. Of course, these models have the usual properties you might have defined. These properties are filled in exactly as expected, so the bonus is the correct behavior when binding models with ctor injections.
public class DiModelBinder : ComplexTypeModelBinder
{
public DiModelBinder(IDictionary<ModelMetadata, IModelBinder> propertyBinders) : base(propertyBinders)
{
}
/// <summary>
/// Creates the model with one (or more) injected service(s).
/// </summary>
/// <param name="bindingContext"></param>
/// <returns></returns>
protected override object CreateModel(ModelBindingContext bindingContext)
{
var services = bindingContext.HttpContext.RequestServices;
var modelType = bindingContext.ModelType;
var ctors = modelType.GetConstructors();
foreach (var ctor in ctors)
{
var paramTypes = ctor.GetParameters().Select(p => p.ParameterType).ToList();
var parameters = paramTypes.Select(p => services.GetService(p)).ToArray();
if (parameters.All(p => p != null))
{
var model = ctor.Invoke(parameters);
return model;
}
}
return null;
}
}
This binder will be provided by:
public class DiModelBinderProvider : IModelBinderProvider
{
public IModelBinder GetBinder(ModelBinderProviderContext context)
{
if (context == null) { throw new ArgumentNullException(nameof(context)); }
if (context.Metadata.IsComplexType && !context.Metadata.IsCollectionType)
{
var propertyBinders = context.Metadata.Properties.ToDictionary(property => property, context.CreateBinder);
return new DiModelBinder(propertyBinders);
}
return null;
}
}
Here's how the binder would be registered:
services.AddMvc().AddMvcOptions(options =>
{
// replace ComplexTypeModelBinderProvider with its descendent - IoCModelBinderProvider
var provider = options.ModelBinderProviders.FirstOrDefault(x => x.GetType() == typeof(ComplexTypeModelBinderProvider));
var binderIndex = options.ModelBinderProviders.IndexOf(provider);
options.ModelBinderProviders.Remove(provider);
options.ModelBinderProviders.Insert(binderIndex, new DiModelBinderProvider());
});
I'm not quite sure if the new binder must be registered exactly at the same index, you can experiment with this.
And, at the end, this is how you can use it:
public class MyModel
{
private readonly IMyRepository repo;
public MyModel(IMyRepository repo)
{
this.repo = repo;
}
... do whatever you want with your repo
public string AProperty { get; set; }
... other properties here
}
Model class is created by the binder which supplies the (already registered) service, and the rest of the model binders provide the property values from their usual sources.
HTH
Is there another way than constructor injection to inject dependencies, and how?
The answer is "no", this cannot be done with "dependency injection". But, "yes" you can use the "service locator pattern" to achieve your end-goal.
You can use the code below to resolve a dependency without the use of constructor injection or the FromServices attribute. Additionally you can new up an instance of the class as you see fit and it will still work -- assuming that you have added the dependency in the Startup.cs.
public class MyRepository : IMyRepository
{
public IMyDependency { get; } =
CallContextServiceLocator.Locator
.ServiceProvider
.GetRequiredService<IMyDependency>();
}
The CallContextServiceLocator.Locator.ServiceProvider is the global service provider, where everything lives. It is not really advised to use this. But if you have no other choice you can. It would be recommended to instead use DI all the way and never manually instantiate an object, i.e.; avoid new.
I'm simply adding some supplemental information here to the answers provided that can help.
IServiceProvider was provided in the accepted answer, but not the important IServiceProvider.CreateScope() method. You can use it to create scopes as necessary that you added through ConfigureServices.
I'm not sure if IServiceProvider is actually a Service Locator pattern behind the scenes or not, but it's how you create scopes as far as I know. At least in the case if it is a Service Locator pattern, it's the official one for today in .NET, and so it's not compounded by the problems of writing your own Service Locator, which I also agree is anti-pattern.
Example, Startup.cs/ConfigureServices and Configure:
public void ConfigureServices(IServiceCollection services)
{
services.AddDbContext<SomeDbContext>(options =>
{
options.UseSqlServer(Configuration.GetSection("Databases").GetSection("SomeDb")["ConnectionString"]);
options.UseQueryTrackingBehavior(QueryTrackingBehavior.NoTracking);
}, ServiceLifetime.Scoped);
services.AddMvcCore().AddNewtonsoftJson();
services.AddControllersWithViews();
}
public async void Configure(IApplicationBuilder app, IWebHostEnvironment env, IServiceProvider provider)
{
...
IServiceScope scope = provider.CreateScope();
SomeDbContext context = scope.ServiceProvider.GetRequiredService<SomeDbContext>();
SomeModelProxyClass example = new SomeModelProxyClass(context);
await example.BuildDefaults(
Configuration.GetSection("ProfileDefaults").GetSection("Something"),
Configuration.GetSection("ProfileDefaults").GetSection("SomethingSomething"));
scope.Dispose();
}
The above is for doing some default interactions on Startup, maybe if you need to build some default records in your database on a first usage, just as an example.
Ok so let's get to your repository and dependency though, will they work?
Yep!
Here's a test in my own CRUD project, I made a simple minimalist implementation of your IMyDependency and IMyRepository like so, then added them scoped as you did to Startup/ConfigureServices:
public interface IMyRepository
{
string WriteMessage(string input);
}
public interface IMyDependency
{
string GetTimeStamp();
}
public class MyDependency : IMyDependency
{
public MyDependency()
{
}
public string GetTimeStamp()
{
return DateTime.Now.ToLongDateString() + " " + DateTime.Now.ToLongTimeString();
}
}
public class MyRepository : IMyRepository
{
private readonly IMyDependency _myDependency;
public MyRepository(IMyDependency myDependency)
{
_myDependency = myDependency;
}
public string WriteMessage(string input)
{
return input + " - " + _myDependency.GetTimeStamp();
}
}
Here ContextCRUD is a Model class from my own project not derived from Scaffold-DbContext tooling like my other database classes, it's a container of logic from those scaffold Model classes, and so I put it in the namespace Models.ProxyModels to hold its own business logic for doing CRUD operations so that the Controllers are not gummed up with logic that should be in the Model:
public ContextCRUD(DbContext context, IServiceProvider provider)
{
Context = context;
Provider = provider;
var scope = provider.CreateScope();
var dep1 = scope.ServiceProvider.GetService<IMyRepository>();
string msg = dep1.WriteMessage("Current Time:");
scope.Dispose();
}
Debugging I get back the expected results in msg, so it all checks out.
The calling code from the Controller for reference, just so you can see how IServiceProvider is passed from upstream by constructor injection in the Controller:
[Route("api/[controller]")]
public class GenericController<T> : Controller where T: DbContext
{
T Context { get; set; }
ContextCRUD CRUD { get; set; }
IConfiguration Configuration { get; set; }
public GenericController(T context, IConfiguration configuration, IServiceProvider provider)
{
Context = context;
CRUD = new ContextCRUD(context, provider);
Configuration = configuration;
}
...
You can do it, check out [InjectionMethod] and container.BuildUp(instance);
Example:
Typical DI constructor (NOT NEEDED IF YOU USE InjectionMethod) public
ClassConstructor(DeviceHead pDeviceHead) {
this.DeviceHead = pDeviceHead; }
This attribute causes this method to be called to setup DI.
[InjectionMethod] public void Initialize(DeviceHead pDeviceHead) {
this.DeviceHead = pDeviceHead; }

C#, Castle Windsor and The Composite design pattern

I have designed a telemetry logger for few separate platforms using the composite pattern
public interface ILogger
{
void Log();
}
public class A : ILogger
{
public void Log(...);
}
public class B : ILogger
{
public void Log(...);
}
public class Many : ILogger
{
private readonly List<ILogger> m_loggers;
public Many(IEnumerable<ILogger> loggers)
{
m_loggers = loggers.ToList();
}
public void Log()
{
m_loggers.ForEach(c => c.Log());
}
}
Now i want to be able to get an instance of "Many" from Windsor container
but have encountered a few problems:
if all ILoggers are in the container how can i make sure i get the "Many" implementation and not "A" or "B" ?
I tried following this example
Castle Windsor: How do I inject all implementations of interface into a ctor?
and use container.Kernel.Resolver.AddSubResolver(new
CollectionResolver(container.Kernel));
to register a class with IEnumerable dependancy but if
that class also implements IComponent wont it create a circular
dependency ?
Is what I'm attempting even possible ?
First of all this is Composite Design Pattern not Component.
The way you do it in Castle Windsor in your case should look like this
container.Kernel.Resolver.AddSubResolver(new CollectionResolver(container.Kernel));
container.Register(Component.For<ILogger>().ImplementedBy<Many>());
container.Register(Component.For<ILogger>().ImplementedBy<A>());
container.Register(Component.For<ILogger>().ImplementedBy<B>());
This works because Castle Windsor have internal understanding of patterns like Composite or Decorator so no circular dependency will be created in this case. Just bare in mind that order of registration is important in this case.
More on registering different patterns in Castle Windsor can be found here.
Is it possible with a factory method in the container registration?
var container = new Castle.Windsor.WindsorContainer();
container.Register(Component.For<A>());
container.Register(Component.For<B>());
container.Register(Component.For<ILogger>()
.UsingFactoryMethod(k => new Many(k.Resolve<A>(), k.Resolve<B>())));
var logger = container.Resolve<ILogger>();
After changing:
public Many(params ILogger [] loggers)
{
m_loggers = loggers.ToList();
}
Limited knowledge of the Windsor Container lead me to this, there is probably an improvement to this along the same lines of using a factory to initialize your object. The important thing is the configuration is within the container (Even if it is a little verbose)

C# Dependency Injection and the Strategy Pattern

I'm using Munq as the DI container in a MVC3 project. I have a service layer that retrieves a DTO from a repository. Depending on a property in that DTO I need to use one of two strategies to perform calculations on the DTO. I can register a named type in the container e.g.
Container.Register<ICalculation>("Type1", c => new Type1Calculation);
Container.Register<ICalculation>("Type2", c => new Type2Calculation);
Then I can refer directly to the container when trying to instantiate the appropriate strategy e.g.
var calc = Container.Resolve<ICalculation>(dto.ServiceType);
But this leaves me with a dependency on the container itself with the associated coupling and testing issues. What do I need to pass into the service constructor that would allow me to get the correct calculation but without the dependency on the container? Should I pass in a factory instead so the dependency is in the factory and not in the service class?
Not sure about Munq, but Autofac allows you to pass around Funcs, so that you can skip all factories altogether:
public class Foo
{
public Foo(Func<string, IBar> barFactory) { }
}
Check if Munq allows for such behavior.
Otherwise -- yes, you'll have to resort to hand-written factories to provide yet another level of indirection.
I've added the Munq solution to this. First the factory which includes the IDependencyResolver interface to allow the factory to use the container to resolve dependencies in the factory method:
public class CalculationFactory
{
private readonly IDependencyResolver _resolver;
public CalculationFactory(IDependencyResolver resolver)
{
ThrowIfNullArgument(resolver, "resolver", typeof(IDependencyResolver));
_resolver = resolver;
}
public static ICalculation CreateCalculator(int serviceType)
{
switch (serviceType)
{
case 1: return _resolver.Resolve<ICalculation>("Type1");
case 2: return _resolver.Resolve<ICalculation>("Type2");
default: return _resolver.Resolve<ICalculation>("InvalidType");
}
}
}
Then in Global.asax.cs register the appropriate interfaces/classes, passing in the container to the factory. So now I can set up my tests and the only extra dependency is IDependencyResolver within the factory:
ioc.Register(c => new CalculationFactory(c));
ioc.Register<ICalculation>("Type1", c => c.Resolve<Type1Calculation>());
ioc.Register<ICalculation>("Type2", c => c.Resolve<Type2Calculation>());
ioc.Register<ICalculation>("InvalidType", c => c.Resolve<InvalidCalculation>());

Categories