Prevent certain classes to call certain methods using Attributes - c#

I plan to give method calling privileges to certain classes in my program using Attributes but I just have no clude how to.
For example, here is what I want my Customer class to look like:
[ForbiddenMethodsAttr(listOfMyForbiddenMethods)]
public class Customer
{
public Customer { }
}
And if I want to call a given function, the intellisense should warm me that I can't, The reason I want to do this is because calling those functions may cause some issues and not I'm the only one who will code this project but some friends as well. So if it is possible to write such an attribute, how to do it?

You could mark the methods as obsolete and then anyone calling them will get a compiler warning (though not error). Its not elegant, but neither is attempting to restrict method calls without using scoping conventions.

Related

Using Roslyn to check that attributes are coherent

I have a project where I do this:
public class Stuff
{
[ExecuteOnComputer("192.168.1.2")]
public void methodA()
{
return "ok";
}
[ExecuteOnComputer("192.168.1.3")]
public void methodB()
{
return methodA();
}
}
I use the ExecuteOnComputer attribute in an Executor class that dispatches the call to the computer located at the IP address specified in the attribute. (this is not the exact thing I am doing but is similar enough for the purpose of simplifying the question).
Now, I want to ensure that if a method tagged with the ExecuteOnComputer calls another method tagged with the ExecuteOnComputer attribute, then something alerts me if the 2 attributes have a different IP address (the example above should alert me somehow that the attributes are not well defined).
Obviously, the C# syntax is correct, and it's impossible to use reflection on the produced DLL, because reflection can't tell me that methodB calls methodA.
So I am thinking that a way to do this would be to have an extension in Visual Studio check that for me during editing or compile time. I need some Roslyn code to analyze the call tree from methodB.
There seems to be some solutions out there, but the docs are not great. I was hoping there would be something available with some Roslyn/VS extension boilerplate code already done.
Can anyone help me with this?

Adding annotation to test methods

I'm not sure 'annotations' is the current term, I'll try to explain by example:
[MyAnnotation]
[TestMethod]
public void Test123()
{
...
}
I want to define 'MyAnnotation' to affect the method in some way. Is that possible?
Couldn't find useful information about it. Thanks.
"Annotations" (as they are called in Java) are called "Attributes" in C#.
You can easily define your own attributes. But they are not doing anything by their own. Attributes are only meta data. You need additional code to act on them. E.g. you could write a parser that detects them on runtime.
For running a test twice if it has your attribute attached, you would either need to write your own test-runner or extend the one you are currently using. Maybe there are even test-runners out there that are extensible in such a way. No matter what, nothing is going to happen at runtime, just because you attached a new attribute to a class or method.

Reusable Class Library Implementation

I've built a reusable Class Library to encapsulate my Authentication logic. I want to be able to reuse the compiled *.dll across multiple projects.
What I've got works. But, something about how I'm making the reference, or how my Class Library is structured isn't quite right. And I need your help to figure out what I'm doing-wrong/not-understanding...
I've got a Class Library (Authentication.dll) which is structured like this:
namespace AUTHENTICATION
{
public static class authentication
{
public static Boolean Authenticate(long UserID, long AppID) {...}
//...More Static Methods...//
}
}
In my dependent project I've added a reference to Authentication.dll, and I've added a using directive...
using AUTHENTICATION;
With this structure I can call my Authenticate method, from my dependent project, like so...
authentication.Authenticate(1,1)
I'd like to be able to not have to include that "authentication." before all calls to methods from this Class Library. Is that possible? If so, what changes do I need to make to my Class Library, or how I'm implementing it in my dependent project?
In C# a function cannot exist without a class. So you always need to define something for it, being a class for a static method or an object for an object method.
The only option to achieve that would be to declare a base class in the Authentication assembly from which you inherit in the dependent projects.
You could expose Authenticate as a protected method (or public works too), and call it without specifying the class name.
public class MyClassInDependentProject : authentication
{
public void DoSomething(int userId, long appId)
{
var success = Authenticate(userId, appId);
…
}
}
That said, you'll quickly find this to be a bad design. It conflates a cross-cutting concern with all sorts of other classes, and those classes are now precluded from inheriting from any other class.
Composition is a core principle of object-oriented programming, and we have the idiom "Favor composition over inheritance." This simply means that we break down complexity into manageable chunks (classes, which become instantiated as objects), and then compose those objects together to handle complex processing. So, you have encapsulated some aspect of authentication in your class, and you provide that to other classes compositionally so they can use it for authentication. Thinking about it as an object with which you can do something helps, conceptually.
As an analogy, think about needing to drill a hole in the top of your desk. You bring a drill (object) into your office (class). At that point, it wouldn't make sense to simply say "On," because "On" could be handled by your fan, your lamp, your PC, etc. (other objects in your class). You need to specify, "Drill On."
If you are making a class library in C# you should learn to use the naming conventions that exists: Design Guidelines for Developing Class Libraries
Here is how you should name namespaces: https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/interface
C# is also an object oriented language, hence the need of classes (using Authentication as you should name your class).
It also seems like the data source is hard coded. Your class library users (even if it's just you) might want to configure the data source.
Google about singleton and why it's considered to be an anti pattern today (in most cases).
You are obliged to use Class in order to invoke your method, just
When is static class just NameClass.Method
When is not static, you must create instance, ClassName ob = new ClassName(); ob.Method();
The format of a call like this is class.method, and you really can't escape using the "class" moniker even with the "using" designation. Something has to "host" the function.
I don't think what you are asking for is possible without using the base class method Jay mentioned. If all you want is to simplify the syntax whenever you call Authenticate() however, this silly solution (adding an extra method in each class that needs to do authentication) may be just what you want:
private static void DoAuth(long UserID, long AppID){
authentication.Authenticate(UserID, AppID)
}
If the ID's are always the same within some context, you could also overload it:
private static void DoAuth(){
DoAuth(1,1)
}
Yes, this does mean you have to add more code wherever you want to do the authentication (that's why it's silly! ;) ). It does also however, also reduce this:
authentication.Authenticate(1,1);
...into this:
DoAuth();
I leave the cost / benefit analysis of this up to you..
I know I am some 3 years late but here goes nothing.
To keep your code cleaner and more readable you should create a new namespace for all the re-usable code that you want to have. Then in that namespace have the Authentication Class and Authenticate Function.
To use this you can easily set a using on your namespace and use the function as you are doing like
Authentication.Authenticate()
But to use
Authenticate()
by itself you can always do
using MyNamespace.Authentication;
and in your code use Authenticate Function directly.

Why is overriding static method alowed in C#

protected static new void WhyIsThisValidCode()
{
}
Why are you allowed to override static methods?
Nothing but bugs can come from it, it doensn't work as you would think.
Take the following classes.
class BaseLogger
{
protected static string LogName { get { return null; } }
public static void Log(string message) { Logger.Log(message, LogName); }
}
class SpecificLogger : BaseLogger
{
protected static string LogName { get { return "Specific"; } }
}
this is alowed, and the code
SpecificLogger.Log("test");
is altso alowed, but it doesn't do what you would think by looking at the code.
it calls Logger.Log with LogName = null.
So why is this allowed?
The new keyword does not override a method. It instead creates a new method of the same name which is independent of the original. It is not possible to override a static method because they are not virtual
You're not overriding it, you're hiding it. A normal method would exhibit exactly the same behavior so there is nothing specific to static methods here.
Hiding is only useful in a few cases. The one where I came across most often is making the return type more specific in a derived class. But I never had that occur with static methods.
One area where static functions with a certain name might be useful is if you use reflection and want to get information on each class by returning it from a method. But of course in most cases an attribute fits better.
And it's not likely to create bugs since your code produces a compiler-warning:
Warning 'StaticHiding.SpecificLogger.LogName' hides inherited member 'StaticHiding.BaseLogger.LogName'. Use the new keyword if hiding was intended.
And if you use new you should know what you're doing.
Others have pointed out that this isn't overriding, but that still leaves your original question: why are you able to do it? (But the question is really "why can you hide static methods".)
It's an inevitable feature of supporting the independent versioning of component that contain base classes and components that use those base classes.
For example, imagine that component CompB contains the base class, and some other component CompD contains a derived class. In version 1 of CompB, there might not have been any property called LogName. The author of CompD decides to add a static property called LogName.
The critical thing to understand at this point is that the author of v1 of CompD was not intending to replace or hide any feature of the base class - there was no member called LogName in the base class when they wrote that code.
Now imagine that a new version of the CompB library is released. In this new version, the author added a LogName property. What's supposed to happen in CompD? The options appear to be:
CompD no longer works because the LogName it introduces clashes with the LogName added to CompB
Somehow make the CompD's LogName replace the base CompB LogName. (It's not actually remotely clear how this could work with statics. You could envisage this with non-statics though.)
Treat the two LogName members as being completely different members that happen to have the same name. (In reality, they don't - they're called BaseLogger.LogName and SpecificLogger.LogName. But since in C# we don't always need to qualify the member name with the class, it looks like they're the same name.)
.NET chooses to do 3. (And it does that with both statics and non-statics. If you want behaviour 2 - replacement - with non-statics, then the base has to be virtual and the derived class has to mark the method as override to make it clear that they were deliberately overriding a method in the base class. C# will never make a derived class's method replace a base class's method unless the derived class explicitly stated that this is what they wanted.) This is likely to be safe because the two members are unrelated - the base LogName didn't even exist at the point where the derived one was introduced. And this is preferable to simply breaking because the latest version of the base class introduced a new member.
Without this feature, it would be impossible for new versions of the .NET Framework to add new members to existing base classes without that being a breaking change.
You say that the behaviour isn't what you expect. Actually it's exactly what I'd expect, and what you'd probably want in practice. The BaseLogger has no idea that the SpecificLogger has introduced its own LogName property. (There's no mechanism by which it could because you cannot override static methods.) And when the author of SpecificLogger wrote that LogName property, remember that they were writing against v1 of BaseLogger which didn't have a LogName, so they weren't intending that it should replace the base method either. Since neither class wants replacement, clearly replacement would be the wrong thing.
The only scenario in which you should ever end up in this situation is because the two classes are in different components. (Obviously you can contrive a scenario when they're in the same component, but why would you ever do that? If you own both pieces of code and release them in a single component, it'd be mad ever to do this.) And so BaseLogger should get its own LogName property, which is exactly what happens. You may have written:
SpecificLogger.Log("test");
but the C# compiler sees that SpecificLogger doesn't provide a Log method, so it turns this into:
BaseLogger.Log("test");
because that's where the Log method is defined.
So whenever you define a method in a derived class that isn't attempting to override an existing method, the C# compiler indicates this in the metadata. (There's a "newslot" setting in the method metadata that says, this method is meant to be brand new, unrelated to anything in the base class.)
But this gives you a problem if you want to recompile CompD. Let's say you've got a bug report due to some entirely unrelated bit of code and you need to release a new version of CompD. You compile it against the new verison of CompB. If the code you've written wasn't allowed, you wouldn't actually be able to - old code that's already compiled would work, but you wouldn't be able to compile new versions of that code, which would be a bit mad.
And so, to support this (frankly somewhat obscure) scenario, they allow you to do this. They generate a warning to let you know that you've got a naming clash here. You need to supply the new keyword to get rid of it.
This is an obscure scenario, but if you want to support inheritance across component boundaries, you need this, otherwise the addition of new public or protected members on a base class would invariably be a breaking change. That's why this is here. But it's bad practice ever to rely on it, hence the fact that you get a compiler warning. The use of the new keyword to get rid of the warning should only ever be a stopgap.
The bottom line is this: this feature exists for one reason only, and that's to get you out of a hole in situations where a new version of some base class has added a member that didn't previously exist, and which clashes with a member that's already on your derived class. If that's not the situation you're in, don't use this feature.
(I think they should actually issue an error rather than a warning when you leave out new, to make this more clear.)
Static methods and fields do not belong to class instances but to class definitions. Static methods do not play part in the virtual dispatching mechanism and are not part of the virtual method table.
They are just methods and fields on that specific class.
It may look like the methods and fields are "inherited" because you can do SpecificLogger.Log(), but that is just something to keep you from having to refer to the base class all the time.
Static methods and fields really are just global methods and fields, just the OO kind.
for my surprise following code is allowed and compiles without any error on .net Framework 4.5.1, VS 2013.
class A
{
public static void Foo()
{
}
}
class B : A
{
}
class Program
{
static void main(string[] args)
{
B.Foo();
}
}
You aren't overriding the property in the base class, but instead hiding it. The actual property used at runtime depends on what interface you're working against. The following example illustrates:
SpecificLogger a = new SpecificLogger();
BaseLogger b = new SpecificLogger();
Console.Write(a.Log); // Specific
Console.Write(b.Log); // null
In your code the Log method is actually working against the BaseLogger interface - because the Log method is part of the BaseLogger class.
Static methods and properties can not be overridden, and when you want to hide a property you should use the new keyword to denote that you're hiding something.

Hiding a function

I have a class holding complex scientific computations. It is set up to only allow a user to create a properly instantiated case. To properly test the code, however, requires setting internal state variables directly, since the reference documents supply this data in their test cases. Done improperly, however, it can invalidate the state.
So I must have the ability, a member function, to set internal variables from the unit test programs. But I want to strongly discourage normal users from calling this function. (Yes, a determined user can muck with anything... but I don't want to advertise that there is a way to do something wrong.)
It would be nice to be able to tell Intellisense to not show the function, for instance.
The best solution I have at the moment is to just name the function something like: DangerousSet().
What other options do I have?
Follow-Up
I found Amy B's answer most useful to my situation. Thanks!
Mufasa's suggestion to use reflection was great, but harder to implement (for me).
Chris' suggestion of using a decorator was good, but didn't pan out.
BFree's suggestion on XML is also good, and was already in use, but doesn't really solve the problem.
Finally, BillTheLizard's suggestion that the problem is in the source documents is not something I can control. International experts publish highly technical books and journal articles for use by their community. The fact that they don't address my particular needs is a fact of life. There simply are no alternative documents.
You can use InternalsVisibleToAttribute to mark internal members as visible to your test assembly. It seems to shine when used in this context, though its not quite "friend".
Mark your DangerousSet function internal instead of public.
In Properties\AssemblyInfo.cs of the project containing DangerousSet:
[assembly:InternalsVisibleTo("YourTestAssembly")]
If you have two test assemblies for whatever reason, the syntax is:
[assembly:InternalsVisibleTo("TestAssembly1"),
InternalsVisibleTo("TestAssembly2")]
Decorate your method with this attribute:
[System.ComponentModel.EditorBrowsable(System.ComponentModel.EditorBrowsableState.Never)]
This will hide it from Intellisense.
EDIT:
But apparently this has a rather significant caveat: "In Visual C#, EditorBrowsableAttribute does not suppress members from a class in the same assembly." Via MSDN.
Suppose you want to test this object by manipulating its fields.
public class ComplexCalculation
{
protected int favoriteNumber;
public int FavoriteNumber
{
get { return favoriteNumber; }
}
}
Place this object in your test assembly/namespace:
public class ComplexCalculationTest : ComplexCalculation
{
public void SetFavoriteNumber(int newFavoriteNumber)
{
this.favoriteNumber = newFavoriteNumber;
}
}
And write your test:
public void Test()
{
ComplexCalculationTest myTestObject = new ComplexCalculationTest();
myTestObject.SetFavoriteNumber(3);
ComplexCalculation myObject = myTestObject;
if (myObject.FavoriteNumber == 3)
Console.WriteLine("Win!");
}
PS: I know you said internal, but I don't think you meant internal.
It sounds like your real problem is in your reference documents. You shouldn't test cases that are impossible to encounter under proper use of your class. If users shouldn't be allowed to change the state of those variables, then neither should your tests.
You can also use reflection. Google search turned up Unit testing private methods using reflection.
Can your test code include a subclass of the calculations class? If so, you can mark the function protected and only inheritors will be able to use it. I'm pretty sure this also takes it out of intellisense, but I could be wrong about that.
What I've done in the past is I put XML Comments by the method and used the section to write in big bold letters. DON'T USE THIS METHOD or whatever. That way, if someone tried to use it, Intellisense would give them a nice warning.

Categories