I'm working on a school project and my goal is to recognize objects. I started with taking pictures, applying various filters and doing boundary tracing. Fourier descriptors are to high for me, so I started approximating polygons from my List of Points. Now I have to match those polygons, which all have the same amount of vertices and all sites have the same length. More particular, I have two polygons and now I have to calculate some scale of similarity. This process has to be translation, rotation and scale invariant.
I tried turning and scaling one in different ways and calculate the distance between each pair of vertices, but this is very slow.
I tried turning the polygon in a set of vectors and calculate each angle of the corners and compare them. But this is also a bit slow.
I found an article called Contour Analysis. But i find this a bit difficult. In this article, firstly all vectors of each set are interpreted as complex numbers, so we only have two vectors with complex compounds. Then the cosine of both vectors is calculated. But the cosine is also a complex number and the norm of it is always 1 if both vectors are the same. So how does it make sense to interpret a set of vectors as one vector. I don't understand this practice.
Are there any other ways to compare two polygons or sets of vectors? Or can someone explain my 3rd try or do it with normal vectors?
I hope someone can help me out :-)
If your objects are well separated, you can characterize every contour using Hu's moments.
Description and basic math of image moments is rather simple and would be suitable for school project.
Related
I am stuck at this point. I am trying to find where two lines in graph intersects. I have 10 points for each spline, but they intersects between this points.
I am using c# graph. (System.Windows.Forms.DataVisualization.Charting.Chart chart2;)
Do you have an idea how to solve this?
Here is this situation. Points are measured manually so there is minimum posibility that it will intersetcs on this given points.
Refine the splines to the degree of precision you need and then intersect (straight) line pairs, as Matthew suggested. This can be done quite efficient if you chose the right data structure to store the line segments, so that it supports fast range queries (kd-tree perhaps?).
Doing it analytically is going to be really hard, I guess.
I found the solution, I used least squares theory and polynomial function to represent equation of curve and after that solve the equation. If anybody needs solution just write me.
So I need a write method to create a curve between two points, with each point having a normalized vector pointing in an arbitrary direction. I have been trying to devise such a method but haven't been able to wrap my head around the math.
Here, since a picture is worth a thousand words this is what I need:
In the picture, the vectors are perpendicular to the red lines. I believe the vectors need to be weighted the same with a weight equivalent to the distance between the points. It needs to be so that when two points are on top of each other pointing in opposite directions it still all looks like one smooth curve (top curve in the picture). Also, I need to integrate the curves to find their lengths. I don't know why I haven't been able to think of how to calculate all of this but I haven't.
Also I'm using csharp the language doesn't really matter.
Cubic Bezier will indeed achieve the requested effect. You need four control points per curve segment. Two define the endpoints and two others the directions of the tangents at the endpoints. There are two degrees of freedom left, telling how far the control points can be along the tangents.
The arc length cannot be computed analytically and you will need numerical methods. This other question gives you useful information.
I am looking for an algorithm to generate equally distributed points inside a polygon.
Here is the scenario:
I have a polygon specified by the coordinates of the points at the corners (x, y) for each point. And I have the number of points to generate inside the polygon.
For example lets say I have a polygon containing 5 points: (1, 1) ; (1, 2) ; (2, 3) ; (3, 2) ; and (3, 1)
And I need to generate 20 equally distanced points inside that polygon.
Note: Some polygons may not support equally distributed points, but I'm looking to distribute the points in a way to cover all the region of the polygon with as much consistency as possible. (what i mean is I don't want a part with a lot more points than another)
Is there an algorithm to do so? or maybe a library
I am working on a C# application, but any language is ok, since I only need the algorithm and I can translate it.
Thanks a lot for any help
The simple approach I use is:
Triangulate the polygon. Ear clipping is entirely adequate, as all you need is a dissection of the polygon into a set of non-overlapping triangles.
Compute the area of each triangle. Sample from each triangle proportionally to the area of that triangle relative to the whole. This costs only a single uniform random number per sample.
Once a point is determined to have come from a given triangle, sample uniformly over the triangle. This is itself easier than you might think.
So really it all comes down to how do you sample within a triangle. This is easily enough done. A triangle is defined by 3 vertices. I'll call them P1, P2, P3.
Pick ANY edge of the triangle. Generate a point (P4) that lies uniformly along that edge. Thus if P1 and P2 are the coordinates of the corresponding end points, then P will be a uniformly sampled point along that edge, if r has uniform distribution on the interval [0,1].
P4 = (1-r)*P1 + r*P2
Next, sample along the line segment between P3 and P4, but do so non-uniformly. If s is a uniform random number on the interval [0,1], then
P5 = (1-sqrt(s))*P3 + sqrt(s)*P4
r and s are independent pseudo-random numbers of course. Then P5 will be randomly sampled, uniform over the triangle.
The nice thing is it needs no rejection scheme to implement, so long, thin polygons are not a problem. And for each sample, the cost is only in the need to generate three random numbers per event. Since ear clipping is rather simply done and an efficient task, the sampling will be efficient, even for nasty looking polygons or non-convex polygons.
An easy way to do this is this:
Calculate the bounding box
Generate points in that box
Discard all points not in the polygon of interest
This approach generates a certain amount of wasted points. For a triangle, it is never more than 50%. For arbitrary polygons this can be arbitrarily high so you need to see if it works for you.
For arbitrary polys you can decompose the polygon into triangles first which allows you to get to a guaranteed upper bound of wasted points: 50%.
For equally distanced points, generate points from a space-filling curve (and discard all points that are not in the polygon).
You can use Lloyd’s algorithm:
https://en.m.wikipedia.org/wiki/Lloyd%27s_algorithm
You can try the {spatialEco} package (https://cran.r-project.org/web/packages/spatialEco/index.html)
and apply the function sample.poly (https://www.rdocumentation.org/packages/spatialEco/versions/1.3-2/topics/sample.poly)
You can try this code:
library(rgeos)
library(spatialEco)
mypoly = readWKT("POLYGON((1 1,5 1,5 5,1 5,1 1))")
plot(mypoly)
points = sample.poly(mypoly, n= 20, type = "regular")
#points2 = sample.poly(mypoly, n= 20, type = "stratified")
#another type which may answer your problem
plot(points, col="red", add=T)
The easy answer comes from an easier question: How to generate a given number of randomly distributed points from the uniform distribution that will all fit inside a given polygon?
The easy answer is this: find the bounding box of your polygon (let's say it's [a,b] x [c,d]), then keep generating pairs of real numbers, one from U(a,b), the other from U(b,c), until you have n coordinate pairs that fit inside your polygon. This is simple to program, but, if your polygon is very jagged, or thin and skewed, very wasteful and slow.
For a better answer, find the smallest rotated rectangular bounding box, and do the above in transformed coordinates.
Genettic algorithms can do it rather quickly
Reffer to GENETIC ALGORITHMS FOR GRAPH LAYOUTS WITH GEOMETRIC CONSTRAINTS
You can use Force-Directed Graph for that...
Look at http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing)
it defiantly can throw you a bone.
I didn't try it ever,
but i remmember there is a possiblity to set a Fix for some Vertices in the Graph
Your Algorithm will eventually be like
Create a Graph G = Closed Path of the Vertices in V
Fix the Vertecies in place
Add N Verticies to the Graph and Fully connect them with Edges with equal tension value 1.0
Run_force_graph(G)
Scale Graph to bounded Box of
Though it wont be absolute because some convex shapes may produce wiered results (take a Star)
LASTLY: didn't read , but it seems relevant by the title and abstract
take a look at Consistent Graph Layout for Weighted Graphs
Hope this helps...
A better answer comes from a better question. Suppose you want to put a set of n watchtowers to cover a polygon. You could see this as an optimization problem: find the 2n coordinates of the n points that will minimize a cost function (or maximize a value function) that fits your goal. One possible cost function could calculate, for each point, the distance to its closest neighbor or the boundary of the polygon, whichever is less, and calculate the variance of this sequence as a measure of "non-uniformity". You could use a random set of n points, obtained as above, as your initial solution.
I've seen such a "watchtower problem" in some book. Algorithms, calculus, or optimization.
#Youssef: sorry about the delay; a friend came, and a network hiccuped.
#others: have some patience, don't be so trigger-happy.
I have a List of 2D points. What's an efficient way of iterating through the points in order to determine whether the list of points are in a straight line, or curved (and to what degree). I'd like to avoid simply getting slopes between smaller subsets. How would I go about doing this?
Thanks for any help
Edit: Thanks for the response. To clarify, I don't need it to be numerically accurate, but I'd like to determine if the user has created a curved shape with their mouse and, if so, how sharp the curve is. The values are not too important, as long as it's possible to determine the difference between a sharp curve and a slightly softer one.
If you simply want to know if all your points fit more or less on a curve of degree d, simply apply Lagrange interpolation on the endpoints and d-2 equally spaced points from inside your array. This will give you a polynomial of degree d.
Once you have your curve, simply iterate over the array and see how far away from the curve each point is. If they're farther than a threshold, your data doesn't fit your degree d polynomial.
Edit: I should mention that iterating through values of d is a finite process. Once d reaches the number of points you have, you'll get a perfect fit because of how Lagrange interpolation works.
To test if it's a straight line, compute the correlation coefficient. I'm sure that's covered on wikipedia.
To test if it's curved is more involved. You need to know what kind of curves you expect, and fit against those.
Here is a method to calculate angle: Calculate Angle between 2 points using C#
Simply calculate angle between each and every point in your list and create list of angles, then compare if angles list values are different. If they are not different then it means it's straight line, otherwise it's curve...
If it's a straight line then angle between all points has to be a same.
The question is really hazy here: "I'd like to avoid simply getting slopes between smaller substes"
You probably want interpolation a-la B-splines. They use two points and two extra control points if memory serves me. Implementations are ubiquitous since way back (at least 1980's). This should get you underway
Remember that you'll probably need to add control points to make the curve meet the endpoints. One trick to make sure those are reached is to simply duplicate the endpoints as extra controlpoints.
Cheers
Update Added link to codeproject
it would appear that what I remember from back in the 80's could have been Bezier curves - a predecessor of sorts.
Given an elevation map consisting of lat/lon/elevation pairs, what is the fastest way to find all points above a given elevation level (or better yet, just the the 2D concave hull)?
I'm working on a GIS app where I need to render an overlay on top of a map to visually indicate regions that are of higher elevation; it's determining this polygon/region that has me stumped (for now). I have a simple array of lat/lon/elevation pairs (more specifically, the GTOPO30 DEM files), but I'm free to transform that into any data structure that you would suggest.
We've been pointed toward Triangulated Irregular Networks (TINs), but I'm not sure how to efficiently query that data once we've generated the TIN. I wouldn't be surprised if our problem could be solved similarly to how one would generate a contour map, but I don't have any experience with it. Any suggestions would be awesome.
It sounds like you're attempting to create a polygonal representation of the boundary of the high land.
If you're working with raster data (sampled on a rectangular grid), try this.
Think of your grid as an assembly of right triangles.
Let's say you have a 3x3 grid of points
a b c
d e f
g h k
Your triangles are:
abd part of the rectangle abed
bde the other part of the rectangle abed
bef part of the rectangle bcfe
cef the other part of the rectangle bcfe
dge ... and so on
Your algorithm has these steps.
Build a list of triangles that are above the elevation threshold.
Take the union of these triangles to make a polygonal area.
Determine the boundary of the polygon.
If necessary, smooth the polygon boundary to make your layer look ok when displayed.
If you're trying to generate good looking contour lines, step 4 is very hard to to right.
Step 1 is the key to this problem.
For each triangle, if all three vertices are above the threshold, include the whole triangle in your list. If all are below, forget about the triangle. If some vertices are above and others below, split your triangle into three by adding new vertices that lie precisely on the elevation line (by interpolating elevation). Include the one or two of those new triangles in your highland list.
For the rest of the steps you'll need a decent 2d geometry processing library.
If your points are not on a regular grid, start by using the Delaunay algorithm (which you can look up) to organize your pointss in into triangles. Then follow the same algorith I mentioned above. Warning. This is going to look kind of sketchy if you don't have many points.
Assuming you have the lat/lon/elevation data stored in an array (or three separate arrays) you should be able to use array querying techniques to select all of the points where the elevation is above a certain threshold. For example, in python with numpy you can do:
indices = where(array > value)
And the indices variable will contain the indices of all elements of array greater than the threshold value. Similar commands are available in various other languages (for example IDL has the WHERE() command, and similar things can be done in Matlab).
Once you've got this list of indices you could create a new binary array where each place where the threshold was satisfied is set to 1:
binary_array[indices] = 1
(Assuming you've created a blank array of the same size as your original lat/long/elevation and called it binary_array.
If you're working with raster data (which I would recommend for this type of work), you may find that you can simply overlay this array on a map and get a nice set of regions appearing. However, if you need to convert the areas above the elevation threshold to vector polygons then you could use one of many inbuilt GIS methods to convert raster->vector.
I would use a nested C-squares arrangement, with each square having a pre-calculated maximum ground height. This would allow me to scan at a high level, discarding any squares where the max height is not above the search height, and drilling further into those squares where parts of the ground were above the search height.
If you're working to various set levels of search height, you could precalculate the convex hull for the various predefined levels for the smallest squares that you decide to use (or all the squares, for that matter.)
I'm not sure whether your lat/lon/alt points are on a regular grid or not, but if not, perhaps they could be interpolated to represent even 100' ft altitude increments, and uniform
lat/lon divisions (bearing in mind that that does not give uniform distance divisions). But if that would work, why not precompute a three dimensional array, where the indices represent altitude, latitude, and longitude respectively. Then when the aircraft needs data about points at or above an altitude, for a specific piece of terrain, the code only needs to read out a small part of the data in this array, which is indexed to make contiguous "voxels" contiguous in the indexing scheme.
Of course, the increments in longitude would not have to be uniform: if uniform distances are required, the same scheme would work, but the indexes for longitude would point to a nonuniformly spaced set of longitudes.
I don't think there would be any faster way of searching this data.
It's not clear from your question if the set of points is static and you need to find what points are above a given elevation many times, or if you only need to do the query once.
The easiest solution is to just store the points in an array, sorted by elevation. Finding all points in a certain elevation range is just binary search, and you only need to sort once.
If you only need to do the query once, just do a linear search through the array in the order you got it. Building a fancier data structure from the array is going to be O(n) anyway, so you won't get better results by complicating things.
If you have some other requirements, like say you need to efficiently list all points inside some rectangle the user is viewing, or that points can be added or deleted at runtime, then a different data structure might be better. Presumably some sort of tree or grid.
If all you care about is rendering, you can perform this very efficiently using graphics hardware, and there is no need to use a fancy data structure at all, you can just send triangles to the GPU and have it kill fragments above or below a certain elevation.