My understanding is that async void, should be avoided and that async () => is just async void in disguise when used with Action.
Hence, using the Rx.NET Finally operator asynchronously with async () => should be avoided since Finally accepts Action as parameter:
IObservable<T>.Finally(async () =>
{
await SomeCleanUpCodeAsync();
};
However, if this is bad practise, what is then best practice to use in the case where I for instance need to asynchronously close a network connection on OnCompleted or if my observable end with OnError?
My understanding is that async void, should be avoided and that async
() => is just async void in disguise.
This is partially wrong. async () => can either match Func<Task> (good) or Action (bad). The main reason for good/bad is that an exception that occurs in a async void call crashes the process, whereas a async Task exception is catchable.
So we just need to write an AsyncFinally operator that takes in a Func<Task> instead of an Action like Observable.Finally:
public static class X
{
public static IObservable<T> AsyncFinally<T>(this IObservable<T> source, Func<Task> action)
{
return source
.Materialize()
.SelectMany(async n =>
{
switch (n.Kind)
{
case NotificationKind.OnCompleted:
case NotificationKind.OnError:
await action();
return n;
case NotificationKind.OnNext:
return n;
default:
throw new NotImplementedException();
}
})
.Dematerialize()
;
}
}
And here's a demonstration of usage:
try
{
Observable.Interval(TimeSpan.FromMilliseconds(100))
.Take(10)
.AsyncFinally(async () =>
{
await Task.Delay(1000);
throw new NotImplementedException();
})
.Subscribe(i => Console.WriteLine(i));
}
catch(Exception e)
{
Console.WriteLine("Exception caught, no problem");
}
If you swap out AsyncFinally for Finally, you'll crash the process.
It is in Rx as it is elsewhere; avoid async void like the plague. In addition to the problems listed in the article, using asynchronous code in the synchronous operators "breaks" Rx.
I'd consider using OnErrorResumeNext() for cleaning up resources asynchronously. OnErrorResumeNext() let's you specify an observable which will run after the first, regardless the reason it ended:
var myObservable = ...
myObservable
.Subscribe( /* Business as usual */ );
Observable.OnErrorResumeNext(
myObservable.Select(_ => Unit.Default),
Observable.FromAsync(() => SomeCleanUpCodeAsync()))
.Subscribe();
myObservable would preferably be a ConnectableObservable (e.g. Publish()) to prevent multiple subscriptions.
The method signature for Finally is
public static IObservable<TSource> Finally<TSource>(
this IObservable<TSource> source,
Action finallyAction
)
which expects an action, not a Task.
As an addendum, if you want to run something asynchronously, instead of async void, use Task.Factory methods inside the method so the intention is explicit.
Quoting from the Intro to Rx:
The Finally extension method accepts an Action as a parameter. This Action will be invoked if the sequence terminates normally or erroneously, or if the subscription is disposed of.
(emphasis added)
This behavior cannot be replicated by a Finally operator that accepts a Func<Task> parameter, because of how the IObservable<T> interface is defined. Unsubscribing from an observable sequence is achieved by calling the Dispose method of the IDisposable subscription. This method is synchronous. And the whole Rx library is built on top of this interface. So even if you create an extension method DisposeAsync for IDisposables, the built-in Rx operators (for example Select, SelectMany, Where, Take etc) will be unaware of its existence, and will not invoke it when they unsubscribe from their source sequence. A subscription chain of operators will be automatically unlinked by calling the synchronous Dispose method of the previous link as always.
Btw there has been an attempt to implement an asynchronous version of Rx (AsyncRx), that is built on top of the completely new interfaces that are shown below. This library has not been released yet.
public interface IAsyncObserver<in T>
{
ValueTask OnNextAsync(T value);
ValueTask OnErrorAsync(Exception error);
ValueTask OnCompletedAsync();
}
public interface IAsyncObservable<out T>
{
ValueTask<IAsyncDisposable> SubscribeAsync(IAsyncObserver<T> observer);
}
public interface IAsyncDisposable
{
public ValueTask DisposeAsync();
}
Related
I have a public async void Foo() method that I want to call from synchronous method. So far all I have seen from MSDN documentation is calling async methods via async methods, but my whole program is not built with async methods.
Is this even possible?
Here's one example of calling these methods from an asynchronous method:
Walkthrough: Accessing the Web by Using Async and Await (C# and Visual Basic)
Now I'm looking into calling these async methods from sync methods.
Asynchronous programming does "grow" through the code base. It has been compared to a zombie virus. The best solution is to allow it to grow, but sometimes that's not possible.
I have written a few types in my Nito.AsyncEx library for dealing with a partially-asynchronous code base. There's no solution that works in every situation, though.
Solution A
If you have a simple asynchronous method that doesn't need to synchronize back to its context, then you can use Task.WaitAndUnwrapException:
var task = MyAsyncMethod();
var result = task.WaitAndUnwrapException();
You do not want to use Task.Wait or Task.Result because they wrap exceptions in AggregateException.
This solution is only appropriate if MyAsyncMethod does not synchronize back to its context. In other words, every await in MyAsyncMethod should end with ConfigureAwait(false). This means it can't update any UI elements or access the ASP.NET request context.
Solution B
If MyAsyncMethod does need to synchronize back to its context, then you may be able to use AsyncContext.RunTask to provide a nested context:
var result = AsyncContext.RunTask(MyAsyncMethod).Result;
*Update 4/14/2014: In more recent versions of the library the API is as follows:
var result = AsyncContext.Run(MyAsyncMethod);
(It's OK to use Task.Result in this example because RunTask will propagate Task exceptions).
The reason you may need AsyncContext.RunTask instead of Task.WaitAndUnwrapException is because of a rather subtle deadlock possibility that happens on WinForms/WPF/SL/ASP.NET:
A synchronous method calls an async method, obtaining a Task.
The synchronous method does a blocking wait on the Task.
The async method uses await without ConfigureAwait.
The Task cannot complete in this situation because it only completes when the async method is finished; the async method cannot complete because it is attempting to schedule its continuation to the SynchronizationContext, and WinForms/WPF/SL/ASP.NET will not allow the continuation to run because the synchronous method is already running in that context.
This is one reason why it's a good idea to use ConfigureAwait(false) within every async method as much as possible.
Solution C
AsyncContext.RunTask won't work in every scenario. For example, if the async method awaits something that requires a UI event to complete, then you'll deadlock even with the nested context. In that case, you could start the async method on the thread pool:
var task = Task.Run(async () => await MyAsyncMethod());
var result = task.WaitAndUnwrapException();
However, this solution requires a MyAsyncMethod that will work in the thread pool context. So it can't update UI elements or access the ASP.NET request context. And in that case, you may as well add ConfigureAwait(false) to its await statements, and use solution A.
Update, 2019-05-01: The current "least-worst practices" are in an MSDN article here.
Adding a solution that finally solved my problem, hopefully saves somebody's time.
Firstly read a couple articles of Stephen Cleary:
Async and Await
Don't Block on Async Code
From the "two best practices" in "Don't Block on Async Code", the first one didn't work for me and the second one wasn't applicable (basically if I can use await, I do!).
So here is my workaround: wrap the call inside a Task.Run<>(async () => await FunctionAsync()); and hopefully no deadlock anymore.
Here is my code:
public class LogReader
{
ILogger _logger;
public LogReader(ILogger logger)
{
_logger = logger;
}
public LogEntity GetLog()
{
Task<LogEntity> task = Task.Run<LogEntity>(async () => await GetLogAsync());
return task.Result;
}
public async Task<LogEntity> GetLogAsync()
{
var result = await _logger.GetAsync();
// more code here...
return result as LogEntity;
}
}
Microsoft built an AsyncHelper (internal) class to run Async as Sync. The source looks like:
internal static class AsyncHelper
{
private static readonly TaskFactory _myTaskFactory = new
TaskFactory(CancellationToken.None,
TaskCreationOptions.None,
TaskContinuationOptions.None,
TaskScheduler.Default);
public static TResult RunSync<TResult>(Func<Task<TResult>> func)
{
return AsyncHelper._myTaskFactory
.StartNew<Task<TResult>>(func)
.Unwrap<TResult>()
.GetAwaiter()
.GetResult();
}
public static void RunSync(Func<Task> func)
{
AsyncHelper._myTaskFactory
.StartNew<Task>(func)
.Unwrap()
.GetAwaiter()
.GetResult();
}
}
The Microsoft.AspNet.Identity base classes only have Async methods and in order to call them as Sync there are classes with extension methods that look like (example usage):
public static TUser FindById<TUser, TKey>(this UserManager<TUser, TKey> manager, TKey userId) where TUser : class, IUser<TKey> where TKey : IEquatable<TKey>
{
if (manager == null)
{
throw new ArgumentNullException("manager");
}
return AsyncHelper.RunSync<TUser>(() => manager.FindByIdAsync(userId));
}
public static bool IsInRole<TUser, TKey>(this UserManager<TUser, TKey> manager, TKey userId, string role) where TUser : class, IUser<TKey> where TKey : IEquatable<TKey>
{
if (manager == null)
{
throw new ArgumentNullException("manager");
}
return AsyncHelper.RunSync<bool>(() => manager.IsInRoleAsync(userId, role));
}
For those concerned about the licensing terms of code, here is a link to very similar code (just adds support for culture on the thread) that has comments to indicate that it is MIT Licensed by Microsoft. https://github.com/aspnet/AspNetIdentity/blob/master/src/Microsoft.AspNet.Identity.Core/AsyncHelper.cs
Wouldn't this be the same as just calling Task.Run(async ()=> await AsyncFunc()).Result? AFAIK, Microsoft is now discouraging from calling TaskFactory.StartNew, since they are both equivalent and one is more readable than the other.
Absolutely not.
The easy answer is that
.Unwrap().GetAwaiter().GetResult() != .Result
First off the
Is Task.Result the same as .GetAwaiter.GetResult()?
Secondly .Unwrap() causes the setup of the Task not to block the wrapped task.
Which should lead anyone to ask
Wouldn't this be the same as just calling Task.Run(async ()=> await AsyncFunc()).GetAwaiter().GetResult()
Which would then be a It Depends.
Regarding usage of Task.Start() , Task.Run() and Task.Factory.StartNew()
Excerpt:
Task.Run uses TaskCreationOptions.DenyChildAttach which means that children's tasks can not be attached to the parent and it uses TaskScheduler.Default which means that the one that runs tasks on Thread Pool will always be used to run tasks.
Task.Factory.StartNew uses TaskScheduler.Current which means scheduler of the current thread, it might be TaskScheduler.Default but not always.
Additional Reading:
Specifying a synchronization context
ASP.NET Core SynchronizationContext
For extra safety, wouldn't it be better to call it like this AsyncHelper.RunSync(async () => await AsyncMethod().ConfigureAwait(false)); This way we're telling the "inner" method "please don't try to sync to upper context and dealock"
Really great point and as most object architectural questions go it depends.
As an extension method do you want to force that for absolutely every call, or do you let the programmer using the function configure that on their own async calls? I could see a use case for call three scenarios; it most likely is not something you want in WPF, certainly makes sense in most cases, but considering there is no Context in ASP.Net Core if you could guarantee it was say internal for a ASP.Net Core, then it wouldn't matter.
async Main is now part of C# 7.2 and can be enabled in the projects advanced build settings.
For C# < 7.2, the correct way is:
static void Main(string[] args)
{
MainAsync().GetAwaiter().GetResult();
}
static async Task MainAsync()
{
/*await stuff here*/
}
You'll see this used in a lot of Microsoft documentation, for example:
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
I'm not 100% sure, but I believe the technique described in this blog should work in many circumstances:
You can thus use task.GetAwaiter().GetResult() if you want to directly invoke this propagation logic.
public async Task<string> StartMyTask()
{
await Foo()
// code to execute once foo is done
}
static void Main()
{
var myTask = StartMyTask(); // call your method which will return control once it hits await
// now you can continue executing code here
string result = myTask.Result; // wait for the task to complete to continue
// use result
}
You read the 'await' keyword as "start this long running task, then return control to the calling method". Once the long-running task is done, then it executes the code after it. The code after the await is similar to what used to be CallBack methods. The big difference being the logical flow is not interrupted which makes it much easier to write and read.
There is, however, a good solution that works in (almost: see comments) every situation: an ad-hoc message pump (SynchronizationContext).
The calling thread will be blocked as expected, while still ensuring that all continuations called from the async function don't deadlock as they'll be marshaled to the ad-hoc SynchronizationContext (message pump) running on the calling thread.
The code of the ad-hoc message pump helper:
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace Microsoft.Threading
{
/// <summary>Provides a pump that supports running asynchronous methods on the current thread.</summary>
public static class AsyncPump
{
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static void Run(Action asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(true);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function
syncCtx.OperationStarted();
asyncMethod();
syncCtx.OperationCompleted();
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static void Run(Func<Task> asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(false);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function and alert the context to when it completes
var t = asyncMethod();
if (t == null) throw new InvalidOperationException("No task provided.");
t.ContinueWith(delegate { syncCtx.Complete(); }, TaskScheduler.Default);
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
t.GetAwaiter().GetResult();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static T Run<T>(Func<Task<T>> asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(false);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function and alert the context to when it completes
var t = asyncMethod();
if (t == null) throw new InvalidOperationException("No task provided.");
t.ContinueWith(delegate { syncCtx.Complete(); }, TaskScheduler.Default);
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
return t.GetAwaiter().GetResult();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Provides a SynchronizationContext that's single-threaded.</summary>
private sealed class SingleThreadSynchronizationContext : SynchronizationContext
{
/// <summary>The queue of work items.</summary>
private readonly BlockingCollection<KeyValuePair<SendOrPostCallback, object>> m_queue =
new BlockingCollection<KeyValuePair<SendOrPostCallback, object>>();
/// <summary>The processing thread.</summary>
private readonly Thread m_thread = Thread.CurrentThread;
/// <summary>The number of outstanding operations.</summary>
private int m_operationCount = 0;
/// <summary>Whether to track operations m_operationCount.</summary>
private readonly bool m_trackOperations;
/// <summary>Initializes the context.</summary>
/// <param name="trackOperations">Whether to track operation count.</param>
internal SingleThreadSynchronizationContext(bool trackOperations)
{
m_trackOperations = trackOperations;
}
/// <summary>Dispatches an asynchronous message to the synchronization context.</summary>
/// <param name="d">The System.Threading.SendOrPostCallback delegate to call.</param>
/// <param name="state">The object passed to the delegate.</param>
public override void Post(SendOrPostCallback d, object state)
{
if (d == null) throw new ArgumentNullException("d");
m_queue.Add(new KeyValuePair<SendOrPostCallback, object>(d, state));
}
/// <summary>Not supported.</summary>
public override void Send(SendOrPostCallback d, object state)
{
throw new NotSupportedException("Synchronously sending is not supported.");
}
/// <summary>Runs an loop to process all queued work items.</summary>
public void RunOnCurrentThread()
{
foreach (var workItem in m_queue.GetConsumingEnumerable())
workItem.Key(workItem.Value);
}
/// <summary>Notifies the context that no more work will arrive.</summary>
public void Complete() { m_queue.CompleteAdding(); }
/// <summary>Invoked when an async operation is started.</summary>
public override void OperationStarted()
{
if (m_trackOperations)
Interlocked.Increment(ref m_operationCount);
}
/// <summary>Invoked when an async operation is completed.</summary>
public override void OperationCompleted()
{
if (m_trackOperations &&
Interlocked.Decrement(ref m_operationCount) == 0)
Complete();
}
}
}
}
Usage:
AsyncPump.Run(() => FooAsync(...));
More detailed description of the async pump is available here.
To anyone paying attention to this question anymore...
If you look in Microsoft.VisualStudio.Services.WebApi there's a class called TaskExtensions. Within that class you'll see the static extension method Task.SyncResult(), which like totally just blocks the thread till the task returns.
Internally it calls task.GetAwaiter().GetResult() which is pretty simple, however it's overloaded to work on any async method that return Task, Task<T> or Task<HttpResponseMessage>... syntactic sugar, baby... daddy's got a sweet tooth.
It looks like ...GetAwaiter().GetResult() is the MS-official way to execute async code in a blocking context. Seems to work very fine for my use case.
var result = Task.Run(async () => await configManager.GetConfigurationAsync()).ConfigureAwait(false);
OpenIdConnectConfiguration config = result.GetAwaiter().GetResult();
Or use this:
var result=result.GetAwaiter().GetResult().AccessToken
You can call any asynchronous method from synchronous code, that is, until you need to await on them, in which case they have to be marked as async too.
As a lot of people are suggesting here, you could call Wait() or Result on the resulting task in your synchronous method, but then you end up with a blocking call in that method, which sort of defeats the purpose of async.
If you really can't make your method async and you don't want to lock up the synchronous method, then you're going to have to use a callback method by passing it as parameter to the ContinueWith() method on task.
Inspired by some of the other answers, I created the following simple helper methods:
public static TResult RunSync<TResult>(Func<Task<TResult>> method)
{
var task = method();
return task.GetAwaiter().GetResult();
}
public static void RunSync(Func<Task> method)
{
var task = method();
task.GetAwaiter().GetResult();
}
They can be called as follows (depending on whether you are returning a value or not):
RunSync(() => Foo());
var result = RunSync(() => FooWithResult());
Note that the signature in the original question public async void Foo() is incorrect. It should be public async Task Foo() as you should return Task not void for async methods that don't return a value (yes, there are some rare exceptions).
Stephen Cleary's Answer;
That approach shouldn't cause a deadlock (assuming that
ProblemMethodAsync doesn't send updates to the UI thread or anything
like that). It does assume that ProblemMethodAsync can be called on a
thread pool thread, which is not always the case.
https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
And here is the approach;
The Thread Pool Hack A similar approach to the Blocking Hack is to
offload the asynchronous work to the thread pool, then block on the
resulting task. The code using this hack would look like the code
shown in Figure 7.
Figure 7 Code for the Thread Pool Hack
C#
public sealed class WebDataService : IDataService
{
public string Get(int id)
{
return Task.Run(() => GetAsync(id)).GetAwaiter().GetResult();
}
public async Task<string> GetAsync(int id)
{
using (var client = new WebClient())
return await client.DownloadStringTaskAsync(
"https://www.example.com/api/values/" + id);
}
}
The call to Task.Run executes the asynchronous method on a thread pool
thread. Here it will run without a context, thus avoiding the
deadlock. One of the problems with this approach is the asynchronous
method can’t depend on executing within a specific context. So, it
can’t use UI elements or the ASP.NET HttpContext.Current.
Here is the simplest solution. I saw it somewhere on the Internet, I didn't remember where, but I have been using it successfully. It will not deadlock the calling thread.
void SynchronousFunction()
{
Task.Run(Foo).Wait();
}
string SynchronousFunctionReturnsString()
{
return Task.Run(Foo).Result;
}
string SynchronousFunctionReturnsStringWithParam(int id)
{
return Task.Run(() => Foo(id)).Result;
}
After hours of trying different methods, with more or less success, this is what I ended with. It doesn't end in a deadlock while getting result and it also gets and throws the original exception and not the wrapped one.
private ReturnType RunSync()
{
var task = Task.Run(async () => await myMethodAsync(agency));
if (task.IsFaulted && task.Exception != null)
{
throw task.Exception;
}
return task.Result;
}
You can now use source generators to create a sync version of your method using Sync Method Generator library (nuget).
Use it as follows:
[Zomp.SyncMethodGenerator.CreateSyncVersion]
public async void FooAsync()
Which will generate Foo method which you can call synchronously.
Those windows async methods have a nifty little method called AsTask(). You can use this to have the method return itself as a task so that you can manually call Wait() on it.
For example, on a Windows Phone 8 Silverlight application, you can do the following:
private void DeleteSynchronous(string path)
{
StorageFolder localFolder = Windows.Storage.ApplicationData.Current.LocalFolder;
Task t = localFolder.DeleteAsync(StorageDeleteOption.PermanentDelete).AsTask();
t.Wait();
}
private void FunctionThatNeedsToBeSynchronous()
{
// Do some work here
// ....
// Delete something in storage synchronously
DeleteSynchronous("pathGoesHere");
// Do other work here
// .....
}
Hope this helps!
If you want to run it Sync
MethodAsync().RunSynchronously()
I have a public async void Foo() method that I want to call from synchronous method. So far all I have seen from MSDN documentation is calling async methods via async methods, but my whole program is not built with async methods.
Is this even possible?
Here's one example of calling these methods from an asynchronous method:
Walkthrough: Accessing the Web by Using Async and Await (C# and Visual Basic)
Now I'm looking into calling these async methods from sync methods.
Asynchronous programming does "grow" through the code base. It has been compared to a zombie virus. The best solution is to allow it to grow, but sometimes that's not possible.
I have written a few types in my Nito.AsyncEx library for dealing with a partially-asynchronous code base. There's no solution that works in every situation, though.
Solution A
If you have a simple asynchronous method that doesn't need to synchronize back to its context, then you can use Task.WaitAndUnwrapException:
var task = MyAsyncMethod();
var result = task.WaitAndUnwrapException();
You do not want to use Task.Wait or Task.Result because they wrap exceptions in AggregateException.
This solution is only appropriate if MyAsyncMethod does not synchronize back to its context. In other words, every await in MyAsyncMethod should end with ConfigureAwait(false). This means it can't update any UI elements or access the ASP.NET request context.
Solution B
If MyAsyncMethod does need to synchronize back to its context, then you may be able to use AsyncContext.RunTask to provide a nested context:
var result = AsyncContext.RunTask(MyAsyncMethod).Result;
*Update 4/14/2014: In more recent versions of the library the API is as follows:
var result = AsyncContext.Run(MyAsyncMethod);
(It's OK to use Task.Result in this example because RunTask will propagate Task exceptions).
The reason you may need AsyncContext.RunTask instead of Task.WaitAndUnwrapException is because of a rather subtle deadlock possibility that happens on WinForms/WPF/SL/ASP.NET:
A synchronous method calls an async method, obtaining a Task.
The synchronous method does a blocking wait on the Task.
The async method uses await without ConfigureAwait.
The Task cannot complete in this situation because it only completes when the async method is finished; the async method cannot complete because it is attempting to schedule its continuation to the SynchronizationContext, and WinForms/WPF/SL/ASP.NET will not allow the continuation to run because the synchronous method is already running in that context.
This is one reason why it's a good idea to use ConfigureAwait(false) within every async method as much as possible.
Solution C
AsyncContext.RunTask won't work in every scenario. For example, if the async method awaits something that requires a UI event to complete, then you'll deadlock even with the nested context. In that case, you could start the async method on the thread pool:
var task = Task.Run(async () => await MyAsyncMethod());
var result = task.WaitAndUnwrapException();
However, this solution requires a MyAsyncMethod that will work in the thread pool context. So it can't update UI elements or access the ASP.NET request context. And in that case, you may as well add ConfigureAwait(false) to its await statements, and use solution A.
Update, 2019-05-01: The current "least-worst practices" are in an MSDN article here.
Adding a solution that finally solved my problem, hopefully saves somebody's time.
Firstly read a couple articles of Stephen Cleary:
Async and Await
Don't Block on Async Code
From the "two best practices" in "Don't Block on Async Code", the first one didn't work for me and the second one wasn't applicable (basically if I can use await, I do!).
So here is my workaround: wrap the call inside a Task.Run<>(async () => await FunctionAsync()); and hopefully no deadlock anymore.
Here is my code:
public class LogReader
{
ILogger _logger;
public LogReader(ILogger logger)
{
_logger = logger;
}
public LogEntity GetLog()
{
Task<LogEntity> task = Task.Run<LogEntity>(async () => await GetLogAsync());
return task.Result;
}
public async Task<LogEntity> GetLogAsync()
{
var result = await _logger.GetAsync();
// more code here...
return result as LogEntity;
}
}
Microsoft built an AsyncHelper (internal) class to run Async as Sync. The source looks like:
internal static class AsyncHelper
{
private static readonly TaskFactory _myTaskFactory = new
TaskFactory(CancellationToken.None,
TaskCreationOptions.None,
TaskContinuationOptions.None,
TaskScheduler.Default);
public static TResult RunSync<TResult>(Func<Task<TResult>> func)
{
return AsyncHelper._myTaskFactory
.StartNew<Task<TResult>>(func)
.Unwrap<TResult>()
.GetAwaiter()
.GetResult();
}
public static void RunSync(Func<Task> func)
{
AsyncHelper._myTaskFactory
.StartNew<Task>(func)
.Unwrap()
.GetAwaiter()
.GetResult();
}
}
The Microsoft.AspNet.Identity base classes only have Async methods and in order to call them as Sync there are classes with extension methods that look like (example usage):
public static TUser FindById<TUser, TKey>(this UserManager<TUser, TKey> manager, TKey userId) where TUser : class, IUser<TKey> where TKey : IEquatable<TKey>
{
if (manager == null)
{
throw new ArgumentNullException("manager");
}
return AsyncHelper.RunSync<TUser>(() => manager.FindByIdAsync(userId));
}
public static bool IsInRole<TUser, TKey>(this UserManager<TUser, TKey> manager, TKey userId, string role) where TUser : class, IUser<TKey> where TKey : IEquatable<TKey>
{
if (manager == null)
{
throw new ArgumentNullException("manager");
}
return AsyncHelper.RunSync<bool>(() => manager.IsInRoleAsync(userId, role));
}
For those concerned about the licensing terms of code, here is a link to very similar code (just adds support for culture on the thread) that has comments to indicate that it is MIT Licensed by Microsoft. https://github.com/aspnet/AspNetIdentity/blob/master/src/Microsoft.AspNet.Identity.Core/AsyncHelper.cs
Wouldn't this be the same as just calling Task.Run(async ()=> await AsyncFunc()).Result? AFAIK, Microsoft is now discouraging from calling TaskFactory.StartNew, since they are both equivalent and one is more readable than the other.
Absolutely not.
The easy answer is that
.Unwrap().GetAwaiter().GetResult() != .Result
First off the
Is Task.Result the same as .GetAwaiter.GetResult()?
Secondly .Unwrap() causes the setup of the Task not to block the wrapped task.
Which should lead anyone to ask
Wouldn't this be the same as just calling Task.Run(async ()=> await AsyncFunc()).GetAwaiter().GetResult()
Which would then be a It Depends.
Regarding usage of Task.Start() , Task.Run() and Task.Factory.StartNew()
Excerpt:
Task.Run uses TaskCreationOptions.DenyChildAttach which means that children's tasks can not be attached to the parent and it uses TaskScheduler.Default which means that the one that runs tasks on Thread Pool will always be used to run tasks.
Task.Factory.StartNew uses TaskScheduler.Current which means scheduler of the current thread, it might be TaskScheduler.Default but not always.
Additional Reading:
Specifying a synchronization context
ASP.NET Core SynchronizationContext
For extra safety, wouldn't it be better to call it like this AsyncHelper.RunSync(async () => await AsyncMethod().ConfigureAwait(false)); This way we're telling the "inner" method "please don't try to sync to upper context and dealock"
Really great point and as most object architectural questions go it depends.
As an extension method do you want to force that for absolutely every call, or do you let the programmer using the function configure that on their own async calls? I could see a use case for call three scenarios; it most likely is not something you want in WPF, certainly makes sense in most cases, but considering there is no Context in ASP.Net Core if you could guarantee it was say internal for a ASP.Net Core, then it wouldn't matter.
async Main is now part of C# 7.2 and can be enabled in the projects advanced build settings.
For C# < 7.2, the correct way is:
static void Main(string[] args)
{
MainAsync().GetAwaiter().GetResult();
}
static async Task MainAsync()
{
/*await stuff here*/
}
You'll see this used in a lot of Microsoft documentation, for example:
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
I'm not 100% sure, but I believe the technique described in this blog should work in many circumstances:
You can thus use task.GetAwaiter().GetResult() if you want to directly invoke this propagation logic.
public async Task<string> StartMyTask()
{
await Foo()
// code to execute once foo is done
}
static void Main()
{
var myTask = StartMyTask(); // call your method which will return control once it hits await
// now you can continue executing code here
string result = myTask.Result; // wait for the task to complete to continue
// use result
}
You read the 'await' keyword as "start this long running task, then return control to the calling method". Once the long-running task is done, then it executes the code after it. The code after the await is similar to what used to be CallBack methods. The big difference being the logical flow is not interrupted which makes it much easier to write and read.
There is, however, a good solution that works in (almost: see comments) every situation: an ad-hoc message pump (SynchronizationContext).
The calling thread will be blocked as expected, while still ensuring that all continuations called from the async function don't deadlock as they'll be marshaled to the ad-hoc SynchronizationContext (message pump) running on the calling thread.
The code of the ad-hoc message pump helper:
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
namespace Microsoft.Threading
{
/// <summary>Provides a pump that supports running asynchronous methods on the current thread.</summary>
public static class AsyncPump
{
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static void Run(Action asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(true);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function
syncCtx.OperationStarted();
asyncMethod();
syncCtx.OperationCompleted();
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static void Run(Func<Task> asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(false);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function and alert the context to when it completes
var t = asyncMethod();
if (t == null) throw new InvalidOperationException("No task provided.");
t.ContinueWith(delegate { syncCtx.Complete(); }, TaskScheduler.Default);
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
t.GetAwaiter().GetResult();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Runs the specified asynchronous method.</summary>
/// <param name="asyncMethod">The asynchronous method to execute.</param>
public static T Run<T>(Func<Task<T>> asyncMethod)
{
if (asyncMethod == null) throw new ArgumentNullException("asyncMethod");
var prevCtx = SynchronizationContext.Current;
try
{
// Establish the new context
var syncCtx = new SingleThreadSynchronizationContext(false);
SynchronizationContext.SetSynchronizationContext(syncCtx);
// Invoke the function and alert the context to when it completes
var t = asyncMethod();
if (t == null) throw new InvalidOperationException("No task provided.");
t.ContinueWith(delegate { syncCtx.Complete(); }, TaskScheduler.Default);
// Pump continuations and propagate any exceptions
syncCtx.RunOnCurrentThread();
return t.GetAwaiter().GetResult();
}
finally { SynchronizationContext.SetSynchronizationContext(prevCtx); }
}
/// <summary>Provides a SynchronizationContext that's single-threaded.</summary>
private sealed class SingleThreadSynchronizationContext : SynchronizationContext
{
/// <summary>The queue of work items.</summary>
private readonly BlockingCollection<KeyValuePair<SendOrPostCallback, object>> m_queue =
new BlockingCollection<KeyValuePair<SendOrPostCallback, object>>();
/// <summary>The processing thread.</summary>
private readonly Thread m_thread = Thread.CurrentThread;
/// <summary>The number of outstanding operations.</summary>
private int m_operationCount = 0;
/// <summary>Whether to track operations m_operationCount.</summary>
private readonly bool m_trackOperations;
/// <summary>Initializes the context.</summary>
/// <param name="trackOperations">Whether to track operation count.</param>
internal SingleThreadSynchronizationContext(bool trackOperations)
{
m_trackOperations = trackOperations;
}
/// <summary>Dispatches an asynchronous message to the synchronization context.</summary>
/// <param name="d">The System.Threading.SendOrPostCallback delegate to call.</param>
/// <param name="state">The object passed to the delegate.</param>
public override void Post(SendOrPostCallback d, object state)
{
if (d == null) throw new ArgumentNullException("d");
m_queue.Add(new KeyValuePair<SendOrPostCallback, object>(d, state));
}
/// <summary>Not supported.</summary>
public override void Send(SendOrPostCallback d, object state)
{
throw new NotSupportedException("Synchronously sending is not supported.");
}
/// <summary>Runs an loop to process all queued work items.</summary>
public void RunOnCurrentThread()
{
foreach (var workItem in m_queue.GetConsumingEnumerable())
workItem.Key(workItem.Value);
}
/// <summary>Notifies the context that no more work will arrive.</summary>
public void Complete() { m_queue.CompleteAdding(); }
/// <summary>Invoked when an async operation is started.</summary>
public override void OperationStarted()
{
if (m_trackOperations)
Interlocked.Increment(ref m_operationCount);
}
/// <summary>Invoked when an async operation is completed.</summary>
public override void OperationCompleted()
{
if (m_trackOperations &&
Interlocked.Decrement(ref m_operationCount) == 0)
Complete();
}
}
}
}
Usage:
AsyncPump.Run(() => FooAsync(...));
More detailed description of the async pump is available here.
To anyone paying attention to this question anymore...
If you look in Microsoft.VisualStudio.Services.WebApi there's a class called TaskExtensions. Within that class you'll see the static extension method Task.SyncResult(), which like totally just blocks the thread till the task returns.
Internally it calls task.GetAwaiter().GetResult() which is pretty simple, however it's overloaded to work on any async method that return Task, Task<T> or Task<HttpResponseMessage>... syntactic sugar, baby... daddy's got a sweet tooth.
It looks like ...GetAwaiter().GetResult() is the MS-official way to execute async code in a blocking context. Seems to work very fine for my use case.
var result = Task.Run(async () => await configManager.GetConfigurationAsync()).ConfigureAwait(false);
OpenIdConnectConfiguration config = result.GetAwaiter().GetResult();
Or use this:
var result=result.GetAwaiter().GetResult().AccessToken
You can call any asynchronous method from synchronous code, that is, until you need to await on them, in which case they have to be marked as async too.
As a lot of people are suggesting here, you could call Wait() or Result on the resulting task in your synchronous method, but then you end up with a blocking call in that method, which sort of defeats the purpose of async.
If you really can't make your method async and you don't want to lock up the synchronous method, then you're going to have to use a callback method by passing it as parameter to the ContinueWith() method on task.
Inspired by some of the other answers, I created the following simple helper methods:
public static TResult RunSync<TResult>(Func<Task<TResult>> method)
{
var task = method();
return task.GetAwaiter().GetResult();
}
public static void RunSync(Func<Task> method)
{
var task = method();
task.GetAwaiter().GetResult();
}
They can be called as follows (depending on whether you are returning a value or not):
RunSync(() => Foo());
var result = RunSync(() => FooWithResult());
Note that the signature in the original question public async void Foo() is incorrect. It should be public async Task Foo() as you should return Task not void for async methods that don't return a value (yes, there are some rare exceptions).
Stephen Cleary's Answer;
That approach shouldn't cause a deadlock (assuming that
ProblemMethodAsync doesn't send updates to the UI thread or anything
like that). It does assume that ProblemMethodAsync can be called on a
thread pool thread, which is not always the case.
https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
And here is the approach;
The Thread Pool Hack A similar approach to the Blocking Hack is to
offload the asynchronous work to the thread pool, then block on the
resulting task. The code using this hack would look like the code
shown in Figure 7.
Figure 7 Code for the Thread Pool Hack
C#
public sealed class WebDataService : IDataService
{
public string Get(int id)
{
return Task.Run(() => GetAsync(id)).GetAwaiter().GetResult();
}
public async Task<string> GetAsync(int id)
{
using (var client = new WebClient())
return await client.DownloadStringTaskAsync(
"https://www.example.com/api/values/" + id);
}
}
The call to Task.Run executes the asynchronous method on a thread pool
thread. Here it will run without a context, thus avoiding the
deadlock. One of the problems with this approach is the asynchronous
method can’t depend on executing within a specific context. So, it
can’t use UI elements or the ASP.NET HttpContext.Current.
Here is the simplest solution. I saw it somewhere on the Internet, I didn't remember where, but I have been using it successfully. It will not deadlock the calling thread.
void SynchronousFunction()
{
Task.Run(Foo).Wait();
}
string SynchronousFunctionReturnsString()
{
return Task.Run(Foo).Result;
}
string SynchronousFunctionReturnsStringWithParam(int id)
{
return Task.Run(() => Foo(id)).Result;
}
After hours of trying different methods, with more or less success, this is what I ended with. It doesn't end in a deadlock while getting result and it also gets and throws the original exception and not the wrapped one.
private ReturnType RunSync()
{
var task = Task.Run(async () => await myMethodAsync(agency));
if (task.IsFaulted && task.Exception != null)
{
throw task.Exception;
}
return task.Result;
}
You can now use source generators to create a sync version of your method using Sync Method Generator library (nuget).
Use it as follows:
[Zomp.SyncMethodGenerator.CreateSyncVersion]
public async void FooAsync()
Which will generate Foo method which you can call synchronously.
Those windows async methods have a nifty little method called AsTask(). You can use this to have the method return itself as a task so that you can manually call Wait() on it.
For example, on a Windows Phone 8 Silverlight application, you can do the following:
private void DeleteSynchronous(string path)
{
StorageFolder localFolder = Windows.Storage.ApplicationData.Current.LocalFolder;
Task t = localFolder.DeleteAsync(StorageDeleteOption.PermanentDelete).AsTask();
t.Wait();
}
private void FunctionThatNeedsToBeSynchronous()
{
// Do some work here
// ....
// Delete something in storage synchronously
DeleteSynchronous("pathGoesHere");
// Do other work here
// .....
}
Hope this helps!
If you want to run it Sync
MethodAsync().RunSynchronously()
In contrast to Task.Wait() or Task.Result, await’ing a Task in C# 5 prevents the thread which executes the wait from lying fallow. Instead, the method using the await keyword needs to be async so that the call of await just makes the method to return a new task which represents the execution of the async method.
But when the await’ed Task completes before the async method has received CPU time again, the await recognizes the Task as finished and thus the async method will return the Task object only at a later time. In some cases this would be later than acceptable because it probably is a common mistake that a developer assumes the await’ing always defers the subsequent statements in his async method.
The mistaken async method’s structure could look like the following:
async Task doSthAsync()
{
var a = await getSthAsync();
// perform a long operation
}
Then sometimes doSthAsync() will return the Task only after a long time.
I know it should rather be written like this:
async Task doSthAsync()
{
var a = await getSthAsync();
await Task.Run(() =>
{
// perform a long operation
};
}
... or that:
async Task doSthAsync()
{
var a = await getSthAsync();
await Task.Yield();
// perform a long operation
}
But I do not find the last two patterns pretty and want to prevent the mistake to occur. I am developing a framework which provides getSthAsync and the first structure shall be common. So getSthAsync should return an Awaitable which always yields like the YieldAwaitable returned by Task.Yield() does.
Unfortunately most features provided by the Task Parallel Library like Task.WhenAll(IEnumerable<Task> tasks) only operate on Tasks so the result of getSthAsync should be a Task.
So is it possible to return a Task which always yields?
First of all, the consumer of an async method shouldn't assume it will "yield" as that's nothing to do with it being async. If the consumer needs to make sure there's an offload to another thread they should use Task.Run to enforce that.
Second of all, I don't see how using Task.Run, or Task.Yield is problematic as it's used inside an async method which returns a Task and not a YieldAwaitable.
If you want to create a Task that behaves like YieldAwaitable you can just use Task.Yield inside an async method:
async Task Yield()
{
await Task.Yield();
}
Edit:
As was mentioned in the comments, this has a race condition where it may not always yield. This race condition is inherent with how Task and TaskAwaiter are implemented. To avoid that you can create your own Task and TaskAwaiter:
public class YieldTask : Task
{
public YieldTask() : base(() => {})
{
Start(TaskScheduler.Default);
}
public new TaskAwaiterWrapper GetAwaiter() => new TaskAwaiterWrapper(base.GetAwaiter());
}
public struct TaskAwaiterWrapper : INotifyCompletion
{
private TaskAwaiter _taskAwaiter;
public TaskAwaiterWrapper(TaskAwaiter taskAwaiter)
{
_taskAwaiter = taskAwaiter;
}
public bool IsCompleted => false;
public void OnCompleted(Action continuation) => _taskAwaiter.OnCompleted(continuation);
public void GetResult() => _taskAwaiter.GetResult();
}
This will create a task that always yields because IsCompleted always returns false. It can be used like this:
public static readonly YieldTask YieldTask = new YieldTask();
private static async Task MainAsync()
{
await YieldTask;
// something
}
Note: I highly discourage anyone from actually doing this kind of thing.
Here is a polished version of i3arnon's YieldTask:
public class YieldTask : Task
{
public YieldTask() : base(() => { },
TaskCreationOptions.RunContinuationsAsynchronously)
=> RunSynchronously();
public new YieldAwaitable.YieldAwaiter GetAwaiter()
=> default;
public new YieldAwaitable ConfigureAwait(bool continueOnCapturedContext)
{
if (!continueOnCapturedContext) throw new NotSupportedException();
return default;
}
}
The YieldTask is immediately completed upon creation, but its awaiter says otherwise. The GetAwaiter().IsCompleted always returns false. This mischief makes the await operator to trigger the desirable asynchronous switch, every time it awaits this task. Actually creating multiple YieldTask instances is redundant. A singleton would work just as well.
There is a problem with this approach though. The underlying methods of the Task class are not virtual, and hiding them with the new modifier means that polymorphism doesn't work. If you store a YieldTask instance to a Task variable, you'll get the default task behavior. This is a considerable drawback for my use case, but I can't see any solution around it.
To use this method :
public static Task Run(Action action)
I just write :
void MyMethod(){ //do something }
Task t = Task.Run(new Action(MyMethod));
However I do not understand how to use the following overload
public static Task Run(Func<Task> f)
The msdn mentions that the returned task is "a proxy for the task
returned by f" which is even more confusing to me. What is meant by proxy and how would I call this method?
Func<Task> is simply a function that returns a task. That task is then executed.
So Task Run( Func<Task> f ) returns a Task, whose job is to run another Task (the one created by f). That's what's meant by a "proxy".
However, read the Note on MSDN (emphasis added):
The Run<TResult>(Func<Task<TResult>>) method is used by language compilers to support the async and await keywords. It is not intended to be called directly from user code.
Func<T> is a generic delegate - here's its full signature:
public delegate TResult Func<out TResult>()
As you can see, it represents a function that takes no parameters, and returns an instance of type TResult. In the case of Func<Task>, TResult is Task.
What this means, is that you can do this:
public Task MyAsyncMethod() { ... }
Task.Run(MyAsyncMethod);
This converts your method MyAsyncMethod into a delegate of type Func<Task> and passes it to Task.Run. It's syntactic sugar for Task.Run( new Func<Task>(MyAsyncMethod) );
The msdn mentions that the returned task is "a proxy for the task returned by f" which is even more confusing to me (what is meant by proxy ?)
What this means is that Task.Run will simply wrap the task returned by MyAsyncMethod is another Task.
That signature allows you to provide a method that returns a Task, when you run Task.Run. That is because the last generic argument of a Func<T> is the return value given back by the delegate you provide. Meaning:
public Func<bool> IsValid = this.ValidateUser;
public bool ValidateUser() { return someUser.IsAuthenticated; }
or even just
public Func<bool> IsValidUser = this.User.IsAuthenticated;
Then you can use the delegate as you would any other method, and the delegate will return a bool.
public void Foo()
{
if (!IsValidUser()) throw new InvalidOperationException("Invalid user");
}
You can use parameters that are passed in to the delegate, by providing additional generic types other than the return value.
Func<int, bool> IsUserAgeValid = (age) => return age > 18;
// Invoke the age check
bool result = this.IsUserAgeValid(17);
The thing to remember is that the last generic is always the return type in a Func. If only one generic is provided, then there is no parameters, only a return type.
A Func<Task> allows you to use an awaitable method in your Task.Run call.
This also means that you can await from within the anonymous delegate you provide.
public Task Foo()
{
/* .. do stuff */
}
public void Bar()
{
Task.Run(async () =>
{
await Foo();
/* do additional work */
});
}
and if you don't need to await the call to Foo(), you can just give Task.Run the Foo method.
Task.Run(Foo);
If you find yourself wanting to await the awaitable method given to Task.Run as shown above, it is probably better that you use ContinueWith.
public void Bar()
{
Task.Run(Foo).ContinueWith(foosTaskResult =>
{
/* Do stuff */
});
}
The MSDN documentation saying the the Task returned is a proxy for the Task of f, basically means that
Task returnedTask = Task.Run(Foo);
will set returnedTask to be the Task that was returned by the call to the awaitable Foo() method.
a Func<T> refers to a method which returns T, which in this case is a Task. Thus, to make MyMethod compatible with this particular overload, you would write
Task MyMethod() {...}
Which also means you could make MyMethod and async method, thus
async Task MyMethod() {...}
When referring to a "proxy" this means that the Task returned by Task.Run isn't actually the task returned by MyMethod, but instead wraps it.
IObservable has Subscribe overloads for Next, Next+Error, Next+Complete, Next+Complete+Error, but why is there no observable for just Errors alone?
I assume it's because there might be an IObservable of Exception's and it would cause conflicts, i.e.:
IObservable<Exception> obs;
obs.Subscribe(ex => { });
RX wouldn't know if you were subscribing to Next or Error.
Is there a way of subscribing to errors alone without creating an empty Complete delegate?
obs.Subscribe(
o => { },
ex =>
{
// error-handling-code
});
OK, this seems to be intellectual question, so:
From c# compiler perspective, for IObservable method signature(s), what you're proposing would be (considering that T = Exception):
public static IDisposable Subscribe<T>(this IObservable<T> source, Action<T> onNext);
public static IDisposable Subscribe<T>(this IObservable<T> source, Action<T> onError);
Both methods overloads would have same signatures and it's not supported by the compiler.
From interfaces perspective, you have IObserver defined like this:
public interface IObserver<in T>
{
void OnCompleted();
void OnError(Exception error);
void OnNext(T value);
}
Implementor of the interface has to be like this:
public class Observer<T> : IObserver<T>
{
public void OnCompleted()
{
}
public void OnError(Exception error)
{
// Do something with exception
}
public void OnNext(T value)
{
}
}
So, even if you don't specify OnNext = () => {}, underlying infrastructure has to implement it. You don't loose any performance specifying it.
From logical perspective of observer pattern, your intention is to subscribe asynchronously to the sequence of elements/events. Method signatures that omit OnNext function and leave only OnError would be misleading for users of Rx library. It's more clear if you explicitly state your intention that you don't want to do anything OnNext.
Once the OnCompleted or OnError method has been received, the Rx
grammar guarantees that the subscription can be considered to be
finished.
What you're trying to do would be equivalent of making empty foreach loop and waiting for exception:
try
{
foreach (var e in sequence)
{
// do nothing
}
}
catch (Exception ex)
{
// Do something
}
which is not common scenario.
I think this is what you overlook:
Once the OnCompleted or OnError method has been received, the Rx
grammar guarantees that the subscription can be considered to be
finished.
If you care just about exception that will terminate operation
try-catch is what you need.
If you care about sequence of exceptions, you'll have to catch them and
return using observer.OnNext(ex), not to break subscription with observer.OnError.