Clarifications on Async/Await - c#

Many of the tutorials I've read on async/await feel like they complicate the concept way too much. Ideally, it would allow some time consuming task to be run in the background while the calling method continues its business.
I decided to create the simplest example of async/await I can think of. C# console application:
class Program
{
static void Main(string[] args)
{
PrintTwoTimes();
Console.WriteLine("Main Method!");
Console.ReadLine();
}
async static Task PrintTwoTimes()
{
await Task.Run(() =>
{
Thread.Sleep(500);
Console.WriteLine("Inside Async Task!");
});
Console.WriteLine("After Async Task!");
}
}
The output is as I expected.
The calling thread continues its execution without waiting for PrintTwoTimes() to complete.
What I'd like to know is what is dangerous about such a simple approach to async/await, as I have done, in the real world?
* EDIT *
After being told my question is idiotic, I am removing the bit about static and adding updated code that removes it
class Program
{
static void Main(string[] args)
{
//call the async thread
var prtclss = new PrintClass();
prtclss.PrintTwoTimes();
Console.WriteLine("Main Method!");
Console.ReadLine();
}
}
class PrintClass
{
public string str1 { get; set; }
public string str2 { get; set; }
public PrintClass()
{
str1 = "Inside Async Task!";
str2 = "After Async Task!";
}
public async Task PrintTwoTimes()
{
await Task.Run(() =>
{
//simulate time consuming task
Thread.Sleep(500);
Console.WriteLine(str1);
});
Console.WriteLine(str2);
}
}

Related

Simple.OData.Client not returning results, no error [duplicate]

public class test
{
public async Task Go()
{
await PrintAnswerToLife();
Console.WriteLine("done");
}
public async Task PrintAnswerToLife()
{
int answer = await GetAnswerToLife();
Console.WriteLine(answer);
}
public async Task<int> GetAnswerToLife()
{
await Task.Delay(5000);
int answer = 21 * 2;
return answer;
}
}
if I want to call Go in main() method, how can I do that?
I am trying out c# new features, I know i can hook the async method to a event and by triggering that event, async method can be called.
But what if I want to call it directly in main method? How can i do that?
I did something like
class Program
{
static void Main(string[] args)
{
test t = new test();
t.Go().GetAwaiter().OnCompleted(() =>
{
Console.WriteLine("finished");
});
Console.ReadKey();
}
}
But seems it's a dead lock and nothing is printed on the screen.
Your Main method can be simplified. For C# 7.1 and newer:
static async Task Main(string[] args)
{
test t = new test();
await t.Go();
Console.WriteLine("finished");
Console.ReadKey();
}
For earlier versions of C#:
static void Main(string[] args)
{
test t = new test();
t.Go().Wait();
Console.WriteLine("finished");
Console.ReadKey();
}
This is part of the beauty of the async keyword (and related functionality): the use and confusing nature of callbacks is greatly reduced or eliminated.
Instead of Wait, you're better off using
new test().Go().GetAwaiter().GetResult()
since this will avoid exceptions being wrapped into AggregateExceptions, so you can just surround your Go() method with a try catch(Exception ex) block as usual.
Since the release of C# v7.1 async main methods have become available to use which avoids the need for the workarounds in the answers already posted. The following signatures have been added:
public static Task Main();
public static Task<int> Main();
public static Task Main(string[] args);
public static Task<int> Main(string[] args);
This allows you to write your code like this:
static async Task Main(string[] args)
{
await DoSomethingAsync();
}
static async Task DoSomethingAsync()
{
//...
}
class Program
{
static void Main(string[] args)
{
test t = new test();
Task.Run(async () => await t.Go());
}
}
As long as you are accessing the result object from the returned task, there is no need to use GetAwaiter at all (Only in case you are accessing the result).
static async Task<String> sayHelloAsync(){
await Task.Delay(1000);
return "hello world";
}
static void main(string[] args){
var data = sayHelloAsync();
//implicitly waits for the result and makes synchronous call.
//no need for Console.ReadKey()
Console.Write(data.Result);
//synchronous call .. same as previous one
Console.Write(sayHelloAsync().GetAwaiter().GetResult());
}
if you want to wait for a task to be done and do some further processing:
sayHelloAsyn().GetAwaiter().OnCompleted(() => {
Console.Write("done" );
});
Console.ReadLine();
If you are interested in getting the results from sayHelloAsync and do further processing on it:
sayHelloAsync().ContinueWith(prev => {
//prev.Result should have "hello world"
Console.Write("done do further processing here .. here is the result from sayHelloAsync" + prev.Result);
});
Console.ReadLine();
One last simple way to wait for function:
static void main(string[] args){
sayHelloAsync().Wait();
Console.Read();
}
static async Task sayHelloAsync(){
await Task.Delay(1000);
Console.Write( "hello world");
}
public static void Main(string[] args)
{
var t = new test();
Task.Run(async () => { await t.Go();}).Wait();
}
Use .Wait()
static void Main(string[] args){
SomeTaskManager someTaskManager = new SomeTaskManager();
Task<List<String>> task = Task.Run(() => marginaleNotesGenerationTask.Execute());
task.Wait();
List<String> r = task.Result;
}
public class SomeTaskManager
{
public async Task<List<String>> Execute() {
HttpClient client = new HttpClient();
client.BaseAddress = new Uri("http://localhost:4000/");
client.DefaultRequestHeaders.Accept.Clear();
HttpContent httpContent = new StringContent(jsonEnvellope, Encoding.UTF8, "application/json");
client.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/json"));
HttpResponseMessage httpResponse = await client.PostAsync("", httpContent);
if (httpResponse.Content != null)
{
string responseContent = await httpResponse.Content.ReadAsStringAsync();
dynamic answer = JsonConvert.DeserializeObject(responseContent);
summaries = answer[0].ToObject<List<String>>();
}
}
}
try "Result" property
class Program
{
static void Main(string[] args)
{
test t = new test();
t.Go().Result;
Console.ReadKey();
}
}
C# 9 Top-level statements simplified things even more, now you don't even have to do anything extra to call async methods from your Main, you can just do this:
using System;
using System.Threading.Tasks;
await Task.Delay(1000);
Console.WriteLine("Hello World!");
For more information see What's new in C# 9.0, Top-level statements:
The top-level statements may contain async expressions. In that case, the synthesized entry point returns a Task, or Task<int>.

(A)wait for class to finish instantiate

I try to wait for the class to be finished with instantiate.
My architecture is the following. Cook is inheriade from CookChief.
And if I instantiate cook, CookChief is creating himself, but CookChief is calling 1 other class named Cookhelper the cookhelper is waiting for a input and for this input method i want to wait in Cook.
The thing is iam creating this in MVVM Galasoft and my entry point is the CookViewmodel, with a relaycommand.
In the code below you can see my architecture. To say it short I want to wait until this bool processed = await Task.Run(() => ValidateForDeviceId()); is finished.
My first step was to outsource the constructer of each class. And create a init method.
This is my code:
public CookViewModel()
{
startCookButtonCommand = new RelayCommand(Cook);
}
private async Task Cook()
{
cook.Init();
}
public class Cook : CookChief
{
public Cook()
{
}
public async Task Init()
{
await this.CookChiefInit();
//here I want to wait until CookChiefInit is finished
Cooking();
}
public void Cooking()
{
MessageBox.Show("Input received");
}
}
Now the Cookchief:
public Cookchief()
{
}
protected async Task CookchiefInit()
{
this.Cookhelper = new Cookhelper();
Cookhelper.CookHelperInit();
}
And in the CookHelper we do this:
public CookHelper()
{
}
public void CookHelperInit()
{
this.driverWindow = new DriverWindow();
startProc();
}
private async void startProc()
{
ShowOrCloseDriverWindow(true);
//this is the task what we wait for before we can repeat
bool processed = await Task.Run(() => ValidateForDeviceId());
if(processed)
{
ShowOrCloseDriverWindow(false);
}
else
{
MessageBox.Show("DriverError");
}
}
private bool ValidateForDeviceId()
{
for (; ; )
{
this.deviceId = Input.deviceId;
if (deviceId > 0)
{
break;
}
}
return true;
}
Per the discussion in the comments, the problem here was that the initialization routine mixed synchronous and asynchronous methods and calls. Additionally, some async methods were called without the await keyword. The solution was to make all calls asynchronous and await them.
cook.Init() needs an await:
private async Task Cook()
{
await cook.Init();
}
In CookchiefInit(), the CookHelperInit() call needs to be awaited:
protected async Task CookchiefInit()
{
this.Cookhelper = new Cookhelper();
Cookhelper.CookHelperInit();
}
In order to await CookHelperInit(), it needs to be made asynchronous. The startProc() call is to an async method, so it must also be awaited:
public async Task CookHelperInit()
{
this.driverWindow = new DriverWindow();
await startProc();
}

Moving data back and fourth between main application and library

I’m looking for ideas on how to implement a certain bit of functionality for a program.
Basically, I have a main program/thread that makes an asynchronous call to a library (that I also have control over) to do some processing. However, from that call, I need the library to make a callback to the main thread every so often to get more data. How could I do this?
So pass a callback for the library to use. For example:
public class Program
{
static public void Main()
{
var library = new Library();
library.Callback = GetMoreData;
var task = Task.Run( () => library.Foo() );
Console.WriteLine("Other thread is running.");
task.Wait();
}
static string GetMoreData()
{
return "More data";
}
}
class Library
{
public Func<string> Callback { get; set; }
public async Task Foo()
{
for (int i=0; i<10; i++)
{
var moreData = Callback();
Console.WriteLine("Library received this data: {0}", moreData);
await Task.Delay(500);
}
}
}
Example on DotNetFiddle

Task finishes before expected

I have this method:
private static async Task MyMethod();
And it is invocated this way:
public static void Main()
{
s_Finishing = false;
Task printTask = PrintStatistics();
MyMethod(serversSawa, serversSterling).Wait();
s_Finishing = true;
}
I expect that PrintStatistics will stop to run only after MyMethod is completed. But unfortunately it doesn`t. If I comment the line s_Finishing = true; The task runs forever - and allows to MyMethod to be completed
How can I solve the issue?
private static async Task PrintStatistics()
{
while (!s_Finishing)
{
long total = 0;
await Task.Delay(TimeSpan.FromSeconds(20));
foreach (var statistic in s_Statistics)
{
ToolsTracer.Trace("{0}:{1}", statistic.Key, statistic.Value);
total += statistic.Value;
}
foreach (var statistic in s_StatisticsRegion)
{
ToolsTracer.Trace("{0}:{1}", statistic.Key, statistic.Value);
}
ToolsTracer.Trace("TOTAL:{0}", total);
ToolsTracer.Trace("TIME:{0}", s_StopWatch.Elapsed);
}
}
private static async Task MyMethod()
{
Parallel.ForEach(
data,
new ParallelOptions { MaxDegreeOfParallelism = 20 }, async serverAndCluster =>
{
await someMethod() });
}
I believe your problem is here:
Parallel.ForEach(..., async ...);
You can't use async with ForEach. It's extremely rare to need to do both parallel (CPU-bound) and async (I/O-bound) together in the same method. If you just want concurrency (which I suspect), use Task.WhenAll instead of ForEach. If you really do need both CPU parallelism and async, then use TPL Dataflow.

Async methods and progress indicator

I have a silverlight application which is making multiple async calls:
The problem I am facing is to how to determine if all the async calls are finished so that I can stop displaying the progress indicator. In the example below, progress indicator is stopped as soon as the first async method returns.
Any tips on how to resolve this ?
Constructor()
{
startprogressindicator();
callasync1(finished1);
callasync2(finished2);
//.... and so on
}
public void finished1()
{
stopprogressindicator();
}
public void finished2()
{
stopprogressindicator();
}
You need to asynchronously wait for both methods to finish, currently you call stopprogressindicator as soon as any of the method completes.
Refactor your code to return Task from callasync1 and callasync2 Then you can do
var task1 = callasync1();
var task2 = callasync2();
Task.Factory.ContinueWhenAll(new []{task1, task2}, (antecedents) => stopprogressindicator());
I do like the idea of using Task API, but in this case you may simply use a counter:
int _asyncCalls = 0;
Constructor()
{
startprogressindicator();
Interlocked.Increment(ref _asyncCalls);
try
{
// better yet, do Interlocked.Increment(ref _asyncCalls) inside
// each callasyncN
Interlocked.Increment(ref _asyncCalls);
callasync1(finished1);
Interlocked.Increment(ref _asyncCalls);
callasync2(finished2);
//.... and so on
}
finally
{
checkStopProgreessIndicator();
}
}
public checkStopProgreessIndicator()
{
if (Interlocked.Decrement(ref _asyncCalls) == 0)
stopprogressindicator();
}
public void finished1()
{
checkStopProgreessIndicator()
}
public void finished2()
{
checkStopProgreessIndicator()
}

Categories