What is the purpose to use an empty interface? [duplicate] - c#

I am looking at nServiceBus and came over this interface
namespace NServiceBus
{
public interface IMessage
{
}
}
What is the use of an empty interface?

Usually it's to signal usage of a class. You can implement IMessage to signal that your class is a message. Other code can then use reflection to see if your objects are meant to be used as messages and act accordingly.
This is something that was used in Java a lot before they had annotations. In .Net it's cleaner to use attributes for this.
#Stimpy77 Thanks! I hadn't thought of it that way.
I hope you'll allow me to rephrase your comment in a more general way.
Annotations and attributes have to be checked at runtime using reflection. Empty interfaces can be checked at compile-time using the type-system in the compiler. This brings no overhead at runtime at all so it is faster.

Also known as a Marker Interface:
http://en.wikipedia.org/wiki/Marker_interface_pattern

In java Serializable is the perfect example for this. It defines no methods but every class that "implements" it has to make sure, that it is really serializable and holds no reference to things that cannot be serialized, like database connections, open files etc.

In Java, empty interfaces were usually used for "tagging" classes - these days annotations would normally be used.
It's just a way of adding a bit of metadata to a class saying, "This class is suitable for <this> kind of use" even when no common members will be involved.

Normally it's similar to attributes. Using attributes is a preferred to empty interfaces (at least as much as FxCop is aware). However .NET itself uses some of these interfaces like IRequiresSessionState and IReadOnlySessionState. I think there is performance loss in metadata lookup when you use attributes that made them use interfaces instead.

An empty interface acts simply as a placeholder for a data type no better specified in its interface behaviour.
In Java, the mechanism of the interface extension represents a good example of use. For example, let's say that we've the following
interface one {}
interface two {}
interface three extends one, two {}
Interface three will inherit the behaviour of 'one' and 'two', and so
class four implements three { ... }
has to specify the two methods, being of type 'three'.
As you can see, from the above example, empty interface can be seen also as a point of multiple inheritance (not allowed in Java).
Hoping this helps to clarify with a further viewpoint.

They're called "Mark Interfaces" and are meant to signal instances of the marked classes.
For example... in C++ is a common practice to mark as "ICollectible" objects so they can be stored in generic non typed collections.
So like someone over says, they're to signal some object supported behavior, like ability to be collected, serialized, etc.

Been working with NServiceBus for the past year. While I wouldn't speak for Udi Dahan my understanding is that this interface is indeed used as a marker primarily.
Though I'd suggest you ask the man himself if he'd had thoughts of leaving this for future extension. My bet is no, as the mantra seems to be to keep messages very simple or at least practically platform agnostic.
Others answer well on the more general reasons for empty interfaces.

I'd say its used for "future" reference or if you want to share some objects, meaning you could have 10 classes each implementing this interface.
And have them sent to a function for work on them, but if the interface is empty, I'd say its just "pre"-work.

Empty interfaces are used to document that the classes that implement a given interface have a certain behaviour
For example in java the Cloneable interface in Java is an empty interface. When a class implements the Cloneable interface you know that you can call run the clone() on it.

Empty interfaces are used to mark the class, at run time type check can be performed using the interfaces.
For example
An application of marker interfaces from the Java programming language is the Serializable interface. A class implements this interface to indicate that its non-transient data members can be written to an ObjectOutputStream. The ObjectOutputStream private method writeObject() contains a series of instanceof tests to determine writeability, one of which looks for the Serializable interface. If any of these tests fails, the method throws a NotSerializableException.

An empty interface can be used to classify classes under a specific purpose. (Marker Interface)
Example : Database Entities
public interface IEntity {
}
public class Question implements IEntity {
// Implementation Goes Here
}
public class Answer implements IEntity {
// Implementation Goes Here
}
For Instance, If you will be using Generic Repository(ex. IEntityRepository), using generic constraints, you can prevent the classes that do not implement the IEntity interface from being sent by the developers.

Related

What is best suited condition when interface is used instead of inheritance in c#? [duplicate]

When should I use an interface and when should I use a base class?
Should it always be an interface if I don't want to actually define a base implementation of the methods?
If I have a Dog and Cat class. Why would I want to implement IPet instead of PetBase? I can understand having interfaces for ISheds or IBarks (IMakesNoise?), because those can be placed on a pet by pet basis, but I don't understand which to use for a generic Pet.
Let's take your example of a Dog and a Cat class, and let's illustrate using C#:
Both a dog and a cat are animals, specifically, quadruped mammals (animals are waaay too general). Let us assume that you have an abstract class Mammal, for both of them:
public abstract class Mammal
This base class will probably have default methods such as:
Feed
Mate
All of which are behavior that have more or less the same implementation between either species. To define this you will have:
public class Dog : Mammal
public class Cat : Mammal
Now let's suppose there are other mammals, which we will usually see in a zoo:
public class Giraffe : Mammal
public class Rhinoceros : Mammal
public class Hippopotamus : Mammal
This will still be valid because at the core of the functionality Feed() and Mate() will still be the same.
However, giraffes, rhinoceros, and hippos are not exactly animals that you can make pets out of. That's where an interface will be useful:
public interface IPettable
{
IList<Trick> Tricks{get; set;}
void Bathe();
void Train(Trick t);
}
The implementation for the above contract will not be the same between a cat and dog; putting their implementations in an abstract class to inherit will be a bad idea.
Your Dog and Cat definitions should now look like:
public class Dog : Mammal, IPettable
public class Cat : Mammal, IPettable
Theoretically you can override them from a higher base class, but essentially an interface allows you to add on only the things you need into a class without the need for inheritance.
Consequently, because you can usually only inherit from one abstract class (in most statically typed OO languages that is... exceptions include C++) but be able to implement multiple interfaces, it allows you to construct objects in a strictly as required basis.
Well, Josh Bloch said himself in Effective Java 2d:
Prefer interfaces over abstract classes
Some main points:
Existing classes can be easily retrofitted to implement a new
interface. All you have to do is add
the required methods if they don’t yet
exist and add an implements clause to
the class declaration.
Interfaces are ideal for defining mixins. Loosely speaking, a
mixin is a type that a class can
implement in addition to its “primary
type” to declare that it provides
some optional behavior. For example,
Comparable is a mixin interface that
allows a class to declare that its
instances are ordered with respect to
other mutually comparable objects.
Interfaces allow the construction of nonhierarchical type
frameworks. Type hierarchies are
great for organizing some things, but
other things don’t fall neatly into a
rigid hierarchy.
Interfaces enable safe, powerful functionality enhancements via the
wrap- per class idiom. If you use
abstract classes to define types, you
leave the programmer who wants to add
functionality with no alternative but
to use inheritance.
Moreover, you can combine the virtues
of interfaces and abstract classes by
providing an abstract skeletal
implementation class to go with each
nontrivial interface that you export.
On the other hand, interfaces are very hard to evolve. If you add a method to an interface it'll break all of it's implementations.
PS.: Buy the book. It's a lot more detailed.
Interfaces and base classes represent two different forms of relationships.
Inheritance (base classes) represent an "is-a" relationship. E.g. a dog or a cat "is-a" pet. This relationship always represents the (single) purpose of the class (in conjunction with the "single responsibility principle").
Interfaces, on the other hand, represent additional features of a class. I'd call it an "is" relationship, like in "Foo is disposable", hence the IDisposable interface in C#.
Modern style is to define IPet and PetBase.
The advantage of the interface is that other code can use it without any ties whatsoever to other executable code. Completely "clean." Also interfaces can be mixed.
But base classes are useful for simple implementations and common utilities. So provide an abstract base class as well to save time and code.
Interfaces
Most languages allow you to implement multiple interfaces
Modifying an interface is a breaking change. All implementations need to be recompiled/modified.
All members are public. Implementations have to implement all members.
Interfaces help in Decoupling. You can use mock frameworks to mock out anything behind an interface
Interfaces normally indicate a kind of behavior
Interface implementations are decoupled / isolated from each other
Base classes
Allows you to add some default implementation that you get for free by derivation (From C# 8.0 by interface you can have default implementation)
Except C++, you can only derive from one class. Even if could from multiple classes, it is usually a bad idea.
Changing the base class is relatively easy. Derivations do not need to do anything special
Base classes can declare protected and public functions that can be accessed by derivations
Abstract Base classes can't be mocked easily like interfaces
Base classes normally indicate type hierarchy (IS A)
Class derivations may come to depend on some base behavior (have intricate knowledge of parent implementation). Things can be messy if you make a change to the base implementation for one guy and break the others.
In general, you should favor interfaces over abstract classes. One reason to use an abstract class is if you have common implementation among concrete classes. Of course, you should still declare an interface (IPet) and have an abstract class (PetBase) implement that interface.Using small, distinct interfaces, you can use multiples to further improve flexibility. Interfaces allow the maximum amount of flexibility and portability of types across boundaries. When passing references across boundaries, always pass the interface and not the concrete type. This allows the receiving end to determine concrete implementation and provides maximum flexibility. This is absolutely true when programming in a TDD/BDD fashion.
The Gang of Four stated in their book "Because inheritance exposes a subclass to details of its parent's implementation, it's often said that 'inheritance breaks encapsulation". I believe this to be true.
This is pretty .NET specific, but the Framework Design Guidelines book argues that in general classes give more flexibility in an evolving framework. Once an interface is shipped, you don't get the chance to change it without breaking code that used that interface. With a class however, you can modify it and not break code that links to it. As long you make the right modifications, which includes adding new functionality, you will be able to extend and evolve your code.
Krzysztof Cwalina says on page 81:
Over the course of the three versions of the .NET Framework, I have talked about this guideline with quite a few developers on our team. Many of them, including those who initially disagreed with the guidelines, have said that they regret having shipped some API as an interface. I have not heard of even one case in which somebody regretted that they shipped a class.
That being said there certainly is a place for interfaces. As a general guideline always provide an abstract base class implementation of an interface if for nothing else as an example of a way to implement the interface. In the best case that base class will save a lot of work.
Juan,
I like to think of interfaces as a way to characterize a class. A particular dog breed class, say a YorkshireTerrier, may be a descended of the parent dog class, but it is also implements IFurry, IStubby, and IYippieDog. So the class defines what the class is but the interface tells us things about it.
The advantage of this is it allows me to, for example, gather all the IYippieDog's and throw them into my Ocean collection. So now I can reach across a particular set of objects and find ones that meet the criteria I am looking at without inspecting the class too closely.
I find that interfaces really should define a sub-set of the public behavior of a class. If it defines all the public behavior for all the classes that implement then it usually does not need to exist. They do not tell me anything useful.
This thought though goes counter to the idea that every class should have an interface and you should code to the interface. That's fine, but you end up with a lot of one to one interfaces to classes and it makes things confusing. I understand that the idea is it does not really cost anything to do and now you can swap things in and out with ease. However, I find that I rarely do that. Most of the time I am just modifying the existing class in place and have the exact same issues I always did if the public interface of that class needs changing, except I now have to change it in two places.
So if you think like me you would definitely say that Cat and Dog are IPettable. It is a characterization that matches them both.
The other piece of this though is should they have the same base class? The question is do they need to be broadly treated as the same thing. Certainly they are both Animals, but does that fit how we are going to use them together.
Say I want to gather all Animal classes and put them in my Ark container.
Or do they need to be Mammals? Perhaps we need some kind of cross animal milking factory?
Do they even need to be linked together at all? Is it enough to just know they are both IPettable?
I often feel the desire to derive a whole class hierarchy when I really just need one class. I do it in anticipation someday I might need it and usually I never do. Even when I do, I usually find I have to do a lot to fix it. That’s because the first class I am creating is not the Dog, I am not that lucky, it is instead the Platypus. Now my entire class hierarchy is based on the bizarre case and I have a lot of wasted code.
You might also find at some point that not all Cats are IPettable (like that hairless one). Now you can move that Interface to all the derivative classes that fit. You will find that a much less breaking change that all of a sudden Cats are no longer derived from PettableBase.
Here is the basic and simple definiton of interface and base class:
Base class = object inheritance.
Interface = functional inheritance.
cheers
It is explained well in this Java World article.
Personally, I tend to use interfaces to define interfaces - i.e. parts of the system design that specify how something should be accessed.
It's not uncommon that I will have a class implementing one or more interfaces.
Abstract classes I use as a basis for something else.
The following is an extract from the above mentioned article JavaWorld.com article, author Tony Sintes, 04/20/01
Interface vs. abstract class
Choosing interfaces and abstract classes is not an either/or proposition. If you need to change your design, make it an interface. However, you may have abstract classes that provide some default behavior. Abstract classes are excellent candidates inside of application frameworks.
Abstract classes let you define some behaviors; they force your subclasses to provide others. For example, if you have an application framework, an abstract class may provide default services such as event and message handling. Those services allow your application to plug in to your application framework. However, there is some application-specific functionality that only your application can perform. Such functionality might include startup and shutdown tasks, which are often application-dependent. So instead of trying to define that behavior itself, the abstract base class can declare abstract shutdown and startup methods. The base class knows that it needs those methods, but an abstract class lets your class admit that it doesn't know how to perform those actions; it only knows that it must initiate the actions. When it is time to start up, the abstract class can call the startup method. When the base class calls this method, Java calls the method defined by the child class.
Many developers forget that a class that defines an abstract method can call that method as well. Abstract classes are an excellent way to create planned inheritance hierarchies. They're also a good choice for nonleaf classes in class hierarchies.
Class vs. interface
Some say you should define all classes in terms of interfaces, but I think recommendation seems a bit extreme. I use interfaces when I see that something in my design will change frequently.
For example, the Strategy pattern lets you swap new algorithms and processes into your program without altering the objects that use them. A media player might know how to play CDs, MP3s, and wav files. Of course, you don't want to hardcode those playback algorithms into the player; that will make it difficult to add a new format like AVI. Furthermore, your code will be littered with useless case statements. And to add insult to injury, you will need to update those case statements each time you add a new algorithm. All in all, this is not a very object-oriented way to program.
With the Strategy pattern, you can simply encapsulate the algorithm behind an object. If you do that, you can provide new media plug-ins at any time. Let's call the plug-in class MediaStrategy. That object would have one method: playStream(Stream s). So to add a new algorithm, we simply extend our algorithm class. Now, when the program encounters the new media type, it simply delegates the playing of the stream to our media strategy. Of course, you'll need some plumbing to properly instantiate the algorithm strategies you will need.
This is an excellent place to use an interface. We've used the Strategy pattern, which clearly indicates a place in the design that will change. Thus, you should define the strategy as an interface. You should generally favor interfaces over inheritance when you want an object to have a certain type; in this case, MediaStrategy. Relying on inheritance for type identity is dangerous; it locks you into a particular inheritance hierarchy. Java doesn't allow multiple inheritance, so you can't extend something that gives you a useful implementation or more type identity.
I recommend using composition instead of inheritence whenever possible. Use interfaces but use member objects for base implementation. That way, you can define a factory that constructs your objects to behave in a certain way. If you want to change the behavior then you make a new factory method (or abstract factory) that creates different types of sub-objects.
In some cases, you may find that your primary objects don't need interfaces at all, if all of the mutable behavior is defined in helper objects.
So instead of IPet or PetBase, you might end up with a Pet which has an IFurBehavior parameter. The IFurBehavior parameter is set by the CreateDog() method of the PetFactory. It is this parameter which is called for the shed() method.
If you do this you'll find your code is much more flexible and most of your simple objects deal with very basic system-wide behaviors.
I recommend this pattern even in multiple-inheritence languages.
Also keep in mind not to get swept away in OO (see blog) and always model objects based on behavior required, if you were designing an app where the only behavior you required was a generic name and species for an animal then you would only need one class Animal with a property for the name, instead of millions of classes for every possible animal in the world.
I have a rough rule-of-thumb
Functionality: likely to be different in all parts: Interface.
Data, and functionality, parts will be mostly the same, parts different: abstract class.
Data, and functionality, actually working, if extended only with slight changes: ordinary (concrete) class
Data and functionality, no changes planned: ordinary (concrete) class with final modifier.
Data, and maybe functionality: read-only: enum members.
This is very rough and ready and not at all strictly defined, but there is a spectrum from interfaces where everything is intended to be changed to enums where everything is fixed a bit like a read-only file.
Source: http://jasonroell.com/2014/12/09/interfaces-vs-abstract-classes-what-should-you-use/
C# is a wonderful language that has matured and evolved over the last 14 years. This is great for us developers because a mature language provides us with a plethora of language features that are at our disposal.
However, with much power becomes much responsibility. Some of these features can be misused, or sometimes it is hard to understand why you would choose to use one feature over another. Over the years, a feature that I have seen many developers struggle with is when to choose to use an interface or to choose to use an abstract class. Both have there advantages and disadvantages and the correct time and place to use each. But how to we decide???
Both provide for reuse of common functionality between types. The most obvious difference right away is that interfaces provide no implementation for their functionality whereas abstract classes allow you to implement some “base” or “default” behavior and then have the ability to “override” this default behavior with the classes derived types if necessary.
This is all well and good and provides for great reuse of code and adheres to the DRY (Don’t Repeat Yourself) principle of software development. Abstract classes are great to use when you have an “is a” relationship.
For example: A golden retriever “is a” type of dog. So is a poodle. They both can bark, as all dogs can. However, you might want to state that the poodle park is significantly different than the “default” dog bark. Therefor, it could make sense for you to implement something as follows:
public abstract class Dog
{
public virtual void Bark()
{
Console.WriteLine("Base Class implementation of Bark");
}
}
public class GoldenRetriever : Dog
{
// the Bark method is inherited from the Dog class
}
public class Poodle : Dog
{
// here we are overriding the base functionality of Bark with our new implementation
// specific to the Poodle class
public override void Bark()
{
Console.WriteLine("Poodle's implementation of Bark");
}
}
// Add a list of dogs to a collection and call the bark method.
void Main()
{
var poodle = new Poodle();
var goldenRetriever = new GoldenRetriever();
var dogs = new List<Dog>();
dogs.Add(poodle);
dogs.Add(goldenRetriever);
foreach (var dog in dogs)
{
dog.Bark();
}
}
// Output will be:
// Poodle's implementation of Bark
// Base Class implementation of Bark
//
As you can see, this would be a great way to keep your code DRY and allow for the base class implementation be called when any of the types can just rely on the default Bark instead of a special case implementation. The classes like GoldenRetriever, Boxer, Lab could all could inherit the “default” (bass class) Bark at no charge just because they implement the Dog abstract class.
But I’m sure you already knew that.
You are here because you want to understand why you might want to choose an interface over an abstract class or vice versa. Well one reason you may want to choose an interface over an abstract class is when you don’t have or want to prevent a default implementation. This is usually because the types that are implementing the interface not related in an “is a” relationship. Actually, they don’t have to be related at all except for the fact that each type “is able” or has “the ablity” to do something or have something.
Now what the heck does that mean? Well, for example: A human is not a duck…and a duck is not a human. Pretty obvious. However, both a duck and a human have “the ability” to swim (given that the human passed his swimming lessons in 1st grade :) ). Also, since a duck is not a human or vice versa, this is not an “is a” realationship, but instead an “is able” relationship and we can use an interface to illustrate that:
// Create ISwimable interface
public interface ISwimable
{
public void Swim();
}
// Have Human implement ISwimable Interface
public class Human : ISwimable
public void Swim()
{
//Human's implementation of Swim
Console.WriteLine("I'm a human swimming!");
}
// Have Duck implement ISwimable interface
public class Duck: ISwimable
{
public void Swim()
{
// Duck's implementation of Swim
Console.WriteLine("Quack! Quack! I'm a Duck swimming!")
}
}
//Now they can both be used in places where you just need an object that has the ability "to swim"
public void ShowHowYouSwim(ISwimable somethingThatCanSwim)
{
somethingThatCanSwim.Swim();
}
public void Main()
{
var human = new Human();
var duck = new Duck();
var listOfThingsThatCanSwim = new List<ISwimable>();
listOfThingsThatCanSwim.Add(duck);
listOfThingsThatCanSwim.Add(human);
foreach (var something in listOfThingsThatCanSwim)
{
ShowHowYouSwim(something);
}
}
// So at runtime the correct implementation of something.Swim() will be called
// Output:
// Quack! Quack! I'm a Duck swimming!
// I'm a human swimming!
Using interfaces like the code above will allow you to pass an object into a method that “is able” to do something. The code doesn’t care how it does it…All it knows is that it can call the Swim method on that object and that object will know which behavior take at run-time based on its type.
Once again, this helps your code stay DRY so that you would not have to write multiple methods that are calling the object to preform the same core function (ShowHowHumanSwims(human), ShowHowDuckSwims(duck), etc.)
Using an interface here allows the calling methods to not have to worry about what type is which or how the behavior is implemented. It just knows that given the interface, each object will have to have implemented the Swim method so it is safe to call it in its own code and allow the behavior of the Swim method be handled within its own class.
Summary:
So my main rule of thumb is use an abstract class when you want to implement a “default” functionality for a class hierarchy or/and the classes or types you are working with share a “is a” relationship (ex. poodle “is a” type of dog).
On the other hand use an interface when you do not have an “is a” relationship but have types that share “the ability” to do something or have something (ex. Duck “is not” a human. However, duck and human share “the ability” to swim).
Another difference to note between abstract classes and interfaces is that a class can implement one to many interfaces but a class can only inherit from ONE abstract class (or any class for that matter). Yes, you can nest classes and have an inheritance hierarchy (which many programs do and should have) but you cannot inherit two classes in one derived class definition (this rule applies to C#. In some other languages you are able to do this, usually only because of the lack of interfaces in these languages).
Also remember when using interfaces to adhere to the Interface Segregation Principle (ISP). ISP states that no client should be forced to depend on methods it does not use. For this reason interfaces should be focused on specific tasks and are usually very small (ex. IDisposable, IComparable ).
Another tip is if you are developing small, concise bits of functionality, use interfaces. If you are designing large functional units, use an abstract class.
Hope this clears things up for some people!
Also if you can think of any better examples or want to point something out, please do so in the comments below!
Interfaces should be small. Really small. If you're really breaking down your objects, then your interfaces will probably only contain a few very specific methods and properties.
Abstract classes are shortcuts. Are there things that all derivatives of PetBase share that you can code once and be done with? If yes, then it's time for an abstract class.
Abstract classes are also limiting. While they give you a great shortcut to producing child objects, any given object can only implement one abstract class. Many times, I find this a limitation of Abstract classes, and this is why I use lots of interfaces.
Abstract classes may contain several interfaces. Your PetBase abstract class may implement IPet (pets have owners) and IDigestion (pets eat, or at least they should). However, PetBase will probably not implement IMammal, since not all pets are mammals and not all mammals are pets. You may add a MammalPetBase that extends PetBase and add IMammal. FishBase could have PetBase and add IFish. IFish would have ISwim and IUnderwaterBreather as interfaces.
Yes, my example is extensively over-complicated for the simple example, but that's part of the great thing about how interfaces and abstract classes work together.
The case for Base Classes over Interfaces was explained well in the Submain .NET Coding Guidelines:
Base Classes vs. Interfaces
An interface type is a partial
description of a value, potentially
supported by many object types. Use
base classes instead of interfaces
whenever possible. From a versioning
perspective, classes are more flexible
than interfaces. With a class, you can
ship Version 1.0 and then in Version
2.0 add a new method to the class. As long as the method is not abstract,
any existing derived classes continue
to function unchanged.
Because interfaces do not support
implementation inheritance, the
pattern that applies to classes does
not apply to interfaces. Adding a
method to an interface is equivalent
to adding an abstract method to a base
class; any class that implements the
interface will break because the class
does not implement the new method.
Interfaces are appropriate in the
following situations:
Several unrelated classes want to support the protocol.
These classes already have established base classes (for
example,
some are user interface (UI) controls,
and some are XML Web services).
Aggregation is not appropriate or practicable. In all other
situations,
class inheritance is a better model.
One important difference is that you can only inherit one base class, but you can implement many interfaces. So you only want to use a base class if you are absolutely certain that you won't need to also inherit a different base class. Additionally, if you find your interface is getting large then you should start looking to break it up into a few logical pieces that define independent functionality, since there's no rule that your class can't implement them all (or that you can define a different interface that just inherits them all to group them).
When I first started learning about object-oriented programming, I made the easy and probably common mistake of using inheritance to share common behavior - even where that behavior was not essential to the nature of the object.
To further build on an example much used in this particular question, there are lots of things that are petable - girlfriends, cars, fuzzy blankets... - so I might have had a Petable class that provided this common behavior, and various classes inheriting from it.
However, being petable is not part of the nature of any of these objects. There are vastly more important concepts that are essential to their nature - the girlfriend is a person, the car is a land vehicle, the cat is a mammal...
Behaviors should be assigned first to interfaces (including the default interface of the class), and promoted to a base class only if they are (a) common to a large group of classes that are subsets of a larger class - in the same sense that "cat" and "person" are subsets of "mammal".
The catch is, after you understand object-oriented design sufficiently better than I did at first, you'll normally do this automatically without even thinking about it. So the bare truth of the statement "code to an interface, not an abstract class" becomes so obvious you have a hard time believing anyone would bother to say it - and start trying to read other meanings into it.
Another thing I'd add is that if a class is purely abstract - with no non-abstract, non-inherited members or methods exposed to child, parent, or client - then why is it a class? It could be replaced, in some cases by an interface and in other cases by Null.
Prefer interfaces over abstract classes
Rationale,
the main points to consider [two already mentioned here] are :
Interfaces are more flexible, because a class can implement multiple
interfaces. Since Java does not have multiple inheritance, using
abstract classes prevents your users from using any other class
hierarchy. In general, prefer interfaces when there are no default
implementations or state. Java collections offer good examples of
this (Map, Set, etc.).
Abstract classes have the advantage of allowing better forward
compatibility. Once clients use an interface, you cannot change it;
if they use an abstract class, you can still add behavior without
breaking existing code. If compatibility is a concern, consider using
abstract classes.
Even if you do have default implementations or internal state,
consider offering an interface and an abstract implementation of it.
This will assist clients, but still allow them greater freedom if
desired [1].
Of course, the subject has been discussed at length
elsewhere [2,3].
[1] It adds more code, of course, but if brevity is your primary concern, you probably should have avoided Java in the first place!
[2] Joshua Bloch, Effective Java, items 16-18.
[3] http://www.codeproject.com/KB/ar...
Previous comments about using abstract classes for common implementation is definitely on the mark. One benefit I haven't seen mentioned yet is that the use of interfaces makes it much easier to implement mock objects for the purpose of unit testing. Defining IPet and PetBase as Jason Cohen described enables you to mock different data conditions easily, without the overhead of a physical database (until you decide it's time to test the real thing).
Don't use a base class unless you know what it means, and that it applies in this case. If it applies, use it, otherwise, use interfaces. But note the answer about small interfaces.
Public Inheritance is overused in OOD and expresses a lot more than most developers realize or are willing to live up to. See the Liskov Substitutablity Principle
In short, if A "is a" B then A requires no more than B and delivers no less than B, for every method it exposes.
Another option to keep in mind is using the "has-a" relationship, aka "is implemented in terms of" or "composition." Sometimes this is a cleaner, more flexible way to structure things than using "is-a" inheritance.
It may not make as much sense logically to say that Dog and Cat both "have" a Pet, but it avoids common multiple inheritance pitfalls:
public class Pet
{
void Bathe();
void Train(Trick t);
}
public class Dog
{
private Pet pet;
public void Bathe() { pet.Bathe(); }
public void Train(Trick t) { pet.Train(t); }
}
public class Cat
{
private Pet pet;
public void Bathe() { pet.Bathe(); }
public void Train(Trick t) { pet.Train(t); }
}
Yes, this example shows that there is a lot of code duplication and lack of elegance involved in doing things this way. But one should also appreciate that this helps to keep Dog and Cat decoupled from the Pet class (in that Dog and Cat do not have access to the private members of Pet), and it leaves room for Dog and Cat to inherit from something else--possibly the Mammal class.
Composition is preferable when no private access is required and you don't need to refer to Dog and Cat using generic Pet references/pointers. Interfaces give you that generic reference capability and can help cut down on the verbosity of your code, but they can also obfuscate things when they are poorly organized. Inheritance is useful when you need private member access, and in using it you are committing yourself to highly coupling your Dog and Cat classes to your Pet class, which is a steep cost to pay.
Between inheritance, composition, and interfaces there is no one way that is always right, and it helps to consider how all three options can be used in harmony. Of the three, inheritance is typically the option that should be used the least often.
Conceptually, an interface is used to formally and semi-formally define a set of methods that an object will provide. Formally means a set of method names and signatures, and semi-formally means human readable documentation associated with those methods.
Interfaces are only descriptions of an API (after all, API stands for application programming interface), they can't contain any implementation, and it's not possible to use or run an interface. They only make explicit the contract of how you should interact with an object.
Classes provide an implementation, and they can declare that they implement zero, one or more Interfaces. If a class is intended to be inherited, the convention is to prefix the class name with "Base".
There is a distinction between a base class and an abstract base classes (ABC). ABCs mix interface and implementation together. Abstract outside of computer programming means "summary", that is "abstract == interface". An abstract base class can then describe both an interface, as well as an empty, partial or complete implementation that is intended to be inherited.
Opinions on when to use interfaces versus abstract base classes versus just classes is going to vary wildly based on both what you are developing, and which language you are developing in. Interfaces are often associated only with statically typed languages such as Java or C#, but dynamically typed languages can also have interfaces and abstract base classes. In Python for example, the distinction is made clear between a Class, which declares that it implements an interface, and an object, which is an instance of a class, and is said to provide that interface. It's possible in a dynamic language that two objects that are both instances of the same class, can declare that they provide completely different interfaces. In Python this is only possible for object attributes, while methods are shared state between all objects of a class. However, in Ruby, objects can have per-instance methods, so it's possible that the interface between two objects of the same class can vary as much as the programmer desires (however, Ruby doesn't have any explicit way of declaring Interfaces).
In dynamic languages the interface to an object is often implicitly assumed, either by introspecting an object and asking it what methods it provides (look before you leap) or preferably by simply attempting to use the desired interface on an object and catching exceptions if the object doesn't provide that interface (easier to ask forgiveness than permission). This can lead to "false positives" where two interfaces have the same method name, but are semantically different. However, the trade-off is that your code is more flexible since you don't need to over specify up-front to anticipate all possible uses of your code.
It depends on your requirements. If IPet is simple enough, I would prefer to implement that. Otherwise, if PetBase implements a ton of functionality you don't want to duplicate, then have at it.
The downside to implementing a base class is the requirement to override (or new) existing methods. This makes them virtual methods which means you have to be careful about how you use the object instance.
Lastly, the single inheritance of .NET kills me. A naive example: Say you're making a user control, so you inherit UserControl. But, now you're locked out of also inheriting PetBase. This forces you to reorganize, such as to make a PetBase class member, instead.
I usually don't implement either until I need one. I favor interfaces over abstract classes because that gives a little more flexibility. If there's common behavior in some of the inheriting classes I move that up and make an abstract base class. I don't see the need for both, since they essentially server the same purpose, and having both is a bad code smell (imho) that the solution has been over-engineered.
Regarding C#, in some senses interfaces and abstract classes can be interchangeable. However, the differences are: i) interfaces cannot implement code; ii) because of this, interfaces cannot call further up the stack to subclass; and iii) only can abstract class may be inherited on a class, whereas multiple interfaces may be implemented on a class.
By def, interface provides a layer to communicate with other code. All the public properties and methods of a class are by default implementing implicit interface. We can also define an interface as a role, when ever any class needs to play that role, it has to implement it giving it different forms of implementation depending on the class implementing it. Hence when you talk about interface, you are talking about polymorphism and when you are talking about base class, you are talking about inheritance. Two concepts of oops !!!
I've found that a pattern of Interface > Abstract > Concrete works in the following use-case:
1. You have a general interface (eg IPet)
2. You have a implementation that is less general (eg Mammal)
3. You have many concrete members (eg Cat, Dog, Ape)
The abstract class defines default shared attributes of the concrete classes, yet enforces the interface. For example:
public interface IPet{
public boolean hasHair();
public boolean walksUprights();
public boolean hasNipples();
}
Now, since all mammals have hair and nipples (AFAIK, I'm not a zoologist), we can roll this into the abstract base class
public abstract class Mammal() implements IPet{
#override
public walksUpright(){
throw new NotSupportedException("Walks Upright not implemented");
}
#override
public hasNipples(){return true}
#override
public hasHair(){return true}
And then the concrete classes merely define that they walk upright.
public class Ape extends Mammal(){
#override
public walksUpright(return true)
}
public class Catextends Mammal(){
#override
public walksUpright(return false)
}
This design is nice when there are lots of concrete classes, and you don't want to maintain boilerplate just to program to an interface. If new methods were added to the interface, it would break all of the resulting classes, so you are still getting the advantages of the interface approach.
In this case, the abstract could just as well be concrete; however, the abstract designation helps to emphasize that this pattern is being employed.
An inheritor of a base class should have an "is a" relationship. Interface represents An "implements a" relationship.
So only use a base class when your inheritors will maintain the is a relationship.
Use Interfaces to enforce a contract ACROSS families of unrelated classes. For example, you might have common access methods for classes that represent collections, but contain radically different data i.e. one class might represent a result set from a query, while the other might represent the images in a gallery. Also, you can implement multiple interfaces, thus allowing you to blend (and signify) the capabilities of the class.
Use Inheritance when the classes bear a common relationship and therefore have a similair structural and behavioural signature, i.e. Car, Motorbike, Truck and SUV are all types of road vehicle that might contain a number of wheels, a top speed

Different uses of Interfaces in C#

I read a lot about C# and had my first practical exercises, but I am still a beginner and kind of lost at a certain point of my try understanding an existing, but not finished, MVC-concepted program.
I understand what interfaces are for and how I must implement an interface to a class or another interface to gain acces to its containing members, functions etc, but in the existing code I found another use of interfaces (in the declaration of a class):
private IViewControl m_viewControl = null;
private IModelControl m_modelControl = null;
This code doesn't come up in the class, which implemented those two interfaces, but in the class which doesn't implement those two interfaces at all!
So my questions are:
How is this usage of interfaces called? It is clearly not the regular implementation of an interface.
What kind of possibilities do I get through this way of using an interface?
Thanks a lot!
Bent
Please excuse my english, I'm not a native speaker.
Hey,
thank you all so much for your answers, can't even say which is the best since all answers seem to be helpful! I think I'm starting to get what this is about.
Thanks again!
The class which contains these lines
private IViewControl m_viewControl = null;
private IModelControl m_modelControl = null;
Has 2 references to other classes which implement these Interfaces. So to answer your first question, this is not the implementation of an interface, it is the usage of an interface.
To answer your second question: That is exactly why we use interfaces. The class which uses these interfaces does not care about their implementation. In your development process you can write a dummy implementation for one or the other, because you don't need it right now, but you can still run and test the rest of the application.
An other example: Let's image you want to write an application which uses some Database. Put all your database logic behind an interface. In version 1 of your app you might use an SQL Database. Do your classes, which write to the database, know that it is an SQL database? No, and they don't need to. So now you move on and decide you want to use a different database system. You just change the implementation behind the interface and your done.
Hope this helps.
These are two variables (actually member variables, which are known as fields, as they are members of an enclosing type).
They can be used to store any item that implements the interface, so you could put anything that implements IViewControl into m_viewControl and anything that implements IModelControl into m_modelControl.
It does mean, that the object you can assign to your variable has to have the interface implemented.
So it has to be the type of the interface.
What you see there is called composition. It means that your class has two fields that are instances of those types, not that it is implementing their interfaces.
Let's use cars for an analogy. "Car" is a pretty generic concept, so let's make it the interface. The Toyota someone own is an instance of some class (e.g.: Corolla), which in turn implements the Car interface. The wheels, on the other hand, are fields of the car. The tires in your Corolla may belong to the Pirelli class, which implements the Tire interface. But your car is not a tire - it has tires.
An interface is a way to make a type without any implementation at all, but which cannot be instantiated. You can then have other types implementing that interface, giving it logic - so you have many variations of that interface, each doing something in a different way. The point is that you are making sure that all the implementors of an interface have a set of known method signatures and properties - you may not know how they are implemented, but you can be sure they are there.
If you look at some of the namespaces in C# that have a lot of classes implementing the same interface, you may get a better idea of how they behave. For example, a lot of classes in System.Collections implement the (surprise) ICollection interface. That makes sure that all collections have, for example, a Count property, and a CopyTo method with a known signature.
This type of usage is great to restrict the usage of a particular object, or to write common code that can work on any number of classes. Let's say we have a class called Car that implements an interface called IDriveable:
public class Car : IDriveable
Now, in some other class, we can instantiate a Car object easily, like so:
Car myCar = new Car();
But what if the Car class has several public methods that we don't want to be accessed in this other section? Or we want to write a function that can work on any class that implements the IDriveable interface? We could instead create an instantiation of the IDriveable interface itself, and then assign a Car to it, like so:
IDriveable myDriveable = new Car();
Then, if the following code works on the IDriveable interface, ANY class that implements IDriveable would work fine on it, such as this example:
private void TurnLeft(IDriveable vehicle)
P.S. Your English usage is great!
The important thing about interfaces is that you aren't interested in what they are but what they can do. Consequently in this case you are only interested in the IViewControl elements of whatever object is assigned to that local variable, so it could be of any class that implements IViewControl and very probably that class can do lots of other things as well, but for these purposes the fact that it is an IViewControl is all that we care about.
An example might be that we have a class that is interested in things that can fly, it doesn't care about anything else, so we create an interface called IFlyingThing with an IFlyingThing.Fly() method. Then we can have a Bird, Plane, Butterfly and all kinds of other types that implement IFlyingThing and we can pass it to our class and it will just see IFlyingThing and call IFlyingThing.Fly() which might be Bird.Fly(), or Plane.Fly() on the actual object it has been passed. It doesn't care what the object is, only that it can fly.
Bird might also implement IFeatheredAnimal, plane might implement IHasJetEngines too but our class is only interested in the IFlyingThing interface so it doesn't want or need to know about these.
This helps us to avoid tying our code together too tightly and makes techniques such as Inversion of Control and Mock Objects possible.
As you progress through learning C# you will use interfaces a lot.
Suppose you have a class, that you don't develop. You just consume it. You know it can generate some file and return it to you as a filestream. You don't know how it is generated, and you need not. You just know it returns you a filestream, which you then use for your own purpose. In order to implement it, you make a contract with a developer of the class that the class should provide you a method, which should return you a file stream and the name of the method should be ReturnStream, for example. This contract is called an Interface. By the time the developer of the class can change it's logic of file generation. But it would still have the same name ReturnStream and it would still return you a file stream. So you don't have to change anything in your code.
As for your code, you have two objects of IViewControl and IModelControl. You don't develop the model and view. You just consume the logic of other developers, who write the classes with the interface implementation. And you can use them in your code in a way you want. But many developers can create different classes, which implement IViewControl and IModelControl interfaces. And you can use them by simply changing the class instance, which implements the interface.
Doesn't sound like you've grasped properly how interfaces can be used. Let me enlighten you with a simple example:
class Driver{
// A driver has two cars - they are cars, since they are
// of types (classes Bmw and Audi) that implement the interface ICar:
ICar firstCar = MethodThatReturnsInstanceOfBmw();
ICar secondtCar = MethodThatReturnsInstanceOfAudi();
public void DriveAllCars(){
// The interface ICar has a method "Start()", which both
// cars must therefor implement. The Driver class can call
// these methods, because it knows about them from the interface.
firstCar.Start();
secondCar.Start();
}
}
The class Driver still does not need to implement ICar - just know about it (have a reference to it), so it knows what it can do with "things" of that type. It can then tell a car to Start(), without giving a rodents rear part about how the engine actually works.
Compare it to the real world: You don't need to be a car to drive, nor do you need to be a mechanic - you just need to know the basics of driving, and those are common to most cars, though engines and other things may differ greatly.
That abstraction and agreement on common functionality, is the purpose of interfaces.
Interface is basically used to implement similar feature among different classes.
Interface is also used to create object of class only when it is required via a dependency injection.
eg:
Interface IMyClass{}
Class MyClass1:IMyClass
{
}
and
IMyClass obj;
thus you can register obj with the class that implements IMyClass in one class(Bootstrapper) and inject obj into all the class through constructor or method that required it with out need of initializing it.
thus Interface Prevents unnessecary creation of object thus prevent memory leak and as I mentioned above it helps in implementing same feature among different classes in different way.

When some methods will not be used/not implemented, use an Interface or Abstract Class?

I have a project where quite a few functions and variable getters will be defined, abstractly. My question is should I use an abstract class for this(with each function throwing NotImplementedException), or should I just use an interface? Or should I use both, making both an interface and then an abstract class implementing the interface?
Note, even though all of these functions and such may be defined, it does not mean they will all be used in all use cases. For instance, AddUser in an authentication class may be defined in an interface, but not ever used in a website due to closed user sign up.
In general, the answer to the question of whether or not to use inheritance or an interface can be answered by thinking about it this way:
When thinking about hypothetical
implementing classes, is it a case
where these types are what I'm
describing, or is it a case where
these types can be or can do what I'm
describing?
Consider, for example, the IEnumerable<T> interface. The classes that implement IEnumerable<T> are all different classes. They can be an enumerable structure, but they're fundamentally something else (a List<T> or a Dictionary<TKey, TValue> or a query, etc.)
On the other hand, look at the System.IO.Stream class. While the classes that inherit from that abstract class are different (FileStream vs. NetworkStream, for example), they are both fundamentally streams--just different kinds. The stream functionality is at the core of what defines these types, versus just describing a portion of the type or a set of behaviors that they provide.
Often you'll find it beneficial to do both; define an interface that defines your behavior, then an abstract class that implements it and provides core functionality. This will allow you to, if appropriate, have the best of both worlds: an abstract class for inheriting from when the functionality is core, and an interface to implement when it isn't.
Also, bear in mind that it's still possible to provide some core functionality on an interface through the use of extension methods. While this doesn't, strictly speaking, put any actual instance code on the interface (since that's impossible), you can mimic it. This is how the LINQ-to-Objects query functions work on IEnumerable<T>, by way of the static Enumerable class that defines the extension methods used for querying generic IEnumerable<T> instances.
As a side note, you don't need to throw any NotImplementedExceptions. If you define a function or property as abstract, then you don't need to (and, in fact, cannot) provide a function body for it within the abstract class; the inheriting classes will be forced to provide a method body. They might throw such an exception, but that's not something you need to worry about (and is true of interfaces as well).
Personally, I think it depends on what the "type" is defining.
If you're defining a set of behaviors, I would recommend an interface.
If, on the other hand, the type really defines a "type", then I'd prefer an abstract class. I would recommend leaving the methods abstract instead of providing an empty behavior, though.
Note, even though all of these functions and such may be defined, it does not mean they will all be used in all use cases.
If this is true, you should consider breaking this up into multiple abstract classes or interfaces. Having "inappropriate" methods in the base class/interface really is a violation of the Liskov Substitution Principle, and a sign of a design flaw.
If you're not providing any implementation, then use an interface otherwise use an abstract class. If there are some methods that may not be implemented in subclasses, it might make sense to create an intermediate abstract class to do the legwork of throwing NotSupportedException or similar.
One advantage of abstract classes is that one can add to an abstract class new class members whose default implementation can be expressed in terms of existing class members, without breaking existing inheritors of that class. By contrast, if any new members are added to an interface, every implementation of that interface must be modified to add the necessary functionality.
It would be very nice if .net allowed for an interface to include default implementations for properties, methods, and events which did not make any use of object fields. From a technical standpoint, I would think such a thing could be accomplished without too much difficulty by having for each interface a list of default vtable entries which could be used with implementations that don't define all vtable slots. Unfortunately, nothing like that ability exists in .net.
Abstract classes should be used when you can provide a partial implementation. Use interfaces when you don't want to provide any implementation at all - just definition.
In your question, it sounds like there is no implementation, so go with an interface.
Also, rather than throwing NotImplementedException you should declare your method/property with the abstract keyword so that all inheritors have to provide an implementation.
#Earlz I think refering to this: Note, even though all of these functions and such may be defined, it does not mean they will all be used in all use cases. is directly related to the best way to 'attack' this problem.
What you should aim at is minimizing the number of such functions so that it becomes irrelavant (or at least not that important) if you use either or. So improve the design as much as you can and you will see that it really doesn't matter which way you go.
Better yet post a high level of what you are trying to do and let's see if we can come up together with something nice. More brains working towards a common goal will get a better answer/design.
Another pattern that works in some situations is to create a base class that is not abstract. Its has a set of public methods that define the API. Each of these calls a Protected method that is Overideable.
This allows the derived class to pick and choose what methods it needs to implement.
So for instance
public void AddUser(object user)
{
AddUserCore(user);
}
protected virtual void AddUserCore(object user)
{
//no implementation in base
}

Using The Interface Methods I Want Based On The Implementation

I have two basic interface-related concepts that I need to have a better
understanding of.
1) How do I use interfaces if I only want to use some of the interface
methods in a given class? For example, my FriendlyCat class inherits from
Cat and implements ICatSounds. ICatSounds exposes MakeSoftPurr() and
MakeLoudPurr() and MakePlayfulMeow(). But, it also exposes MakeHiss()
and MakeLowGrowl() - both of which I don't need for my FriendlyCat class.
When I try to implement only some of the methods exposed by the interface
the compiler complains that the others (that I don't need) have not been
implemented.
Is the answer to this that I must create an interface that only contains
the methods that I want to expose? For example, from my CatSounds class, I
would create IFriendlyCatSounds? If this is true, then what happens when
I want to use the other methods in another situation? Do I need to create
another custom-tailored interface? This doesn't seem like good design to me.
It seems like I should be able to create an interface with all of the
relevant methods (ICatSounds) and then pick and choose which methods I
am using based on the implementation (FriendlyCat).
2) My second question is pretty basic but still a point of confusion for
me. When I implement the interface (using Shift + Alt + F10) I get the interface's
methods with "throw new NotImplementedException();" in the body. What
else do I need to be doing besides referencing the interface method that
I want to expose in my class? I am sure this is a big conceptual oops, but
similar to inheriting from a base class, I want to gain access to the methods
exposed by the interface wihtout adding to or changing them. What is the
compiler expecting me to implement?
-- EDIT --
I understand #1 now, thanks for your answers. But I still need further elaboration
on #2. My initial understanding was that an interface was a reflection of a the fully
designed methods of a given class. Is that wrong? So, if ICatSounds has
MakeSoftPurr() and MakeLoudPurr(), then both of those functions exist in
CatSounds and do what they imply. Then this:
public class FriendlyCat: Cat, ICatSounds
{
...
public void ICatSounds.MakeLoudPurr()
{
throw new NotImplementedException();
}
public void ICatSounds.MakeSoftPurr()
{
throw new NotImplementedException();
}
}
is really a reflection of of code that already exists so why am
I implementing anything? Why can't I do something like:
FriendlyCat fcat = new FriendlyCat();
fcat.MakeSoftPurr();
If the answer is, as I assume it will be, that the method has no
code and therefore will do nothing. Then, if I want these methods
to behave exactly as the methods in the class for which the interface
is named, what do I do?
Thanks again in advance...
An interface is a contract. You have to provide at least stubs for all of the methods. So designing a good interface is a balancing act between having lots of little interfaces (thus having to use several of them to get anything done), and having large, complex interfaces that you only use (or implement) parts of. There is no hard an fast rule for how to choose.
But you do need to keep in mind that once you ship your first version of the code, it becomes a lot more difficult to change your interfaces. It's best to think at least a little bit ahead when you design them.
As for implementation, it's pretty common to see code that stubs the methods that aren't written yet, and throws a NotImplemented exception. You don't really want to ship NotImplemented in most cases, but it's a good get around the problem of not having the code compile because you havn't implemented required parts of the interface yet.
There's at least one example in the framework of "deliberately" not implementing all of an interface's contract in a class: ReadOnlyCollection<T>
Since this class implements IList<T>, it has to have an "Insert" method, which makes no sense in a read-only collection.
The way Microsoft have implemented it is quite interesting. Firstly, they implement the method explicitly, something like this:
public class ReadOnlyCollection<T> : IList<T>
{
public void IList<T>.Insert(int index, T item)
{
throw new NotSupportedException();
}
/* ... rest of IList<T> implemented normally */
}
This means that users of ReadOnlyCollection<T> don't see the Insert method in intellisense - they would only see it if it were cast to IList<T> first.
Having to do this is really a hint that your interface hierarchy is a bit messed up and needs refactoring, but it's an option if you have no control over the interfaces (or need backwards compatibility, which is probably why MS decided to take this route in the framework).
You have to implement all the methods in your interface. Create two interfaces, IHappyCatSounds and IMeanCatSounds, split out those methods. Don't implement IMeanCatSounds in FriendlyCat, because a friendly cat is not a mean cat. You have to think about an interface as a contract. When you write the interface, you are guaranteeing that every class that implements the interface will have those members.
It throws a NotImplementedException because you haven't implemented it yet. The compiler is expecting you to implement the code that would be completed when the cat purrs, meows or hisses. An interface doesn't have code in it. It's simply nothing more than a contract for any class that implements it, so you can't really "access the code" the interface implements, because the interface doesn't implement any code. You implement the code when you inherit from the interface.
For example:
// this is the interface, or the "contract". It guarantees
// that anything that implements IMeowingCat will have a void
// that takes no parameters, named Meow.
public class IMeowingCat
{
void Meow();
}
// this class, which implements IMeowingCat is the "interface implementation".
// *You* write the code in here.
public class MeowingCat : IMeowingCat
{
public void Meow
{
Console.WriteLine("Meow. I'm hungry");
}
}
I'd strongly suggest picking up a copy of The Object Oriented Thought Process, and read it through in it's entirety. It's short, but it should help you to clear things up.
For starters, though, I'd read this and this.
Imagine that you could "pick and choose." For example, suppose you were allowed to not implement ICatSounds.MakeHiss() on FriendlyCat. Now what happens when a user of your classes writes the following code?
public ICatSounds GetCat()
{
return new FriendlyCat();
}
ICatSounds cat = GetCat();
cat.MakeHiss();
The compiler has to let this pass: after all, GetCat is returning an ICatSounds, it's being assigned to an ICatSounds variable and ICatSounds has a MakeHiss method. But what happens when the code runs? .NET finds itself calling a method that doesn't exist.
This would be bad if it were allowed to happen. So the compiler requires you to implement all the methods in the interface. Your implementation is allowed to throw exceptions, such as NotImplementedException or NotSupportedException, if you want to: but the methods have to exist; the runtime has to be able to at least call them, even if they blow up.
See also Liskov Substitution Principle. Basically, the idea is that if FriendlyCat is an ICatSounds, it has to be substitutable anywhere an ICatSounds is used. A FriendlyCat without a MakeHiss method is not substitutable because users of ICatSounds could use the MakeHiss method but users of FriendlyCat couldn't.
A few thoughts:
Interface Separation Principle. Interfaces should be as small as possible, and only contain things that cannot be separated. Since MakePlayfulMeow() and MakeHiss() are not intrinsically tied together, they should be on two separate interfaces.
You're running into a common problem with deep inheritance trees, especially of the type of inheritance that you're describing. Namely, there's commonly three objects that have three different behaviors in common, only none of them share the same set. So a Lion might Lick() and Roar(), a Cheetah might Meow() and Lick(), and an AlienCat might Roar() and Meow(). In this scenario, there's no clear inheritance hierarchy that makes sense. Because of situations like these, it often makes more sense to separate the behaviors into separate classes, and then create aggregates that combine the appropriate behaviors.
Consider whether that's the right design anyway. You normally don't tell a cat to purr, you do something to it that causes it to purr. So instead of MakePlayfulMeow() as a method on the cat, maybe it makes more sense to have a Show(Thing) method on the cat, and if the cat sees a Toy object, it can decide to emit an appropriate sound. In other words, instead of thinking of your program as manipulating objects, think of your program as a series of interactions between objects. In this type of design, interfaces often end up looking less like 'things that can be manipulated' and more like 'messages that an object can send'.
Consider something closer to a data-driven, discoverable approach rather than a more static approach. Instead of Cat.MakePlayfulMeow(), it might make more sense to have something like Cat.PerformAction(new PlayfulMeowAction()). This gives an easy way of having a more generic interface, which can still be discoverable (Cat.GetPossibleActions()), and helps solve some of the 'Lions can't purr' issues common in deep inheritance hierarchies.
Another way of looking at things is to not make interfaces necessarily match class definitions 1:1. Consider a class to define what something is, and an interface as something to describe its capabilities. So whether FriendlyCat should inherit from something is a reasonable question, but the interfaces it exposes should be a description of its capabilities. This is slightly different, but not totally incompatible, from the idea of 'interfaces as message declarations' that I suggested in the third point.

Why prefix C# interface names with an “I”

What is the rationale behind this naming convention?
I don't see any benefit. The extra prefix just pollutes the API.
My thinking is inline with Konrad's response to this related question; the chosen answer of which is mostly what I am asking for here.
Its the complete opposite, the naming convention clearly identifies an interface.
For example if you have:
public class Dog : IPet, IMammal
{
....
Just from reading it, I can safely assume that IPet and IMammal are probably interfaces.
The .NET CLR allows for single class inheritance. So, if I have a base class..I can only inherit one class from it. Lets change the IPet interface to a base class..our example now becomes
public class Dog : Pet, IMammal
{
....
I am inheriting from the Pet class and implementing the IMammal interface.
If we did it what you are suggesting and removed the letter "I" we have this:
public class Dog : Pet, Mammal
{
....
Which one is the class I am inheriting from? Which is the interface I am implementing? It gets confusing right? (FYI..you are supposed to put the base class always first, so you could argue that point...but if you are arguing to remove the letter I from prefixing interface names I doubt you follow that practice as well)
As you can see that naming convention easily tells me a lot about my object without me having to investigate further. I can easily see what I am inheriting vs what I am implementing.
I also like it cause I can read it as "I verb-behavior" as in "ICanSave" or "IDoDoubleEntry" etc...
I think that the IInterface naming convention is silly. It's an example of Hungarian notation, and I subscribe to the school of thought that despises Hungarian notation. If you have an interface with only one implementation that has the same name, consider the possibility that this is a code smell.
However, I still use it, because in this case IInterface is recommended by Microsoft, and "standard is better than better".
Why isn't this a function of syntactical highlighting instead of Hungarian notation? Why doesn't the IDE just italicize identifiers that refer to interfaces if it's so important to distinguish between classes and interfaces. I hate putting "" or "m" before fields, "C" before classes, etc. Even worse, it encourages programmers write really bad APIs such as:
public class List : IList
instead of a more reasonable:
public class LinkedList : List
public class ArrayList : List
public class HashList : List
Even the .NET common class authors fell into this trap. A class name should NEVER be the name of the interface with just the "I" removed. The class name should always tell the user how the class differs from other possible implementations of the interface(s). I vote for dropping the stupid "I" for that reason alone.
Also, when I use intellisense, I want to group things by functional area, not whether it's a class or interface. I never think, "I need an interface, not a class." I always think, "I need something that does X".
Actually I find it useful to avoid naming clashes, I might for example create a concrete class called Fred that implements IFred
I always thought it was fun to use verbs for behavioral interfaces. This is a departure from the class naming convention of using nouns, but it allows the class to "speak" to its behavior.
class Dog: IBark
This does not work well for structural interfaces like WCF interfaces, but we don't need to have fun all the time.
to answer your question, think of the I as "implements" So...
class DogDataService : Dog, IDataService
this service class inherits from Dog and implements IDataService
I'm still not really answering your question, but the I is useful because you get naming collisions between namespace, class and interface.
namespace DataService
interface DataService
class DataService: DataService
so we end up with
namespace DataServices
interface IDataService
class DataService : IDataService
I think in reality, it's a sanity convention.
If you consider the two "best-practice-aphorisms"
clarity is king
and
noise is bad
there is a conflict between these. The question is: when does clarity become noise?
For me it more noisy (but equally clear) to write Person person = new PersonImpl() than IPerson person = new Person().
It's either that or add "Impl" to the implementation of the interface (argh). I don't have a problem with the "I", it is the simplest and most straightforward naming for an interface.
The "I" convention seems to be an old convention that wouldn't be relevant today. Current code editor provides lots of insight about the type you are using, so arguing that It's easier to identify the interface is like asking for a namespace to be prefixed by a "N" because you want to be sure that you will not confound it with a concrete class (prefix with a "C"?).
A convention doesn't mean that It's a good convention. Sometimes, It's just because people get to use it...
Take for example the C# documentation generator: It doesn't care about it... if your interface is not prefixed with a "I" you will still see your interface in the interface part of your documentation. Do you really think that having a prefix "I" for all your interfaces inside the interface section of your documentation is a relevant information and help you to better identify interfaces?
The need to differentiate between an interface and a class actually indicates a design flaw. In a well designed application, it will always be clear. A subclass should always be a specialization and classes can only be specialized in one subject, never more.
A class should have a single reason for existence. It should never be required to put secondary roles in a base class. E.g.:
public class XmlConfigurationFile : ConfigurationFile, IDisposable
{
}
public class YamlConfigurationFile : ConfigurationFile, IDisposable
{
}
The first one is a configuration file that is specialized in Xml, the second one is specialized in Yaml. These are also disposable, but that doesn't matter as much. You didn't create these two classes because of a different disposing processes.
Constrast this with:
public class XmlConfigurationFile : IDisposable, ConfigurationFile
{
}
This will tell you that the main purpose a XmlConfigurationFile has, is that it is disposable. That you can use it as a way to represent configuration files is nice, but is secondary.
The problem starts when you create classes that have multiple reasons for existence:
public class MyConfigurationFile : XmlConfigurationFile, YamlConfigurationFile
{
}
Even if XmlConfigurationFile and YamlConfigurationFile would have been interfaces, it still indicates bad design. How can your configuration file be Xml and Yaml at the same time?
If you read through the examples given (here and elsewhere), people always struggle to find a good example of when the I-prefix matters. One of the answers here is:
public class Dog : Pet, Mammal
{
}
This is how this class will look like in an application about pets. A dog's main purpose is being a specialized pet, that can do pet-related things, not that it is a mammal.
public class Dog : Mammal, Pet
{
}
This is how the same class will look like in an application about animal classifications. It is nice to know a dog is a pet, but it's main purpose is being a specialized mammal, that can do mammal-related things.
I think your classes should tell you the correct story about the architecture and domain of your application. Requiring an interface to be prefixed with an 'I' is a technical requirement and doesn't help you to tell your application's story better.
Once you start writing small, dedicated, single-purpose classes, the need for knowing if it implements or extends will automatically vanish.
It makes it easily identifiable as an interface.
TL;DR - Extracting interface IFoo from class Foo is common in SOLID decoupling, especially for Unit Testing purposes
To me the dual convention of class Foo implementing interface IFoo (especially if both are in the same assembly) conveys a specific intention that:
Coupling on a dependency to a Foo should always be indirect, through the corresponding IFoo interface (and likely to be injected via an IoC container)
The initial design of IFoo is a proprietary, non-reusable interface specifically to allow classes dependent on Foo to mock out this dependency during unit testing.
Beyond the above, a reader doesn't need to infer any additional intelligence in the design of the IFoo interface
Conversely, if multiple concrete implementation classes of IFoo are required at a later point, that proper interface segregation design will need to be retrofitted into the hierarchy.
Rationale
In order to be able to Mock or Stub out a class, a widely accepted best practice in Unit Testing is to decouple dependencies between classes only via interfaces. This interface decoupling will also be done to classes which would otherwise never had a design requirement for polymorphicism (i.e. only one such implementation would have existed, were it not for the need for unit testing).
As a consequence, the refactoring and reuse of these interfaces (e.g. the Interface Segregation Principal of SOLID) isn't frequently applied to such 'mockable' interfaces - there is often a 1:1 correlation between the public methods, properties and events of a 'mockable' class (Foo) and its decoupled interface IFoo (similar to the COM-era automatic interfaces in VB).
Tools such as VS and Resharper can make extracting such public symbols from a class into a separate interface trivial, as an afterthought.
Further, if we consider that Mocking frameworks like Moq allow definition of implementations of the interface on-the-fly, we need not waste effort naming the concrete test double implementation class.
Naming conventions offer the benefit of telling you something about the object before you use it. Naming conventions have been widely used for many years, going all the way back to fortran's insistence that integer values were restricted (if I remember correctly) to variable names like "i" and "j".
Hungariation notation took naming conventions to a whole new ugly level tha described the variable type, whether or not it was a pointer, etc. Many of us who were exposed to lots of code with Hungarian notation developed nervous twitches and verbal stutters.
Prefixing interface names with I is a relatively low-impact, harmless way of identifying that object.
It is just a naming convention so everybody would know if it is an interface or something else it is not mandatory nor by the compiler nor by the IDE but All the interfaces i saw in my entire life starts with the letter I
I seems to traditional convention from Hungarian Notation.
Interface Naming Guidelines says "Prefix interface names with the letter I, to indicate that the type is an interface."
Framework Design Guidelines also says "DO prefix interface names with the letter I, to indicate that the type is an interface."
It is just a coding convention, So it's to hard to determine good or bad.
Important things is consistency.
Firstly I believe prefixing with I then description is wrong because it means implementations can have a shorter name. IList (intf) -> List. This is an anti-pattern as we all know we should be using intf and probably only concrete types when creating. Don't flame me this is a generalization but the premise is intf only impl rarely. The implementation name should describe how it's implementing the intf or what it's doing. Think intf List, LinkedList which implements List using a linked list. Who cares if it's longer as we should be using List most of the time. If we have a class implementing many intf we probably should not include all the intf as the shadows the real purpose of the class. IN the case something removed without the intf makes sense. Eg ppl call me by name not Person, Sibling, developer etc using my name is the best most descriptive name. I suppose if a class is impl a simple intf then call it Default Intf which makes it on ious this is the default implementation of Intf.
Names of classes sHould in the end be human readable and almost a short phrase describing their purpose. Prefix codes etc are not great as we communicate with words not codes. Computers do t cAre what classes are called so why remains is that we name things so the names help us and our colleagues.
Most likely its to make it easily identifiable in intellisense, since all the interfaces will clump together. Similar to how I prefix all my UI controls with btn, tb, lb. When intellisense kicks in everything is clumped together in one easy group.
With all of the arguments about naming conventions and giving proper names to variables and methods that actually describe what they do...why not just name your interfaces (e.g. PetInterface, PlayerInterface, etc.) and do away with the prefix "I" all together. So what you have to type an additional 9 letters, at least the "I" is removed and we know it is not a class, because it says "Interface".

Categories