I have a c# winforms .net 4 application which receives a 156 character message I then pass this message unchanged to multiple function in turn.
My question is is it inefficient to keep passing the same value as a parameter or is there a more efficient way?
so currently I have :
string code = getTheCode();
\\decode first part
string result1 = getResult1(code);
string result2 = getResult2(code);
...
value of code never changes after its initial assignment.
The answer is no. It is not inefficient to keep passing the same string as a parameter. You are just passing a reference to the string, so it is very efficient.
You could create a class with a constructor requiring you to pass your string as argument and set it as a private property. Then you could retrieve data using methods which would use this private property to calculate results.
But this is only a matter of coding style you prefer, of course (and whether you will use these methods in one or more places). For me it's more readable AND you get to make sure that code variable won't change in that instance of ResultGetter class.
public class ResultGetter
{
private readonly string _code;
public ResultGetter(string code)
{
_code = code;
}
public string GetResult1()
{
var returnValue = // do something with _code property
return returnValue;
}
public string GetResult2()
{
var returnValue = // do something with _code property
return returnValue;
}
// et cetera ad nauseam
}
And then in your main file:
var code = getTheCode();
var rg = new ResultGetter(code);
string result1 = rg.GetResult1();
string result2 = rg.GetResult2();
It may be inefficient to keep passing the same code to several methods. If you find you have to do this many times, you might want to create a class responsible for 'getting results'. Pass the ''code' in the constructor of this new class. This way you can reuse the 'code' during the lifetime of the class and you don't have to keep passing the same value as a parameter
Related
edit; Based on responses, I may have been unclear in my final goal. I've updated the last section.
Situation
I have a number of variables which I need to perform the same operation on. In this case, they are strings, and can at the point we reach this code have the value null, "", "Blank", or they could already have an assigned other value that I want to keep.
if (String.IsNullOrEmpty(MyVar1) || "Blank".Equals(MyVar1))
MyVar1 = null;
if(String.IsNullOrEmpty(MyVar2) || "Blank".Equals(MyVar2))
MyVar2 = null;
...
if(String.IsNullOrEmpty(MyVar10) || "Blank".Equals(MyVar10))
MyVar10 = null;
Being a programmer that wants to keep my code clean and this block drives me mad, I'm looking for a way to create a list of these variables, and perform this same if statement + null assignment on each.
For an example, here's what I'd like to do:
MyVar1 = "Blank";
DreamDataStructure varList = new DreamDataStructure() { MyVar1, MyVar2, ..., MyVar10 };
foreach(ref string MyVar in varList)
{
if(String.IsNullOrEmpty(MyVar) || "Blank".Equals(MyVar))
MyVar = null;
}
Console.WriteLine(MyVar1); //Should now be null
What Doesn't Work
1) Because my variables are strings, I can't do something like this.
var myListOfVariables = new[] { &MyVar1, &MyVar2, ..., &MyVar10 };
If I could, I'd be able to foreach over them as expected. Because string is a managed type though, it cannot be passed by reference like this.
2) Similarly, if I just made a List<string> of the variables, they would be passed by value and wouldn't help my case.
3) These variables can't be wrapped in an outer object type, as they need to be used as strings in a large number of places in a legacy application. Assume that it would be too large an effort to change how they're used in every location.
Question
Is there a way to iterate over string (or other managed type) variables in a pass-by-reference way that will allow me to put the entire operation inside of a loop and reduce the duplication of code that's happening here?
The goal here is that I can use the original variables later on in my code with the updated values. MyVar1, etc, are referenced later on already by legacy code which expects them to be null or have an actual value.
If I understand your question correctly, I don't think what you want to do is possible. Please see this question: Interesting "params of ref" feature, any workarounds?
The only thing I can suggest (which I know doesn't answer your question) is creating a method to avoid duplication of your conditional logic:
void Convert(ref string text)
{
if (string.IsNullOrEmpty(text) || "Blank".Equals(text))
{
text = null;
}
}
You could create a function instead of passing references, which would also be more readable.
string Validate(string inputString)
{
return string.IsNullOrEmpty(inputString) || "Blank".Equals(inputString) ? null : inputString;
}
<...>
MyVar1 = Validate(MyVar1);
Update:
Now I get what you're trying to do. You have a bunch of variables, and you want to perform some sort of bulk operation on them without changing anything else. Putting them in a class isn't an option.
In that case you're really stuck operating on them one at a time. There are ways to shorten it, but you're pretty much stuck with the repetition.
I'd
create a string SanitizeString(string input) function
type x = SanitizeString(x); once for each variable
copy and paste the variable names to replace x.
It's lame, but that's about all there is.
Perhaps this would be a better approach. It ensures that the values are always sanitized. Otherwise you can't easily tell whether the values have been sanitized or not:
public class MyValues
{
private string _value1;
private string _value2;
private string _value3;
public string Value1
{
get { return _value1; }
set { _value1 = Sanitize(value); }
}
// repeat for other values
private string Sanitize(string input) =>
string.IsNullOrEmpty(input) || string.Equals("Blank", input) ? null : input;
}
That's one option. Another is to sanitize the inputs earlier. But ideally we want to ensure that a given class is always in a valid state. We wouldn't want to have an instance of a class whether the values may or may not be valid. It's better to ensure that they are always valid.
ref doesn't really factor into it. We don't need to use it often, if ever. With a value type or string we can just return a new value from a function.
If we're passing a reference type and we want to make changes to it (like setting its properties, adding items to a list) then we're already passing a reference and we don't need to specify ref.
I'd try to write methods first without using ref and only use it if you need to. You probably never will because you'll succeed at whatever you're trying to do without using ref.
Your comment mentioned that this is a legacy app and it's preferable not to modify the existing class. That leaves one more option - reflection. Not my favorite, but when you say "legacy app" I feel your pain. In that case you could do this:
public static class StringSanitizer
{
private static Dictionary<Type, IEnumerable<PropertyInfo>> _stringProperties = new Dictionary<Type, IEnumerable<PropertyInfo>>();
public static void SanitizeStringProperties<T>(T input) where T : class
{
if (!_stringProperties.ContainsKey(typeof(T)))
{
_stringProperties.Add(typeof(T), GetStringProperties(typeof(T)));
}
foreach (var property in _stringProperties[typeof(T)])
{
property.SetValue(input, Sanitize((string)property.GetValue(input)));
}
}
private static string Sanitize(string input)
{
return string.IsNullOrEmpty(input) || string.Equals("Blank", input) ? null : input;
}
private static IEnumerable<PropertyInfo> GetStringProperties(Type type)
{
return type.GetProperties(BindingFlags.Instance | BindingFlags.Public)
.Where(property => property.PropertyType == typeof(string) && property.CanRead && property.CanWrite);
}
}
This will take an object, find its string properties, and sanitize them. It will store the string properties in a dictionary by type so that once it has discovered the string properties for a given type it won't have to do it again.
StringSanitizer.SanitizeStringProperties(someObject);
you can simply use a string[] and get the changes back to the caller method like this.
public Main()
{
var myVar1 = "Blank";
var myVar2 = "";
string myVar3 = null;
var myVar4 = "";
string[] dreamDataStructure = new string[] { myVar1, myVar2, myVar3, myVar4 };
}
private void ProcessStrings(string[] list)
{
for(int i = 0; i < list.Length; i++)
{
if (String.IsNullOrEmpty(list[i]) || "Blank".Equals(list[i]))
list[i] = null;
}
}
I have a class StringFormatter which contains method RemoveCharFromString.
For a long time, I have been creating a new instance of a class and then use it like the following:
[...]
StringFormat sf = new StringFormat();
string exampleString = sf.RemoveCharFromString(inputString, '%');
[...]
Now I came to a point where I just have to use this method a single time in one class. I thought there might be a shorter way of accomplishing the above code such as:
[...]
string exampleString = new StringFormat.RemoveCharFromString(inputString, '%');
[...]
Is there something for that?
You can instantiate a class and call one of it's methods directly - your second code sample just needs a parenthesis after the constructor:
string exampleString = new StringFormatter().RemoveCharFromString(inputString, '%');
However - there are things to consider here, without knowing the insides of the method:
The method's name suggests it's basically removing a specific char from the string - If it removes all occurrences of said char, why not just use string.Replace()?
Since this method seems to be getting all the information it needs from it's arguments and does not rely on, nor changes the state of the StringFormatter instance, why not make it a static method?
Sounds to me like the StringFormatter class is a bunch of methods which works on the type string. One option, could therefore be to consider to use extensions methods on the string type instead
public static class StringFormatter
{
public static string RemoveCharFromString(this string value, char charToRemove)
{
//do your logic and then return a string
}
}
Then use it
var exampleString = inputString.RemoveCharFromString('%');
I'm coming from a C++ background. This question has been asked before, but try as I might I cannot find the answer. Let's say I have:
string[] ArrayOfReallyVeryLongStringNames = new string[500];
ArrayOfReallyVeryLongStringNames[439] = "Hello world!";
Can I create a string that references the above (neither of these will compile):
string a = ref ArrayOfReallyVeryLongStringNames[439]; // no compile
string a = &ArrayOfReallyVeryLongStringNames[439]; // no compile
I do understand that strings are immutable in C#. I also understand that you cannot get the address of a managed object.
I'd like to do this:
a = "Donkey Kong"; // Now ArrayOfReallyVeryLongStringNames[439] = "Donkey Kong";
I have read the Stack Overflow question Make a reference to another string in C#
which has an excellent answer, but to a slightly different question. I do NOT want to pass this parameter to a function by reference. I know how to use the "ref" keyword for passing a parameter by reference.
If the answer is "You cannot do this in C#", is there a convenient workaround?
EDIT:
Some of the answers indicate the question was unclear. Lets ask it in a different way. Say I needed to manipulate all items in the original long-named array that have prime indices. I'd like to add aliases to Array...[2], Array...[3], Array...[5], etc to a list. Then, modify the items in the list using a "for" loop (perhaps by passing the list just created to a function).
In C# the "using" keyword creates an alias to a class or namespace. It seems from the answers, that it is not possible to create an alias to a variable, however.
You could create a wrapper that keeps a reference to the underlying array AND the index of the string:
public sealed class ArrayStringReference
{
private readonly string[] _array;
private readonly int _index;
public ArrayStringReference(string[] array, int index)
{
_array = array;
_index = index;
}
public string Value
{
get
{
return _array[_index];
}
set
{
_array[_index] = value;
}
}
public override string ToString()
{
return Value;
}
}
Then this will work:
string[] ArrayOfReallyVeryLongStringNames = new string[500];
ArrayOfReallyVeryLongStringNames[439] = "Hello world!";
var strRef = new ArrayStringReference(ArrayOfReallyVeryLongStringNames, 439);
Console.WriteLine(ArrayOfReallyVeryLongStringNames[439]); // Outputs "Hello world!"
strRef.Value = "Donkey Kong";
Console.WriteLine(ArrayOfReallyVeryLongStringNames[439]); // Outputs "Donkey Kong"
You could make this more convenient to use by providing an implicit string operator so you don't have to use .Value to access the underlying string:
// Add this to class ArrayStringReference implementation
public static implicit operator string(ArrayStringReference strRef)
{
return strRef.Value;
}
Then instead of having to access the underlying string like this:
strRef.Value = "Donkey Kong";
...
string someString = strRef.Value;
You can do this:
strRef.Value = "Donkey Kong";
...
string someString = strRef; // Don't need .Value
This is just syntactic sugar, but it might make it easier to start using an ArrayStringReference in existing code. (Note that you will still need to use .Value to set the underlying string.)
The closest you can get is this:
unsafe
{
string* a = &ArrayOfReallyVeryLongStringNames[439]; // no compile
}
Which gives an exception:
Cannot take the address of, get the size of, or declare a pointer to a managed type ('string')
So no, not possible...
Also read this MSDN article which explains what types can be used (blittable types).
When I do something like this in C#:
string a = "String 1";
string b = a;
a = "String 2";
Console.WriteLine(a); // String 2
Console.WriteLine(b); // String 1
The thing is, both "String 1" and "String 2" literals are created at the start of the program, and strings are always pointers: at first a references "String 1" literal and afterwards it references "String 2". If you want them to always reference the same thing, in C# you just use the same variable.
The string objects themselves are immutable in C#:
Because a string "modification" is actually a new string creation, you must use caution when you create references to strings. If you create a reference to a string, and then "modify" the original string, the reference will continue to point to the original object instead of the new object that was created when the string was modified.
When the string mutability is needed, for example, to concatenate a lot of strings faster, other classes are used, like StringBuilder.
To sum it up, what you're trying to do is impossible.
In C#, a String is an Object. Therefore String a = "Donkey Kong" says that a now have a reference to this string that is being allocated over the memory. Then all you need to do is:
ArrayOfReallyVeryLongStringNames[439] = a;
And that will copy the refrence (which you should be thinking of in C#!!!) to the location in the string.
BUT!! When you do a="new string";, a will get a new reference. See the example I made:
http://prntscr.com/3kw18v
You can only do this with unsafe mode.
You could create a wrapper
public class StringWrapper
{
public string Value {get;set;}
}
StringWrapper[] arrayOfWrappers = new StringWrapper[500];
arrayOfWrappers[439] = new StringWrapper { Value = "Hello World" };
StringWrapper a = arrayOfWrappers[439];
a.Value = "New Value";
What you are trying to do is universally discouraged, and actively prevented, in C#, where the logic should be independent of the memory model, however, refer to related SO question C# memory address and variable for some info.
EDIT 1
A more canonical approach to your actual problem in C# would be:
// using System.Linq;
string[] raw = new string[] { "alpha", "beta", "gamma", "delta" };
List<int> evenIndices = Enumerable.Range(0, raw.Length)
.Where(x => x % 2 == 0)
.ToList();
foreach (int x in evenIndices)
raw[x] = raw[x] + " (even)";
foreach (string x in raw)
Console.WriteLine(x);
/*
OUTPUT:
alpha (even)
beta
gamma (even)
delta
*/
If you really want to modify the original memory structure itself, then perhaps C++ is a more appropriate language choice for the solution.
EDIT 2
Looking around on SO, you may want to look at this answer Hidden Features of C#? to an unrelated question.
[TestMethod]
public void TestMethod1()
{
string[] arrayOfString = new string[500];
arrayOfString[499] = "Four Ninty Nine";
Console.WriteLine("Before Modification : {0} " , arrayOfString[499]);
string a = arrayOfString[499];
ModifyString(out arrayOfString[499]);
Console.WriteLine("after a : {0}", a);
Console.WriteLine("after arrayOfString [499]: {0}", arrayOfString[499]);
}
private void ModifyString(out string arrayItem)
{
arrayItem = "Five Hundred less one";
}
Of course you can, hehe:
var a = __makeref(array[666]);
__refvalue(a, string) = "hello";
But you would have to have a very good reason to do it this way.
I am used to using functions that return a single value "in-line" like so:
Label1.Text = firstString + functionReturnSecondString(aGivenParameter);
Can this be done for a function that returns two values?
Hypothetical example:
label1.Text = multipleReturnFunction(parameter).firstValue
I have been looking into returning more than one value and it looks like the best options are using a tuple, struct, or an array list.
I made a working function that retuns a struct. However the way I got it to work I need to first call the function, then I can use the values. It doesn't seem possible to make it happen all on the same line without writing another function.
multipleReturnFunction(parameter);
Label1.Text = firstString + classOfStruct.secondString;
I haven't made a function that returns a tuple or array list yet, so I'm not sure. Is it possible to call those functions and reference the return values "inline"?
I appreciate your feedback.
I have a grotty hack for exactly this type of scenario - when you want to perform multiple operations on the return value without defining an extra variable to store it:
public static TResult Apply<TInput, TResult>(this TInput input, Func<TInput, TResult> transformation)
{
return transformation(input);
}
... and here's the reason it came about in the first place:
var collection = Enumerable.Range(1, 3);
// Average reimplemented with Aggregate.
double average = collection
.Aggregate(
new { Count = 0, Sum = 0 },
(acc, i) => new { Count = acc.Count + 1, Sum = acc.Sum + i })
.Apply(a => (double)a.Sum / (double)a.Count); // Note: we have access to both Sum and Count despite never having stored the result of the call to .Aggregate().
Console.WriteLine("Average: {0}", average);
Needless to say this is better suited for academic exercises than actual production code.
Alternatively, use the ref or they out keyword.
Example:
int a = 0, b = 0;
void DoSomething(ref int a, ref int b) {
a = 1;
b = 2;
}
Console.WriteLine(a); // Prints 1
Console.WriteLine(b); // Prints 2
It's not inline and I personally would consider a class or a struct before using the ref or the out keyword. Let's consider the theory: when you want to return multiple things, you have in fact an object that has multiple properties which you want to make available to the caller of your function.
Therefore it is much more correct to actually create an object (either by using a class or a struct) that represents what you want to make available and returning that.
The only time I use the ref or the out keyword is when using DLL imports because those functions often have pointers as their calling arguments and I personally don't see any benefit in using them in your typical normal application.
To do this inline, I think you would have to have another method that takes your struct and gives you the string you are looking for.
public string NewMethod(object yourStruct)
{
return string.Format("{0} {1}", yourStruct.value1, yourStruct.value2);
}
Then in the page, you do this:
Label1.Text = NewMethod(multipleReturnFunction(parameter));
C# doesn't have Inline functions, but it does support anonymous functions which can be closures.
With these techniques, you can say:
var firstString=default(String);
var secondString=default(String);
((Action<String>)(arg => {
firstString="abc"+arg;
secondString="xyz";
}))("wtf");
label1.Text=firstString+secondString;
Debug.Print("{0}", label1.Text);
((Action<String>)(arg => {
firstString="123"+arg;
secondString="456";
}))("???");
label1.Text=firstString+secondString;
Debug.Print("{0}", label1.Text);
or name the delegate and reuse it:
var firstString=default(String);
var secondString=default(String);
Action<String> m=
arg => {
firstString="abc"+arg;
secondString="xyz";
};
m("wtf");
label1.Text=firstString+secondString;
Debug.Print("{0}", label1.Text);
m("???");
label1.Text=firstString+secondString;
Debug.Print("{0}", label1.Text);
So, do you really need a method returns multiple values?
Each method can return only one value. Thats how methods defined in .NET
Methods are declared in a class or struct by specifying the access
level such as public or private, optional modifiers such as abstract
or sealed, the return value, the name of the method, and any method
parameters
If you need to return more than one value from method, then you have three options:
Return complex type which will hold all values. That cannot help you in this case, because you will need local variable to store value returned by method.
Use out parameters. Also not your case - you will need to declare parameters before method call.
Create another method, which does all work and returns single value.
Third option looks like
Label1.Text = AnotherMethod(parameters);
And implementation
public string AnotherMethod(parameters)
{
// use option 1 or 2 to get both values
// return combined string which uses both values and parameters
}
BTW One more option - do not return values at all - you can use method which sets several class fields.
I have a class that has 3 string properties. I want to store these in a list so that when I make changes to the strings of the list they also get updated in the class.
This would be easy to do if I was using class object, but string seems to behave differently. It seems to make a copy of the object for the list rather then have a pointer to the object. How am I supposed to do this is C#? If this is not possible is there a better way?
The problem with strings is that they are immutable. In other words, you can never change a string once it is created.
Thus, if you want to 'change' a string, you must remove the original from the List, and store the result back into the list. Example:
string a = "abcdefg";
List<String> list = new List<String>();
list.add(a);
a = a.Substring(0, 5);
That code does nothing because the string a is pointing to never changes. It just points to a new string.
In .NET, strings are immutable. If you change the string, you are in fact creating a new one and modifying the reference.
I would consider using a StringBuilder object to address your problem.
Strings are immutable. You can change a reference to point to another string but you cannot modify a string such that other references to it change value as well (except by unsafe, completely dangerous reflective code)
What you want to do is deal with this either through using a mutable alternative, (such as a StringBuilder) or via explicit indirection. I'll show you the latter:
public class Props
{
private readonly string[] data = new string[2];
public string Foo {
get { return data[0]; }
}
public string Bar {
get { return data[1]; }
}
public IList<string> ModifyValueButNoInsertsList { get { return data;} }
}
Really you should consider actually using string[] rather than IList in this situation as it makes it clear inserts are forbidden, only alterations of the values. Since string[] implements IList<string> this is unlikely to be a problem
Since strings are immutable, the simplest work-around is to instead store the reference to a string array with one element. Replacing that element will then be noticed by anyone with a reference to the array.
Strings in C# are immutable, so you cannot change a string in C# - you can only create new strings.
You could rather store a class that has a string member
class StringHolder {
public StringHolder(string s) { str = s;}
public string str;
}
...
List<StringHolder> l1 = new List<StringHolder>();
List<StringHolder> l2 = new List<StringHolder>();
List<StringHolder> l3 = new List<StringHolder>();
StringHolder h = new StringHolder("Test\n");
l1.add(h);
l2.add(h);
l3.add(h);
h.str = h.str.Replace("\n","");
Now all lists refer to the same StringHolder and will naturally see the same string.
Another option is to store StringBuilder objects in your lists instead of a String.
class StringHolder
{
public string Value { get; set; }
}
Keep a list of those instead of just strings. Then you can get/set the Value property to update the string value.
You're looking for a mutable string of some kind. There are a lot of ways to create a class that behaves the way you want it.
The easiest way would be to use a StringBuilder object instead of a string. You just have to be careful to not make new StringBuilder objects, but rather alter the existing one. Depending on what you need, this may not be the best option.
Alternatively you can create your own wrapper class for String that you can manipulate freely. The downside is you may have to write a lot of stub methods that call down to the inner string depending on how you want to use it. It would be easier to just expose a read/write string property. This has the advantage of letting you define exactly what behaviours you want, but will take longer to write in the first place. Again, you'll have to make sure to not create new instances of the wrapper class, but rather just alter the class's internal string.
Wrap your string into a custom class, this will allow you to share it amongst a number of different locations. You could also choose to store Char arrays instead.
As a side note (like several have mentioned), if you're doing some heavy processing with strings, use the StringBuilder class. Because of the immutable nature of strings, changing/concatenation of them in loops or what have you - will cause a lot of overhead.
StringBuilder is your friend.